46#include "llvm/IR/IntrinsicsAArch64.h"
47#include "llvm/IR/IntrinsicsAMDGPU.h"
48#include "llvm/IR/IntrinsicsARM.h"
49#include "llvm/IR/IntrinsicsHexagon.h"
80#define DEBUG_TYPE "instcombine"
86STATISTIC(NumSimplified,
"Number of library calls simplified");
89 "instcombine-guard-widening-window",
91 cl::desc(
"How wide an instruction window to bypass looking for "
98 if (ITy->getBitWidth() < 32)
108 auto *Src =
MI->getRawSource();
110 if (!Src->hasOneUse())
120 if (!CopyDstAlign || *CopyDstAlign < DstAlign) {
121 MI->setDestAlignment(DstAlign);
127 if (!CopySrcAlign || *CopySrcAlign < SrcAlign) {
128 MI->setSourceAlignment(SrcAlign);
152 if (!MemOpLength)
return nullptr;
159 assert(
Size &&
"0-sized memory transferring should be removed already.");
169 if (*CopyDstAlign <
Size || *CopySrcAlign <
Size)
179 Value *Src =
MI->getArgOperand(1);
180 Value *Dest =
MI->getArgOperand(0);
183 L->setAlignment(*CopySrcAlign);
184 L->setAAMetadata(AACopyMD);
185 MDNode *LoopMemParallelMD =
186 MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
187 if (LoopMemParallelMD)
188 L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
189 MDNode *AccessGroupMD =
MI->getMetadata(LLVMContext::MD_access_group);
191 L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
197 if (LoopMemParallelMD)
198 S->
setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
200 S->
setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
205 L->setVolatile(MT->isVolatile());
208 if (
MI->isAtomic()) {
220 const Align KnownAlignment =
223 if (!MemSetAlign || *MemSetAlign < KnownAlignment) {
224 MI->setDestAlignment(KnownAlignment);
252 assert(Len &&
"0-sized memory setting should be removed already.");
253 const Align Alignment =
MI->getDestAlign().valueOrOne();
259 if (
MI->isAtomic() && Alignment < Len)
267 Constant *FillVal = ConstantInt::get(
273 DbgAssign->replaceVariableLocationOp(FillC, FillVal);
291 Value *LoadPtr =
II.getArgOperand(0);
292 const Align Alignment =
298 LoadInst *L = Builder.CreateAlignedLoad(
II.getType(), LoadPtr, Alignment,
307 II.getDataLayout(), &
II, &
AC)) {
308 LoadInst *LI = Builder.CreateAlignedLoad(
II.getType(), LoadPtr, Alignment,
311 return Builder.CreateSelect(
II.getArgOperand(2), LI,
II.getArgOperand(3));
326 if (ConstMask->isNullValue())
330 if (ConstMask->isAllOnesValue()) {
331 Value *StorePtr =
II.getArgOperand(1);
334 new StoreInst(
II.getArgOperand(0), StorePtr,
false, Alignment);
366 if (ConstMask->isAllOnesValue())
369 const Align Alignment =
371 LoadInst *
L =
Builder.CreateAlignedLoad(VecTy->getElementType(), SplatPtr,
372 Alignment,
"load.scalar");
374 Builder.CreateVectorSplat(VecTy->getElementCount(), L,
"broadcast");
392 if (ConstMask->isNullValue())
402 StoreInst *S =
new StoreInst(SplatValue, SplatPtr,
false,
410 if (ConstMask->isAllOnesValue()) {
413 ElementCount VF = WideLoadTy->getElementCount();
417 Builder.CreateExtractElement(
II.getArgOperand(0), LastLane);
419 new StoreInst(Extract, SplatPtr,
false, Alignment);
450 auto *Arg =
II.getArgOperand(0);
451 auto *StrippedArg = Arg->stripPointerCasts();
452 auto *StrippedInvariantGroupsArg = StrippedArg;
454 if (Intr->getIntrinsicID() != Intrinsic::launder_invariant_group &&
455 Intr->getIntrinsicID() != Intrinsic::strip_invariant_group)
457 StrippedInvariantGroupsArg = Intr->getArgOperand(0)->stripPointerCasts();
459 if (StrippedArg == StrippedInvariantGroupsArg)
462 Value *Result =
nullptr;
464 if (
II.getIntrinsicID() == Intrinsic::launder_invariant_group)
466 else if (
II.getIntrinsicID() == Intrinsic::strip_invariant_group)
470 "simplifyInvariantGroupIntrinsic only handles launder and strip");
471 if (Result->getType()->getPointerAddressSpace() !=
472 II.getType()->getPointerAddressSpace())
479 assert((
II.getIntrinsicID() == Intrinsic::cttz ||
480 II.getIntrinsicID() == Intrinsic::ctlz) &&
481 "Expected cttz or ctlz intrinsic");
482 bool IsTZ =
II.getIntrinsicID() == Intrinsic::cttz;
483 Value *Op0 =
II.getArgOperand(0);
484 Value *Op1 =
II.getArgOperand(1);
495 if (
II.getType()->isIntOrIntVectorTy(1)) {
508 II.dropUBImplyingAttrsAndMetadata();
555 return BinaryOperator::CreateAdd(ConstCttz,
X);
563 return BinaryOperator::CreateSub(ConstCttz,
X);
569 ConstantInt::get(
II.getType(),
II.getType()->getScalarSizeInBits());
570 return BinaryOperator::CreateSub(Width,
X);
578 return BinaryOperator::CreateAdd(ConstCtlz,
X);
586 return BinaryOperator::CreateSub(ConstCtlz,
X);
596 ConstantInt::get(R->getType(), R->getType()->getScalarSizeInBits() - 1),
615 if (PossibleZeros == DefiniteZeros) {
616 auto *
C = ConstantInt::get(Op0->
getType(), DefiniteZeros);
631 if (
BitWidth != 1 && !
II.hasRetAttr(Attribute::Range) &&
632 !
II.getMetadata(LLVMContext::MD_range)) {
643 assert(
II.getIntrinsicID() == Intrinsic::ctpop &&
644 "Expected ctpop intrinsic");
646 unsigned BitWidth = Ty->getScalarSizeInBits();
647 Value *Op0 =
II.getArgOperand(0);
693 if ((~Known.
Zero).isPowerOf2())
694 return BinaryOperator::CreateLShr(
695 Op0, ConstantInt::get(Ty, (~Known.
Zero).exactLogBase2()));
709 II.getRange().value_or(ConstantRange::getFull(
BitWidth));
721 if (
Range != OldRange) {
742 unsigned NumElts = VecTy->getNumElements();
745 if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8)
750 for (
unsigned I = 0;
I < NumElts; ++
I) {
759 if ((
unsigned)Indexes[
I] >= NumElts)
763 auto *V1 =
II.getArgOperand(0);
765 return Builder.CreateShuffleVector(V1, V2,
ArrayRef(Indexes));
771 unsigned NumOperands) {
772 assert(
I.arg_size() >= NumOperands &&
"Not enough operands");
773 assert(
E.arg_size() >= NumOperands &&
"Not enough operands");
774 for (
unsigned i = 0; i < NumOperands; i++)
775 if (
I.getArgOperand(i) !=
E.getArgOperand(i))
796 for (; BI != BE; ++BI) {
798 if (
I->isDebugOrPseudoInst() ||
821 return II.getIntrinsicID() == Intrinsic::vastart ||
822 (
II.getIntrinsicID() == Intrinsic::vacopy &&
823 I.getArgOperand(0) !=
II.getArgOperand(1));
829 assert(
Call.arg_size() > 1 &&
"Need at least 2 args to swap");
830 Value *Arg0 =
Call.getArgOperand(0), *Arg1 =
Call.getArgOperand(1);
832 Call.setArgOperand(0, Arg1);
833 Call.setArgOperand(1, Arg0);
852 Value *OperationResult =
nullptr;
859 for (User *U : WO->
users()) {
863 for (
auto &AssumeVH :
AC.assumptionsFor(U)) {
877 Inst->setHasNoSignedWrap();
879 Inst->setHasNoUnsignedWrap();
890 Ty = Ty->getScalarType();
895 Ty = Ty->getScalarType();
896 return F.getDenormalMode(Ty->getFltSemantics()).inputsAreZero();
904 switch (
static_cast<unsigned>(Mask)) {
961 Value *Src0 =
II.getArgOperand(0);
962 Value *Src1 =
II.getArgOperand(1);
968 const FPClassTest OrderedInvertedMask = ~OrderedMask & ~fcNan;
970 const bool IsStrict =
971 II.getFunction()->getAttributes().hasFnAttr(Attribute::StrictFP);
977 II.setArgOperand(1, ConstantInt::get(Src1->
getType(),
fneg(Mask)));
987 if ((OrderedMask ==
fcInf || OrderedInvertedMask ==
fcInf) &&
988 (IsOrdered || IsUnordered) && !IsStrict) {
996 if (OrderedInvertedMask ==
fcInf)
999 Value *Fabs =
Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Src0);
1006 (IsOrdered || IsUnordered) && !IsStrict) {
1013 Value *EqInf = IsUnordered ?
Builder.CreateFCmpUEQ(Src0, Inf)
1014 :
Builder.CreateFCmpOEQ(Src0, Inf);
1020 if ((OrderedInvertedMask ==
fcPosInf || OrderedInvertedMask ==
fcNegInf) &&
1021 (IsOrdered || IsUnordered) && !IsStrict) {
1028 Value *NeInf = IsUnordered ?
Builder.CreateFCmpUNE(Src0, Inf)
1029 :
Builder.CreateFCmpONE(Src0, Inf);
1034 if (Mask ==
fcNan && !IsStrict) {
1066 if (!IsStrict && (IsOrdered || IsUnordered) &&
1111 return std::nullopt;
1123 return std::nullopt;
1135 return *Known0 == *Known1;
1143 assert((MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin ||
1144 MinMaxID == Intrinsic::umax || MinMaxID == Intrinsic::umin) &&
1145 "Expected a min or max intrinsic");
1148 Value *Op0 =
II->getArgOperand(0), *Op1 =
II->getArgOperand(1);
1150 const APInt *C0, *C1;
1156 bool IsSigned = MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin;
1158 if ((IsSigned && !
Add->hasNoSignedWrap()) ||
1159 (!IsSigned && !
Add->hasNoUnsignedWrap()))
1166 IsSigned ? C1->
ssub_ov(*C0, Overflow) : C1->
usub_ov(*C0, Overflow);
1167 assert(!Overflow &&
"Expected simplify of min/max");
1171 Constant *NewMinMaxC = ConstantInt::get(
II->getType(), CDiff);
1172 Value *NewMinMax = Builder.CreateBinaryIntrinsic(MinMaxID,
X, NewMinMaxC);
1173 return IsSigned ? BinaryOperator::CreateNSWAdd(NewMinMax,
Add->getOperand(1))
1174 : BinaryOperator::CreateNUWAdd(NewMinMax,
Add->getOperand(1));
1185 const APInt *MinValue, *MaxValue;
1189 }
else if (
match(&MinMax1,
1198 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
1201 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
1215 if (
AddSub->getOpcode() == Instruction::Add)
1216 IntrinsicID = Intrinsic::sadd_sat;
1217 else if (
AddSub->getOpcode() == Instruction::Sub)
1218 IntrinsicID = Intrinsic::ssub_sat;
1231 Value *Sat =
Builder.CreateIntrinsic(IntrinsicID, NewTy, {AT,
BT});
1241 Value *I0 =
II->getArgOperand(0), *I1 =
II->getArgOperand(1);
1243 const APInt *C0, *C1;
1248 switch (
II->getIntrinsicID()) {
1249 case Intrinsic::smax:
1253 case Intrinsic::smin:
1257 case Intrinsic::umax:
1261 case Intrinsic::umin:
1273 Value *Cmp = Builder.CreateICmp(Pred,
X, I1);
1297 if (InnerMinMaxID != MinMaxID &&
1298 !(((MinMaxID == Intrinsic::umax && InnerMinMaxID == Intrinsic::smax) ||
1299 (MinMaxID == Intrinsic::smin && InnerMinMaxID == Intrinsic::umin)) &&
1304 Value *CondC = Builder.CreateICmp(Pred, C0, C1);
1305 Value *NewC = Builder.CreateSelect(CondC, C0, C1);
1306 return Builder.CreateIntrinsic(InnerMinMaxID,
II->getType(),
1307 {LHS->getArgOperand(0), NewC});
1328 if (!InnerMM || InnerMM->getIntrinsicID() != MinMaxID ||
1334 MinMaxID,
II->getType());
1335 Value *NewInner = Builder.CreateBinaryIntrinsic(MinMaxID,
X,
Y);
1346 if (!
LHS || !
RHS ||
LHS->getIntrinsicID() != MinMaxID ||
1347 RHS->getIntrinsicID() != MinMaxID ||
1348 (!
LHS->hasOneUse() && !
RHS->hasOneUse()))
1357 Value *MinMaxOp =
nullptr;
1358 Value *ThirdOp =
nullptr;
1359 if (
LHS->hasOneUse()) {
1362 if (
D ==
A ||
C ==
A) {
1367 }
else if (
D ==
B ||
C ==
B) {
1374 assert(
RHS->hasOneUse() &&
"Expected one-use operand");
1376 if (
D ==
A ||
D ==
B) {
1381 }
else if (
C ==
A ||
C ==
B) {
1389 if (!MinMaxOp || !ThirdOp)
1403 !
II->getCalledFunction()->isSpeculatable())
1410 return isa<Constant>(Arg.get()) ||
1411 isVectorIntrinsicWithScalarOpAtArg(II->getIntrinsicID(),
1412 Arg.getOperandNo(), nullptr);
1425 Type *SrcTy =
X->getType();
1426 for (
Use &Arg :
II->args()) {
1430 else if (
match(&Arg,
1432 X->getType() == SrcTy)
1451 Value *NewIntrinsic =
1452 Builder.CreateIntrinsic(ResTy,
II->getIntrinsicID(), NewArgs, FPI);
1465 return match(V, m_OneUse(m_VecReverse(m_Value())));
1472 for (
Use &Arg :
II->args()) {
1474 Arg.getOperandNo(),
nullptr))
1489 II->getType(),
II->getIntrinsicID(), NewArgs, FPI);
1490 return Builder.CreateVectorReverse(NewIntrinsic);
1496template <Intrinsic::ID IntrID>
1499 static_assert(IntrID == Intrinsic::bswap || IntrID == Intrinsic::bitreverse,
1500 "This helper only supports BSWAP and BITREVERSE intrinsics");
1507 Value *OldReorderX, *OldReorderY;
1520 Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID,
Y);
1525 Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID,
X);
1536 case Intrinsic::smax:
1537 case Intrinsic::smin:
1538 case Intrinsic::umax:
1539 case Intrinsic::umin:
1540 case Intrinsic::maximum:
1541 case Intrinsic::minimum:
1542 case Intrinsic::maximumnum:
1543 case Intrinsic::minimumnum:
1544 case Intrinsic::maxnum:
1545 case Intrinsic::minnum:
1564 auto IID =
II->getIntrinsicID();
1570 auto *InvariantBinaryInst =
1574 return InvariantBinaryInst;
1578 if (!CanReorderLanes)
1591 int Sz = Mask.size();
1593 for (
int Idx : Mask) {
1596 UsedIndices.
set(Idx);
1601 return UsedIndices.
all() ? V :
nullptr;
1608template <Intrinsic::ID IntrID>
1613 static_assert(IntrID == Intrinsic::cttz || IntrID == Intrinsic::ctlz,
1614 "This helper only supports cttz and ctlz intrinsics");
1622 unsigned BitWidth = I1->getType()->getScalarSizeInBits();
1629 Type *Ty = I1->getType();
1631 IntrID == Intrinsic::cttz ? Instruction::Shl : Instruction::LShr,
1632 IntrID == Intrinsic::cttz
1633 ? ConstantInt::get(Ty, 1)
1636 return Builder.CreateBinaryIntrinsic(
1637 IntrID, Builder.CreateOr(CtOp, NewConst),
1646 case Intrinsic::umax:
1647 case Intrinsic::umin:
1648 if (HasNUW && LOp == Instruction::Add)
1650 if (HasNUW && LOp == Instruction::Shl)
1653 case Intrinsic::smax:
1654 case Intrinsic::smin:
1655 return HasNSW && LOp == Instruction::Add;
1698 if (
A ==
D ||
B ==
C)
1706 Value *NewIntrinsic = Builder.CreateBinaryIntrinsic(TopLevelOpcode,
B,
D);
1709 }
else if (
B ==
D) {
1710 Value *NewIntrinsic = Builder.CreateBinaryIntrinsic(TopLevelOpcode,
A,
C);
1732 SQ.getWithInstruction(&CI)))
1748 return visitCallBase(CI);
1753 if (
auto NumBytes =
MI->getLengthInBytes()) {
1755 if (NumBytes->isZero())
1760 if (
MI->isAtomic() &&
1761 (NumBytes->isNegative() ||
1762 (NumBytes->getZExtValue() %
MI->getElementSizeInBytes() != 0))) {
1764 assert(
MI->getType()->isVoidTy() &&
1765 "non void atomic unordered mem intrinsic");
1771 if (
MI->isVolatile())
1776 if (MTI->getSource() == MTI->getDest())
1786 bool SrcIsUndefined =
false;
1792 SrcIsUndefined = IsPointerUndefined(MTI->getRawSource());
1799 if (SrcIsUndefined || IsPointerUndefined(
MI->getRawDest())) {
1809 if (GVSrc->isConstant()) {
1813 ? Intrinsic::memcpy_element_unordered_atomic
1814 : Intrinsic::memcpy;
1828 auto VWidth = IIFVTy->getNumElements();
1829 APInt PoisonElts(VWidth, 0);
1838 if (
II->isCommutative()) {
1839 if (
auto Pair = matchSymmetricPair(
II->getOperand(0),
II->getOperand(1))) {
1860 case Intrinsic::objectsize: {
1863 &InsertedInstructions)) {
1864 for (
Instruction *Inserted : InsertedInstructions)
1870 case Intrinsic::abs: {
1871 Value *IIOperand =
II->getArgOperand(0);
1886 if (
match(IIOperand,
1895 if (std::optional<bool> Known =
1921 return BinaryOperator::CreateAnd(
X, ConstantInt::get(
II->getType(), 1));
1925 case Intrinsic::umin: {
1926 Value *I0 =
II->getArgOperand(0), *I1 =
II->getArgOperand(1);
1929 assert(
II->getType()->getScalarSizeInBits() != 1 &&
1930 "Expected simplify of umin with max constant");
1936 if (
Value *FoldedCttz =
1941 if (
Value *FoldedCtlz =
1947 case Intrinsic::umax: {
1948 Value *I0 =
II->getArgOperand(0), *I1 =
II->getArgOperand(1);
1951 (I0->
hasOneUse() || I1->hasOneUse()) &&
X->getType() ==
Y->getType()) {
1959 Value *NarrowMaxMin =
Builder.CreateBinaryIntrinsic(IID,
X, NarrowC);
1978 Value *Cmp =
Builder.CreateICmpEQ(
X, ConstantInt::get(
X->getType(), 0));
1980 Builder.CreateSelect(Cmp, ConstantInt::get(
X->getType(), 1),
A);
1984 if (IID == Intrinsic::umax) {
1995 case Intrinsic::smax:
1996 case Intrinsic::smin: {
1997 Value *I0 =
II->getArgOperand(0), *I1 =
II->getArgOperand(1);
2000 (I0->
hasOneUse() || I1->hasOneUse()) &&
X->getType() ==
Y->getType()) {
2009 Value *NarrowMaxMin =
Builder.CreateBinaryIntrinsic(IID,
X, NarrowC);
2016 const APInt *MinC, *MaxC;
2017 auto CreateCanonicalClampForm = [&](
bool IsSigned) {
2018 auto MaxIID = IsSigned ? Intrinsic::smax : Intrinsic::umax;
2019 auto MinIID = IsSigned ? Intrinsic::smin : Intrinsic::umin;
2021 MaxIID,
X, ConstantInt::get(
X->getType(), *MaxC));
2024 MinIID, NewMax, ConstantInt::get(
X->getType(), *MinC)));
2026 if (IID == Intrinsic::smax &&
2030 return CreateCanonicalClampForm(
true);
2031 if (IID == Intrinsic::umax &&
2035 return CreateCanonicalClampForm(
false);
2039 if ((IID == Intrinsic::umin || IID == Intrinsic::smax) &&
2040 II->getType()->isIntOrIntVectorTy(1)) {
2041 return BinaryOperator::CreateAnd(I0, I1);
2046 if ((IID == Intrinsic::umax || IID == Intrinsic::smin) &&
2047 II->getType()->isIntOrIntVectorTy(1)) {
2048 return BinaryOperator::CreateOr(I0, I1);
2056 if (IID == Intrinsic::smin) {
2059 Value *Zero = ConstantInt::get(
X->getType(), 0);
2062 Builder.CreateIntrinsic(
II->getType(), Intrinsic::scmp, {X, Zero}));
2066 if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
2093 bool UseOr = IID == Intrinsic::smax || IID == Intrinsic::umax;
2094 bool UseAndN = IID == Intrinsic::smin || IID == Intrinsic::umin;
2096 if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
2098 if (KnownSign == std::nullopt) {
2101 }
else if (*KnownSign ) {
2113 return BinaryOperator::CreateOr(I0,
X);
2115 return BinaryOperator::CreateAnd(I0,
Builder.CreateNot(
X));
2131 Value *InvMaxMin =
Builder.CreateBinaryIntrinsic(InvID,
A, NotY);
2150 return BinaryOperator::CreateAnd(
Builder.CreateBinaryIntrinsic(IID,
X,
Y),
2151 ConstantInt::get(
II->getType(), *RHSC));
2161 if (I0->
hasOneUse() && !I1->hasOneUse())
2173 if (IID == Intrinsic::smin || IID == Intrinsic::umax)
2174 Abs =
Builder.CreateNeg(Abs,
"nabs", IntMinIsPoison);
2199 I0, IsSigned,
SQ.getWithInstruction(
II));
2201 if (LHS_CR.
icmp(Pred, *RHSC))
2205 ConstantInt::get(
II->getType(), *RHSC));
2214 case Intrinsic::scmp: {
2215 Value *I0 =
II->getArgOperand(0), *I1 =
II->getArgOperand(1);
2220 Builder.CreateIntrinsic(
II->getType(), Intrinsic::scmp, {LHS, RHS}));
2223 case Intrinsic::bitreverse: {
2224 Value *IIOperand =
II->getArgOperand(0);
2228 X->getType()->isIntOrIntVectorTy(1)) {
2229 Type *Ty =
II->getType();
2237 return crossLogicOpFold;
2241 case Intrinsic::bswap: {
2242 Value *IIOperand =
II->getArgOperand(0);
2252 Value *NewSwap =
Builder.CreateUnaryIntrinsic(Intrinsic::bswap,
X);
2267 if (BW - LZ - TZ == 8) {
2268 assert(LZ != TZ &&
"active byte cannot be in the middle");
2270 return BinaryOperator::CreateNUWShl(
2271 IIOperand, ConstantInt::get(IIOperand->
getType(), LZ - TZ));
2273 return BinaryOperator::CreateExactLShr(
2274 IIOperand, ConstantInt::get(IIOperand->
getType(), TZ - LZ));
2279 unsigned C =
X->getType()->getScalarSizeInBits() - BW;
2280 Value *CV = ConstantInt::get(
X->getType(),
C);
2287 return crossLogicOpFold;
2296 case Intrinsic::masked_load:
2297 if (
Value *SimplifiedMaskedOp = simplifyMaskedLoad(*
II))
2300 case Intrinsic::masked_store:
2301 return simplifyMaskedStore(*
II);
2302 case Intrinsic::masked_gather:
2303 return simplifyMaskedGather(*
II);
2304 case Intrinsic::masked_scatter:
2305 return simplifyMaskedScatter(*
II);
2306 case Intrinsic::launder_invariant_group:
2307 case Intrinsic::strip_invariant_group:
2311 case Intrinsic::powi:
2315 if (Power->isMinusOne())
2317 II->getArgOperand(0),
II);
2319 if (Power->equalsInt(2))
2321 II->getArgOperand(0),
II);
2323 if (!Power->getValue()[0]) {
2338 case Intrinsic::cttz:
2339 case Intrinsic::ctlz:
2344 case Intrinsic::ctpop:
2349 case Intrinsic::fshl:
2350 case Intrinsic::fshr: {
2351 Value *Op0 =
II->getArgOperand(0), *Op1 =
II->getArgOperand(1);
2352 Type *Ty =
II->getType();
2353 unsigned BitWidth = Ty->getScalarSizeInBits();
2362 if (ModuloC != ShAmtC)
2368 "Shift amount expected to be modulo bitwidth");
2373 if (IID == Intrinsic::fshr) {
2384 assert(IID == Intrinsic::fshl &&
2385 "All funnel shifts by simple constants should go left");
2390 return BinaryOperator::CreateShl(Op0, ShAmtC);
2395 return BinaryOperator::CreateLShr(Op1,
2413 const APInt *ShAmtInnerC, *ShAmtOuterC;
2417 APInt Sum = *ShAmtOuterC + *ShAmtInnerC;
2421 Constant *ModuloC = ConstantInt::get(Ty, Modulo);
2423 {InnerOp, InnerOp, ModuloC});
2435 Mod, IID == Intrinsic::fshl ? Intrinsic::fshr : Intrinsic::fshl, Ty);
2443 Value *Op2 =
II->getArgOperand(2);
2445 return BinaryOperator::CreateShl(Op0,
And);
2463 case Intrinsic::ptrmask: {
2464 unsigned BitWidth =
DL.getPointerTypeSizeInBits(
II->getType());
2469 Value *InnerPtr, *InnerMask;
2474 if (
match(
II->getArgOperand(0),
2478 "Mask types must match");
2481 Value *NewMask =
Builder.CreateAnd(
II->getArgOperand(1), InnerMask);
2495 unsigned NewAlignmentLog =
2509 case Intrinsic::uadd_with_overflow:
2510 case Intrinsic::sadd_with_overflow: {
2518 const APInt *C0, *C1;
2519 Value *Arg0 =
II->getArgOperand(0);
2520 Value *Arg1 =
II->getArgOperand(1);
2521 bool IsSigned = IID == Intrinsic::sadd_with_overflow;
2522 bool HasNWAdd = IsSigned
2528 IsSigned ? C1->
sadd_ov(*C0, Overflow) : C1->
uadd_ov(*C0, Overflow);
2532 IID,
X, ConstantInt::get(Arg1->
getType(), NewC)));
2537 case Intrinsic::umul_with_overflow:
2538 case Intrinsic::smul_with_overflow:
2539 case Intrinsic::usub_with_overflow:
2544 case Intrinsic::ssub_with_overflow: {
2549 Value *Arg0 =
II->getArgOperand(0);
2550 Value *Arg1 =
II->getArgOperand(1);
2560 *
II,
Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow,
2567 case Intrinsic::uadd_sat:
2568 case Intrinsic::sadd_sat:
2569 case Intrinsic::usub_sat:
2570 case Intrinsic::ssub_sat: {
2572 Type *Ty =
SI->getType();
2588 unsigned BitWidth = Ty->getScalarSizeInBits();
2593 unsigned BitWidth = Ty->getScalarSizeInBits();
2605 if (IID == Intrinsic::usub_sat &&
2608 auto *NewC =
Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat,
C, C1);
2610 Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, NewC,
A);
2616 C->isNotMinSignedValue()) {
2620 Intrinsic::sadd_sat, Arg0, NegVal));
2628 const APInt *Val, *Val2;
2631 IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat;
2632 if (
Other->getIntrinsicID() == IID &&
2640 NewVal = Val->
sadd_ov(*Val2, Overflow);
2653 IID,
X, ConstantInt::get(
II->getType(), NewVal)));
2659 case Intrinsic::minnum:
2660 case Intrinsic::maxnum:
2661 case Intrinsic::minimum:
2662 case Intrinsic::maximum: {
2663 Value *Arg0 =
II->getArgOperand(0);
2664 Value *Arg1 =
II->getArgOperand(1);
2673 case Intrinsic::maxnum:
2674 NewIID = Intrinsic::minnum;
2676 case Intrinsic::minnum:
2677 NewIID = Intrinsic::maxnum;
2679 case Intrinsic::maximum:
2680 NewIID = Intrinsic::minimum;
2682 case Intrinsic::minimum:
2683 NewIID = Intrinsic::maximum;
2689 Instruction *FNeg = UnaryOperator::CreateFNeg(NewCall);
2704 case Intrinsic::maxnum:
2707 case Intrinsic::minnum:
2710 case Intrinsic::maximum:
2713 case Intrinsic::minimum:
2723 IID,
X, ConstantFP::get(Arg0->
getType(), Res),
2732 X->getType() ==
Y->getType()) {
2734 Builder.CreateBinaryIntrinsic(IID,
X,
Y,
II,
II->getName());
2744 auto IsMinMaxOrXNegX = [IID, &
X](
Value *Op0,
Value *Op1) {
2746 return Op0->hasOneUse() ||
2747 (IID != Intrinsic::minimum && IID != Intrinsic::minnum);
2751 if (IsMinMaxOrXNegX(Arg0, Arg1) || IsMinMaxOrXNegX(Arg1, Arg0)) {
2753 if (IID == Intrinsic::minimum || IID == Intrinsic::minnum)
2760 case Intrinsic::matrix_multiply: {
2772 Value *Op0 =
II->getOperand(0);
2773 Value *Op1 =
II->getOperand(1);
2774 Value *OpNotNeg, *NegatedOp;
2775 unsigned NegatedOpArg, OtherOpArg;
2792 Value *OtherOp =
II->getOperand(OtherOpArg);
2810 NewArgs[NegatedOpArg] = OpNotNeg;
2812 Builder.CreateIntrinsic(
II->getType(), IID, NewArgs,
II);
2817 case Intrinsic::fmuladd: {
2821 II->getFastMathFlags(),
SQ.getWithInstruction(
II)))
2823 II->getFastMathFlags());
2827 case Intrinsic::fma: {
2829 Value *Src0 =
II->getArgOperand(0);
2830 Value *Src1 =
II->getArgOperand(1);
2831 Value *Src2 =
II->getArgOperand(2);
2850 SQ.getWithInstruction(
II)))
2866 case Intrinsic::copysign: {
2867 Value *Mag =
II->getArgOperand(0), *Sign =
II->getArgOperand(1);
2870 if (*KnownSignBit) {
2873 Value *Fabs =
Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag,
II);
2879 Value *Fabs =
Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag,
II);
2910 case Intrinsic::fabs: {
2912 Value *Arg =
II->getArgOperand(0);
2930 SI->setFastMathFlags(FMF1 | FMF2);
2941 Value *Magnitude, *Sign;
2942 if (
match(
II->getArgOperand(0),
2946 Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Magnitude,
II);
2952 case Intrinsic::ceil:
2953 case Intrinsic::floor:
2954 case Intrinsic::round:
2955 case Intrinsic::roundeven:
2956 case Intrinsic::nearbyint:
2957 case Intrinsic::rint:
2958 case Intrinsic::trunc: {
2967 case Intrinsic::cos:
2968 case Intrinsic::amdgcn_cos: {
2970 Value *Src =
II->getArgOperand(0);
2980 case Intrinsic::sin:
2981 case Intrinsic::amdgcn_sin: {
2990 case Intrinsic::ldexp: {
3003 Value *Src =
II->getArgOperand(0);
3004 Value *Exp =
II->getArgOperand(1);
3009 Exp->getType() == InnerExp->
getType()) {
3018 II->setArgOperand(1, NewExp);
3019 II->setFastMathFlags(InnerFlags);
3030 Builder.CreateSelect(ExtSrc, ConstantFP::get(
II->getType(), 2.0),
3031 ConstantFP::get(
II->getType(), 1.0));
3037 Builder.CreateSelect(ExtSrc, ConstantFP::get(
II->getType(), 0.5),
3038 ConstantFP::get(
II->getType(), 1.0));
3046 Value *SelectCond, *SelectLHS, *SelectRHS;
3047 if (
match(
II->getArgOperand(1),
3050 Value *NewLdexp =
nullptr;
3053 NewLdexp =
Builder.CreateLdexp(Src, SelectLHS,
II);
3056 NewLdexp =
Builder.CreateLdexp(Src, SelectRHS,
II);
3068 case Intrinsic::ptrauth_auth:
3069 case Intrinsic::ptrauth_resign: {
3072 bool NeedSign =
II->getIntrinsicID() == Intrinsic::ptrauth_resign;
3075 Value *Disc =
II->getArgOperand(2);
3079 Value *AuthKey =
nullptr, *AuthDisc =
nullptr, *BasePtr;
3096 if (!CPA || !CPA->isKnownCompatibleWith(
Key, Disc,
DL))
3105 SignDisc, SignAddrDisc);
3112 BasePtr =
Builder.CreatePtrToInt(CPA->getPointer(),
II->getType());
3117 if (AuthKey && NeedSign) {
3119 NewIntrin = Intrinsic::ptrauth_resign;
3120 }
else if (AuthKey) {
3122 NewIntrin = Intrinsic::ptrauth_auth;
3123 }
else if (NeedSign) {
3125 NewIntrin = Intrinsic::ptrauth_sign;
3148 case Intrinsic::arm_neon_vtbl1:
3149 case Intrinsic::aarch64_neon_tbl1:
3154 case Intrinsic::arm_neon_vmulls:
3155 case Intrinsic::arm_neon_vmullu:
3156 case Intrinsic::aarch64_neon_smull:
3157 case Intrinsic::aarch64_neon_umull: {
3158 Value *Arg0 =
II->getArgOperand(0);
3159 Value *Arg1 =
II->getArgOperand(1);
3167 bool Zext = (IID == Intrinsic::arm_neon_vmullu ||
3168 IID == Intrinsic::aarch64_neon_umull);
3191 case Intrinsic::arm_neon_aesd:
3192 case Intrinsic::arm_neon_aese:
3193 case Intrinsic::aarch64_crypto_aesd:
3194 case Intrinsic::aarch64_crypto_aese:
3195 case Intrinsic::aarch64_sve_aesd:
3196 case Intrinsic::aarch64_sve_aese: {
3197 Value *DataArg =
II->getArgOperand(0);
3198 Value *KeyArg =
II->getArgOperand(1);
3214 case Intrinsic::hexagon_V6_vandvrt:
3215 case Intrinsic::hexagon_V6_vandvrt_128B: {
3219 if (ID0 != Intrinsic::hexagon_V6_vandqrt &&
3220 ID0 != Intrinsic::hexagon_V6_vandqrt_128B)
3222 Value *Bytes = Op0->getArgOperand(1), *Mask =
II->getArgOperand(1);
3227 if ((
C & 0xFF) && (
C & 0xFF00) && (
C & 0xFF0000) && (
C & 0xFF000000))
3232 case Intrinsic::stackrestore: {
3233 enum class ClassifyResult {
3237 CallWithSideEffects,
3241 return ClassifyResult::Alloca;
3245 if (
II->getIntrinsicID() == Intrinsic::stackrestore)
3246 return ClassifyResult::StackRestore;
3248 if (
II->mayHaveSideEffects())
3249 return ClassifyResult::CallWithSideEffects;
3252 return ClassifyResult::CallWithSideEffects;
3256 return ClassifyResult::None;
3263 if (SS->getIntrinsicID() == Intrinsic::stacksave &&
3264 SS->getParent() ==
II->getParent()) {
3266 bool CannotRemove =
false;
3267 for (++BI; &*BI !=
II; ++BI) {
3268 switch (Classify(&*BI)) {
3269 case ClassifyResult::None:
3273 case ClassifyResult::StackRestore:
3277 CannotRemove =
true;
3280 case ClassifyResult::Alloca:
3281 case ClassifyResult::CallWithSideEffects:
3284 CannotRemove =
true;
3300 bool CannotRemove =
false;
3301 for (++BI; &*BI != TI; ++BI) {
3302 switch (Classify(&*BI)) {
3303 case ClassifyResult::None:
3307 case ClassifyResult::StackRestore:
3311 case ClassifyResult::Alloca:
3312 case ClassifyResult::CallWithSideEffects:
3316 CannotRemove =
true;
3330 case Intrinsic::lifetime_end:
3333 if (
II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
3334 II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) ||
3335 II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
3339 return I.getIntrinsicID() == Intrinsic::lifetime_start;
3343 case Intrinsic::assume: {
3344 Value *IIOperand =
II->getArgOperand(0);
3346 II->getOperandBundlesAsDefs(OpBundles);
3363 return RemoveConditionFromAssume(
Next);
3369 Value *AssumeIntrinsic =
II->getCalledOperand();
3372 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
A, OpBundles,
3374 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
B,
II->getName());
3379 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
3380 Builder.CreateNot(
A), OpBundles,
II->getName());
3381 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
3391 LHS->getOpcode() == Instruction::Load &&
3392 LHS->getType()->isPointerTy() &&
3395 LHS->setMetadata(LLVMContext::MD_nonnull, MD);
3396 LHS->setMetadata(LLVMContext::MD_noundef, MD);
3397 return RemoveConditionFromAssume(
II);
3403 for (
unsigned Idx = 0; Idx <
II->getNumOperandBundles(); Idx++) {
3410 if (OBU.
getTagName() ==
"separate_storage") {
3412 auto MaybeSimplifyHint = [&](
const Use &U) {
3413 Value *Hint = U.get();
3420 MaybeSimplifyHint(OBU.
Inputs[0]);
3421 MaybeSimplifyHint(OBU.
Inputs[1]);
3428 if (!RK || RK.
AttrKind != Attribute::Alignment ||
3463 A->getType()->isPointerTy()) {
3467 Replacement->insertBefore(
Next->getIterator());
3468 AC.registerAssumption(Replacement);
3469 return RemoveConditionFromAssume(
II);
3497 if (
auto *Replacement =
3500 Replacement->insertAfter(
II->getIterator());
3501 AC.registerAssumption(Replacement);
3503 return RemoveConditionFromAssume(
II);
3510 for (
unsigned Idx = 0; Idx <
II->getNumOperandBundles(); Idx++) {
3511 auto &BOI =
II->bundle_op_info_begin()[Idx];
3514 if (BOI.End - BOI.Begin > 2)
3525 if (BOI.End - BOI.Begin > 0) {
3526 Worklist.pushValue(
II->op_begin()[BOI.Begin]);
3532 if (BOI.End - BOI.Begin > 0)
3533 II->op_begin()[BOI.Begin].set(CanonRK.
WasOn);
3534 if (BOI.End - BOI.Begin > 1)
3535 II->op_begin()[BOI.Begin + 1].set(ConstantInt::get(
3561 case Intrinsic::experimental_guard: {
3572 Value *NextCond =
nullptr;
3575 Value *CurrCond =
II->getArgOperand(0);
3579 if (CurrCond != NextCond) {
3581 while (MoveI != NextInst) {
3593 case Intrinsic::vector_insert: {
3594 Value *Vec =
II->getArgOperand(0);
3595 Value *SubVec =
II->getArgOperand(1);
3596 Value *Idx =
II->getArgOperand(2);
3603 if (DstTy && VecTy && SubVecTy) {
3604 unsigned DstNumElts = DstTy->getNumElements();
3605 unsigned VecNumElts = VecTy->getNumElements();
3606 unsigned SubVecNumElts = SubVecTy->getNumElements();
3610 if (VecNumElts == SubVecNumElts)
3619 for (i = 0; i != SubVecNumElts; ++i)
3621 for (; i != VecNumElts; ++i)
3624 Value *WidenShuffle =
Builder.CreateShuffleVector(SubVec, WidenMask);
3627 for (
unsigned i = 0; i != IdxN; ++i)
3629 for (
unsigned i = DstNumElts; i != DstNumElts + SubVecNumElts; ++i)
3631 for (
unsigned i = IdxN + SubVecNumElts; i != DstNumElts; ++i)
3634 Value *Shuffle =
Builder.CreateShuffleVector(Vec, WidenShuffle, Mask);
3639 case Intrinsic::vector_extract: {
3640 Value *Vec =
II->getArgOperand(0);
3641 Value *Idx =
II->getArgOperand(1);
3643 Type *ReturnType =
II->getType();
3647 Value *InsertTuple, *InsertIdx, *InsertValue;
3651 InsertValue->
getType() == ReturnType) {
3656 if (ExtractIdx == Index)
3670 if (DstTy && VecTy) {
3671 auto DstEltCnt = DstTy->getElementCount();
3672 auto VecEltCnt = VecTy->getElementCount();
3676 if (DstEltCnt == VecTy->getElementCount()) {
3683 if (VecEltCnt.isScalable() || DstEltCnt.isScalable())
3687 for (
unsigned i = 0; i != DstEltCnt.getKnownMinValue(); ++i)
3688 Mask.push_back(IdxN + i);
3690 Value *Shuffle =
Builder.CreateShuffleVector(Vec, Mask);
3695 case Intrinsic::experimental_vp_reverse: {
3697 Value *Vec =
II->getArgOperand(0);
3698 Value *Mask =
II->getArgOperand(1);
3701 Value *EVL =
II->getArgOperand(2);
3709 OldUnOp->getOpcode(),
X, OldUnOp, OldUnOp->getName(),
3715 case Intrinsic::vector_reduce_or:
3716 case Intrinsic::vector_reduce_and: {
3724 Value *Arg =
II->getArgOperand(0);
3735 if (FTy->getElementType() ==
Builder.getInt1Ty()) {
3737 Vect,
Builder.getIntNTy(FTy->getNumElements()));
3738 if (IID == Intrinsic::vector_reduce_and) {
3742 assert(IID == Intrinsic::vector_reduce_or &&
3743 "Expected or reduction.");
3744 Res =
Builder.CreateIsNotNull(Res);
3754 case Intrinsic::vector_reduce_add: {
3755 if (IID == Intrinsic::vector_reduce_add) {
3762 Value *Arg =
II->getArgOperand(0);
3773 if (FTy->getElementType() ==
Builder.getInt1Ty()) {
3775 Vect,
Builder.getIntNTy(FTy->getNumElements()));
3776 Value *Res =
Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, V);
3778 Res =
Builder.CreateZExtOrTrunc(Res,
II->getType());
3790 if (VecToReduceCount.
isFixed()) {
3792 return BinaryOperator::CreateMul(
3793 Splat, ConstantInt::get(
Splat->getType(), VectorSize));
3799 case Intrinsic::vector_reduce_xor: {
3800 if (IID == Intrinsic::vector_reduce_xor) {
3808 Value *Arg =
II->getArgOperand(0);
3819 if (VTy->getElementType() ==
Builder.getInt1Ty()) {
3830 case Intrinsic::vector_reduce_mul: {
3831 if (IID == Intrinsic::vector_reduce_mul) {
3838 Value *Arg =
II->getArgOperand(0);
3849 if (VTy->getElementType() ==
Builder.getInt1Ty()) {
3852 Res =
Builder.CreateZExt(Res,
II->getType());
3859 case Intrinsic::vector_reduce_umin:
3860 case Intrinsic::vector_reduce_umax: {
3861 if (IID == Intrinsic::vector_reduce_umin ||
3862 IID == Intrinsic::vector_reduce_umax) {
3869 Value *Arg =
II->getArgOperand(0);
3880 if (VTy->getElementType() ==
Builder.getInt1Ty()) {
3881 Value *Res = IID == Intrinsic::vector_reduce_umin
3882 ?
Builder.CreateAndReduce(Vect)
3883 :
Builder.CreateOrReduce(Vect);
3893 case Intrinsic::vector_reduce_smin:
3894 case Intrinsic::vector_reduce_smax: {
3895 if (IID == Intrinsic::vector_reduce_smin ||
3896 IID == Intrinsic::vector_reduce_smax) {
3911 Value *Arg =
II->getArgOperand(0);
3922 if (VTy->getElementType() ==
Builder.getInt1Ty()) {
3926 Value *Res = ((IID == Intrinsic::vector_reduce_smin) ==
3927 (ExtOpc == Instruction::CastOps::ZExt))
3928 ?
Builder.CreateAndReduce(Vect)
3929 :
Builder.CreateOrReduce(Vect);
3931 Res =
Builder.CreateCast(ExtOpc, Res,
II->getType());
3938 case Intrinsic::vector_reduce_fmax:
3939 case Intrinsic::vector_reduce_fmin:
3940 case Intrinsic::vector_reduce_fadd:
3941 case Intrinsic::vector_reduce_fmul: {
3942 bool CanReorderLanes = (IID != Intrinsic::vector_reduce_fadd &&
3943 IID != Intrinsic::vector_reduce_fmul) ||
3944 II->hasAllowReassoc();
3945 const unsigned ArgIdx = (IID == Intrinsic::vector_reduce_fadd ||
3946 IID == Intrinsic::vector_reduce_fmul)
3949 Value *Arg =
II->getArgOperand(ArgIdx);
3956 case Intrinsic::is_fpclass: {
3961 case Intrinsic::threadlocal_address: {
3970 case Intrinsic::frexp: {
3985 case Intrinsic::get_active_lane_mask: {
3986 const APInt *Op0, *Op1;
3989 Type *OpTy =
II->getOperand(0)->getType();
3992 II->getType(), Intrinsic::get_active_lane_mask,
3993 {Constant::getNullValue(OpTy),
3994 ConstantInt::get(OpTy, Op1->usub_sat(*Op0))}));
4033 return visitCallBase(*
II);
4048 if (FI1SyncScope != FI2->getSyncScopeID() ||
4055 if (NFI && isIdenticalOrStrongerFence(NFI, &FI))
4059 if (isIdenticalOrStrongerFence(PFI, &FI))
4066 return visitCallBase(
II);
4071 return visitCallBase(CBI);
4090 InstCombineRAUW, InstCombineErase);
4091 if (
Value *With = Simplifier.optimizeCall(CI,
Builder)) {
4103 if (Underlying != TrampMem &&
4104 (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
4114 if (
II->getIntrinsicID() == Intrinsic::init_trampoline) {
4118 InitTrampoline =
II;
4121 if (
II->getIntrinsicID() == Intrinsic::adjust_trampoline)
4128 if (!InitTrampoline)
4132 if (InitTrampoline->
getOperand(0) != TrampMem)
4135 return InitTrampoline;
4147 if (
II->getIntrinsicID() == Intrinsic::init_trampoline &&
4148 II->getOperand(0) == TrampMem)
4160 Callee = Callee->stripPointerCasts();
4178 if (!IPC || !IPC->isNoopCast(
DL))
4186 if (IIID != Intrinsic::ptrauth_resign && IIID != Intrinsic::ptrauth_sign)
4190 std::optional<OperandBundleUse> PtrAuthBundleOrNone;
4195 PtrAuthBundleOrNone = Bundle;
4200 if (!PtrAuthBundleOrNone)
4203 Value *NewCallee =
nullptr;
4207 case Intrinsic::ptrauth_resign: {
4209 if (
II->getOperand(3) != PtrAuthBundleOrNone->Inputs[0])
4212 if (
II->getOperand(4) != PtrAuthBundleOrNone->Inputs[1])
4217 if (
II->getOperand(1) != PtrAuthBundleOrNone->Inputs[0])
4220 Value *NewBundleOps[] = {
II->getOperand(1),
II->getOperand(2)};
4222 NewCallee =
II->getOperand(0);
4229 case Intrinsic::ptrauth_sign: {
4231 if (
II->getOperand(1) != PtrAuthBundleOrNone->Inputs[0])
4234 if (
II->getOperand(2) != PtrAuthBundleOrNone->Inputs[1])
4236 NewCallee =
II->getOperand(0);
4246 NewCallee =
Builder.CreateBitOrPointerCast(NewCallee,
Callee->getType());
4271 if (!CPA->isKnownCompatibleWith(
Key, Discriminator,
DL))
4280bool InstCombinerImpl::annotateAnyAllocSite(
CallBase &
Call,
4317 if (NewAlign > ExistingAlign) {
4334 SmallVector<unsigned, 4> ArgNos;
4338 if (
V->getType()->isPointerTy()) {
4343 (HasDereferenceable &&
4345 V->getType()->getPointerAddressSpace()))) {
4346 if (
Value *Res = simplifyNonNullOperand(V, HasDereferenceable)) {
4360 if (!ArgNos.
empty()) {
4363 AS = AS.addParamAttribute(Ctx, ArgNos,
4374 transformConstExprCastCall(
Call))
4438 return transformCallThroughTrampoline(
Call, *
II);
4441 if (Instruction *NewCall = foldPtrAuthIntrinsicCallee(
Call))
4445 if (Instruction *NewCall = foldPtrAuthConstantCallee(
Call))
4450 if (!
IA->canThrow()) {
4471 Type *RetArgTy = ReturnedArg->getType();
4474 Call,
Builder.CreateBitOrPointerCast(ReturnedArg, CallTy));
4490 ConstantInt *FunctionType =
nullptr;
4493 if (MDNode *MD = CalleeF->
getMetadata(LLVMContext::MD_kcfi_type))
4500 <<
": call to " << CalleeF->
getName()
4501 <<
" using a mismatching function pointer type\n";
4513 case Intrinsic::experimental_gc_statepoint: {
4515 SmallPtrSet<Value *, 32> LiveGcValues;
4517 GCRelocateInst &GCR = *
const_cast<GCRelocateInst *
>(Reloc);
4568 LiveGcValues.
insert(BasePtr);
4569 LiveGcValues.
insert(DerivedPtr);
4571 std::optional<OperandBundleUse> Bundle =
4573 unsigned NumOfGCLives = LiveGcValues.
size();
4574 if (!Bundle || NumOfGCLives == Bundle->Inputs.size())
4577 DenseMap<Value *, unsigned> Val2Idx;
4578 std::vector<Value *> NewLiveGc;
4579 for (
Value *V : Bundle->Inputs) {
4583 if (LiveGcValues.
count(V)) {
4584 It->second = NewLiveGc.size();
4585 NewLiveGc.push_back(V);
4587 It->second = NumOfGCLives;
4591 GCRelocateInst &GCR = *
const_cast<GCRelocateInst *
>(Reloc);
4593 assert(Val2Idx.
count(BasePtr) && Val2Idx[BasePtr] != NumOfGCLives &&
4594 "Missed live gc for base pointer");
4596 GCR.
setOperand(1, ConstantInt::get(OpIntTy1, Val2Idx[BasePtr]));
4598 assert(Val2Idx.
count(DerivedPtr) && Val2Idx[DerivedPtr] != NumOfGCLives &&
4599 "Missed live gc for derived pointer");
4601 GCR.
setOperand(2, ConstantInt::get(OpIntTy2, Val2Idx[DerivedPtr]));
4616bool InstCombinerImpl::transformConstExprCastCall(
CallBase &
Call) {
4623 "CallBr's don't have a single point after a def to insert at");
4628 if (
Callee->isDeclaration())
4634 if (
Callee->hasFnAttribute(
"thunk"))
4640 if (
Callee->hasFnAttribute(Attribute::Naked))
4656 FunctionType *FT =
Callee->getFunctionType();
4658 Type *NewRetTy = FT->getReturnType();
4661 if (OldRetTy != NewRetTy) {
4667 if (!
Caller->use_empty())
4671 if (!CallerPAL.isEmpty() && !
Caller->use_empty()) {
4672 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
4673 if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(
4674 NewRetTy, CallerPAL.getRetAttrs())))
4682 if (!
Caller->use_empty()) {
4685 PhisNotSupportedBlock =
II->getNormalDest();
4686 if (PhisNotSupportedBlock)
4687 for (User *U :
Caller->users())
4689 if (PN->getParent() == PhisNotSupportedBlock)
4695 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
4705 if (
Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
4706 Callee->getAttributes().hasAttrSomewhere(Attribute::Preallocated))
4710 for (
unsigned i = 0, e = NumCommonArgs; i !=
e; ++i, ++AI) {
4711 Type *ParamTy = FT->getParamType(i);
4712 Type *ActTy = (*AI)->getType();
4718 if (AttrBuilder(FT->getContext(), CallerPAL.getParamAttrs(i))
4719 .overlaps(AttributeFuncs::typeIncompatible(
4720 ParamTy, CallerPAL.getParamAttrs(i),
4721 AttributeFuncs::ASK_UNSAFE_TO_DROP)))
4725 CallerPAL.hasParamAttr(i, Attribute::Preallocated))
4728 if (CallerPAL.hasParamAttr(i, Attribute::SwiftError))
4731 if (CallerPAL.hasParamAttr(i, Attribute::ByVal) !=
4732 Callee->getAttributes().hasParamAttr(i, Attribute::ByVal))
4736 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
4737 !CallerPAL.isEmpty()) {
4742 if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
4743 SRetIdx - AttributeList::FirstArgIndex >= FT->getNumParams())
4749 SmallVector<Value *, 8>
Args;
4751 Args.reserve(NumActualArgs);
4752 ArgAttrs.
reserve(NumActualArgs);
4755 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
4760 AttributeFuncs::typeIncompatible(NewRetTy, CallerPAL.getRetAttrs()));
4764 for (
unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
4765 Type *ParamTy = FT->getParamType(i);
4767 Value *NewArg = *AI;
4768 if ((*AI)->getType() != ParamTy)
4769 NewArg =
Builder.CreateBitOrPointerCast(*AI, ParamTy);
4770 Args.push_back(NewArg);
4774 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(
4775 ParamTy, CallerPAL.getParamAttrs(i), AttributeFuncs::ASK_SAFE_TO_DROP);
4777 CallerPAL.getParamAttrs(i).removeAttributes(Ctx, IncompatibleAttrs));
4782 for (
unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
4788 if (FT->getNumParams() < NumActualArgs) {
4790 if (FT->isVarArg()) {
4792 for (
unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
4794 Value *NewArg = *AI;
4795 if (PTy != (*AI)->getType()) {
4799 NewArg =
Builder.CreateCast(opcode, *AI, PTy);
4801 Args.push_back(NewArg);
4804 ArgAttrs.
push_back(CallerPAL.getParamAttrs(i));
4809 AttributeSet FnAttrs = CallerPAL.getFnAttrs();
4814 assert((ArgAttrs.
size() == FT->getNumParams() || FT->isVarArg()) &&
4815 "missing argument attributes");
4816 AttributeList NewCallerPAL = AttributeList::get(
4824 NewCall =
Builder.CreateInvoke(Callee,
II->getNormalDest(),
4825 II->getUnwindDest(), Args, OpBundles);
4827 NewCall =
Builder.CreateCall(Callee, Args, OpBundles);
4836 NewCall->
copyMetadata(*Caller, {LLVMContext::MD_prof});
4841 if (OldRetTy !=
NV->getType() && !
Caller->use_empty()) {
4842 assert(!
NV->getType()->isVoidTy());
4844 NC->setDebugLoc(
Caller->getDebugLoc());
4847 assert(OptInsertPt &&
"No place to insert cast");
4849 Worklist.pushUsersToWorkList(*Caller);
4852 if (!
Caller->use_empty())
4854 else if (
Caller->hasValueHandle()) {
4855 if (OldRetTy ==
NV->getType())
4870InstCombinerImpl::transformCallThroughTrampoline(
CallBase &
Call,
4877 if (
Attrs.hasAttrSomewhere(Attribute::Nest))
4884 if (!NestAttrs.isEmpty()) {
4885 unsigned NestArgNo = 0;
4886 Type *NestTy =
nullptr;
4887 AttributeSet NestAttr;
4891 E = NestFTy->param_end();
4892 I !=
E; ++NestArgNo, ++
I) {
4893 AttributeSet AS = NestAttrs.getParamAttrs(NestArgNo);
4903 std::vector<Value*> NewArgs;
4904 std::vector<AttributeSet> NewArgAttrs;
4915 if (ArgNo == NestArgNo) {
4918 if (NestVal->
getType() != NestTy)
4919 NestVal =
Builder.CreateBitCast(NestVal, NestTy,
"nest");
4920 NewArgs.push_back(NestVal);
4921 NewArgAttrs.push_back(NestAttr);
4928 NewArgs.push_back(*
I);
4929 NewArgAttrs.push_back(
Attrs.getParamAttrs(ArgNo));
4940 std::vector<Type*> NewTypes;
4941 NewTypes.reserve(FTy->getNumParams()+1);
4948 E = FTy->param_end();
4951 if (ArgNo == NestArgNo)
4953 NewTypes.push_back(NestTy);
4959 NewTypes.push_back(*
I);
4968 FunctionType *NewFTy =
4970 AttributeList NewPAL =
4971 AttributeList::get(FTy->getContext(),
Attrs.getFnAttrs(),
4972 Attrs.getRetAttrs(), NewArgAttrs);
4980 II->getUnwindDest(), NewArgs, OpBundles);
4986 CBI->getIndirectDests(), NewArgs, OpBundles);
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static cl::opt< ITMode > IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), cl::values(clEnumValN(DefaultIT, "arm-default-it", "Generate any type of IT block"), clEnumValN(RestrictedIT, "arm-restrict-it", "Disallow complex IT blocks")))
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static SDValue foldBitOrderCrossLogicOp(SDNode *N, SelectionDAG &DAG)
static Type * getPromotedType(Type *Ty)
Return the specified type promoted as it would be to pass though a va_arg area.
static Instruction * createOverflowTuple(IntrinsicInst *II, Value *Result, Constant *Overflow)
Creates a result tuple for an overflow intrinsic II with a given Result and a constant Overflow value...
static IntrinsicInst * findInitTrampolineFromAlloca(Value *TrampMem)
static bool removeTriviallyEmptyRange(IntrinsicInst &EndI, InstCombinerImpl &IC, std::function< bool(const IntrinsicInst &)> IsStart)
static bool inputDenormalIsDAZ(const Function &F, const Type *Ty)
static Instruction * reassociateMinMaxWithConstantInOperand(IntrinsicInst *II, InstCombiner::BuilderTy &Builder)
If this min/max has a matching min/max operand with a constant, try to push the constant operand into...
static bool isIdempotentBinaryIntrinsic(Intrinsic::ID IID)
Helper to match idempotent binary intrinsics, namely, intrinsics where f(f(x, y), y) == f(x,...
static bool signBitMustBeTheSame(Value *Op0, Value *Op1, const SimplifyQuery &SQ)
Return true if two values Op0 and Op1 are known to have the same sign.
static Instruction * moveAddAfterMinMax(IntrinsicInst *II, InstCombiner::BuilderTy &Builder)
Try to canonicalize min/max(X + C0, C1) as min/max(X, C1 - C0) + C0.
static Instruction * simplifyInvariantGroupIntrinsic(IntrinsicInst &II, InstCombinerImpl &IC)
This function transforms launder.invariant.group and strip.invariant.group like: launder(launder(x)) ...
static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E, unsigned NumOperands)
static std::optional< bool > getKnownSign(Value *Op, const SimplifyQuery &SQ)
static cl::opt< unsigned > GuardWideningWindow("instcombine-guard-widening-window", cl::init(3), cl::desc("How wide an instruction window to bypass looking for " "another guard"))
static bool hasUndefSource(AnyMemTransferInst *MI)
Recognize a memcpy/memmove from a trivially otherwise unused alloca.
static Instruction * factorizeMinMaxTree(IntrinsicInst *II)
Reduce a sequence of min/max intrinsics with a common operand.
static Value * simplifyNeonTbl1(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder)
Convert a table lookup to shufflevector if the mask is constant.
static Instruction * foldClampRangeOfTwo(IntrinsicInst *II, InstCombiner::BuilderTy &Builder)
If we have a clamp pattern like max (min X, 42), 41 – where the output can only be one of two possibl...
static Value * simplifyReductionOperand(Value *Arg, bool CanReorderLanes)
static IntrinsicInst * findInitTrampolineFromBB(IntrinsicInst *AdjustTramp, Value *TrampMem)
static Value * foldIntrinsicUsingDistributiveLaws(IntrinsicInst *II, InstCombiner::BuilderTy &Builder)
static std::optional< bool > getKnownSignOrZero(Value *Op, const SimplifyQuery &SQ)
static Value * foldMinimumOverTrailingOrLeadingZeroCount(Value *I0, Value *I1, const DataLayout &DL, InstCombiner::BuilderTy &Builder)
Fold an unsigned minimum of trailing or leading zero bits counts: umin(cttz(CtOp, ZeroUndef),...
static Value * foldIdempotentBinaryIntrinsicRecurrence(InstCombinerImpl &IC, IntrinsicInst *II)
Attempt to simplify value-accumulating recurrences of kind: umax.acc = phi i8 [ umax,...
static Instruction * foldCtpop(IntrinsicInst &II, InstCombinerImpl &IC)
static Instruction * foldCttzCtlz(IntrinsicInst &II, InstCombinerImpl &IC)
static IntrinsicInst * findInitTrampoline(Value *Callee)
static FCmpInst::Predicate fpclassTestIsFCmp0(FPClassTest Mask, const Function &F, Type *Ty)
static bool leftDistributesOverRight(Instruction::BinaryOps LOp, bool HasNUW, bool HasNSW, Intrinsic::ID ROp)
Return whether "X LOp (Y ROp Z)" is always equal to "(X LOp Y) ROp (X LOp Z)".
static Value * reassociateMinMaxWithConstants(IntrinsicInst *II, IRBuilderBase &Builder, const SimplifyQuery &SQ)
If this min/max has a constant operand and an operand that is a matching min/max with a constant oper...
static CallInst * canonicalizeConstantArg0ToArg1(CallInst &Call)
This file provides internal interfaces used to implement the InstCombine.
This file provides the interface for the instcombine pass implementation.
static bool hasNoSignedWrap(BinaryOperator &I)
static bool inputDenormalIsIEEE(DenormalMode Mode)
Return true if it's possible to assume IEEE treatment of input denormals in F for Val.
static const Function * getCalledFunction(const Value *V)
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
if(auto Err=PB.parsePassPipeline(MPM, Passes)) return wrap(std MPM run * Mod
const SmallVectorImpl< MachineOperand > & Cond
This file implements the SmallBitVector class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
bool sgt(const APInt &RHS) const
Signed greater than comparison.
LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
static APSInt getMinValue(uint32_t numBits, bool Unsigned)
Return the APSInt representing the minimum integer value with the given bit width and signedness.
static APSInt getMaxValue(uint32_t numBits, bool Unsigned)
Return the APSInt representing the maximum integer value with the given bit width and signedness.
This class represents any memset intrinsic.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
LLVM_ABI bool hasAttribute(Attribute::AttrKind Kind) const
Return true if the attribute exists in this set.
static LLVM_ABI AttributeSet get(LLVMContext &C, const AttrBuilder &B)
static LLVM_ABI Attribute get(LLVMContext &Context, AttrKind Kind, uint64_t Val=0)
Return a uniquified Attribute object.
static LLVM_ABI Attribute getWithDereferenceableBytes(LLVMContext &Context, uint64_t Bytes)
static LLVM_ABI Attribute getWithDereferenceableOrNullBytes(LLVMContext &Context, uint64_t Bytes)
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
InstListType::reverse_iterator reverse_iterator
InstListType::iterator iterator
Instruction iterators...
LLVM_ABI bool isSigned() const
Whether the intrinsic is signed or unsigned.
LLVM_ABI Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
static BinaryOperator * CreateFAddFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
static LLVM_ABI BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
static BinaryOperator * CreateNSW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
static LLVM_ABI BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateNUW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
static BinaryOperator * CreateFMulFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
static BinaryOperator * CreateFDivFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
static BinaryOperator * CreateFSubFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
static LLVM_ABI BinaryOperator * CreateNSWNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
void setCallingConv(CallingConv::ID CC)
MaybeAlign getRetAlign() const
Extract the alignment of the return value.
LLVM_ABI void getOperandBundlesAsDefs(SmallVectorImpl< OperandBundleDef > &Defs) const
Return the list of operand bundles attached to this instruction as a vector of OperandBundleDefs.
OperandBundleUse getOperandBundleAt(unsigned Index) const
Return the operand bundle at a specific index.
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
bool isInAllocaArgument(unsigned ArgNo) const
Determine whether this argument is passed in an alloca.
bool hasRetAttr(Attribute::AttrKind Kind) const
Determine whether the return value has the given attribute.
unsigned getNumOperandBundles() const
Return the number of operand bundles associated with this User.
uint64_t getParamDereferenceableBytes(unsigned i) const
Extract the number of dereferenceable bytes for a call or parameter (0=unknown).
CallingConv::ID getCallingConv() const
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
Value * getCalledOperand() const
void setAttributes(AttributeList A)
Set the attributes for this call.
bool doesNotThrow() const
Determine if the call cannot unwind.
void addRetAttr(Attribute::AttrKind Kind)
Adds the attribute to the return value.
Value * getArgOperand(unsigned i) const
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
bool isConvergent() const
Determine if the invoke is convergent.
FunctionType * getFunctionType() const
LLVM_ABI Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
Value * getReturnedArgOperand() const
If one of the arguments has the 'returned' attribute, returns its operand value.
static LLVM_ABI CallBase * Create(CallBase *CB, ArrayRef< OperandBundleDef > Bundles, InsertPosition InsertPt=nullptr)
Create a clone of CB with a different set of operand bundles and insert it before InsertPt.
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
void setCalledOperand(Value *V)
static LLVM_ABI CallBase * removeOperandBundle(CallBase *CB, uint32_t ID, InsertPosition InsertPt=nullptr)
Create a clone of CB with operand bundle ID removed.
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
void setCalledFunction(Function *Fn)
Sets the function called, including updating the function type.
LLVM_ABI Function * getCaller()
Helper to get the caller (the parent function).
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
static CallBrInst * Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef< BasicBlock * > IndirectDests, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
This class represents a function call, abstracting a target machine's calling convention.
bool isNoTailCall() const
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
bool isMustTailCall() const
static LLVM_ABI Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static LLVM_ABI CastInst * CreateIntegerCast(Value *S, Type *Ty, bool isSigned, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a ZExt, BitCast, or Trunc for int -> int casts.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static LLVM_ABI CastInst * CreateBitOrPointerCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
@ ICMP_ULT
unsigned less than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Predicate getNonStrictPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
Predicate getUnorderedPredicate() const
static LLVM_ABI ConstantAggregateZero * get(Type *Ty)
static LLVM_ABI Constant * getPointerCast(Constant *C, Type *Ty)
Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant expression.
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getNeg(Constant *C, bool HasNSW=false)
static LLVM_ABI Constant * getInfinity(Type *Ty, bool Negative=false)
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
uint64_t getLimitedValue(uint64_t Limit=~0ULL) const
getLimitedValue - If the value is smaller than the specified limit, return it, otherwise return the l...
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
const APInt & getValue() const
Return the constant as an APInt value reference.
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
static LLVM_ABI ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
static LLVM_ABI ConstantPtrAuth * get(Constant *Ptr, ConstantInt *Key, ConstantInt *Disc, Constant *AddrDisc)
Return a pointer signed with the specified parameters.
This class represents a range of values.
LLVM_ABI bool isFullSet() const
Return true if this set contains all of the elements possible for this data-type.
LLVM_ABI bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other?
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
This is an important base class in LLVM.
static LLVM_ABI Constant * getIntegerValue(Type *Ty, const APInt &V)
Return the value for an integer or pointer constant, or a vector thereof, with the given scalar value...
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
Record of a variable value-assignment, aka a non instruction representation of the dbg....
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
static FMFSource intersect(Value *A, Value *B)
Intersect the FMF from two instructions.
This class represents an extension of floating point types.
Convenience struct for specifying and reasoning about fast-math flags.
void setNoSignedZeros(bool B=true)
bool allowReassoc() const
Flag queries.
An instruction for ordering other memory operations.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this fence instruction.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this fence instruction.
Class to represent function types.
Type::subtype_iterator param_iterator
static LLVM_ABI FunctionType * get(Type *Result, ArrayRef< Type * > Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
bool isConvergent() const
Determine if the call is convergent.
FunctionType * getFunctionType() const
Returns the FunctionType for me.
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
AttributeList getAttributes() const
Return the attribute list for this Function.
bool doesNotThrow() const
Determine if the function cannot unwind.
bool isIntrinsic() const
isIntrinsic - Returns true if the function's name starts with "llvm.".
LLVM_ABI Value * getBasePtr() const
unsigned getBasePtrIndex() const
The index into the associate statepoint's argument list which contains the base pointer of the pointe...
LLVM_ABI Value * getDerivedPtr() const
unsigned getDerivedPtrIndex() const
The index into the associate statepoint's argument list which contains the pointer whose relocation t...
std::vector< const GCRelocateInst * > getGCRelocates() const
Get list of all gc reloactes linked to this statepoint May contain several relocations for the same b...
MDNode * getMetadata(unsigned KindID) const
Get the current metadata attachments for the given kind, if any.
LLVM_ABI bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
PointerType * getType() const
Global values are always pointers.
Common base class shared among various IRBuilders.
LLVM_ABI Value * CreateLaunderInvariantGroup(Value *Ptr)
Create a launder.invariant.group intrinsic call.
ConstantInt * getTrue()
Get the constant value for i1 true.
LLVM_ABI Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
LLVM_ABI CallInst * CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 1 operand which is mangled on its type.
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateAddrSpaceCast(Value *V, Type *DestTy, const Twine &Name="")
LLVM_ABI Value * CreateStripInvariantGroup(Value *Ptr)
Create a strip.invariant.group intrinsic call.
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false)
Given an instruction with a select as one operand and a constant as the other operand,...
KnownFPClass computeKnownFPClass(Value *Val, FastMathFlags FMF, FPClassTest Interested=fcAllFlags, const Instruction *CtxI=nullptr, unsigned Depth=0) const
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
Value * SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &PoisonElts, unsigned Depth=0, bool AllowMultipleUsers=false) override
The specified value produces a vector with any number of elements.
bool SimplifyDemandedBits(Instruction *I, unsigned Op, const APInt &DemandedMask, KnownBits &Known, const SimplifyQuery &Q, unsigned Depth=0) override
This form of SimplifyDemandedBits simplifies the specified instruction operand if possible,...
Instruction * SimplifyAnyMemSet(AnyMemSetInst *MI)
Instruction * visitFree(CallInst &FI, Value *FreedOp)
Instruction * visitCallBrInst(CallBrInst &CBI)
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Value * foldReversedIntrinsicOperands(IntrinsicInst *II)
If all arguments of the intrinsic are reverses, try to pull the reverse after the intrinsic.
Value * tryGetLog2(Value *Op, bool AssumeNonZero)
Instruction * visitFenceInst(FenceInst &FI)
Instruction * foldShuffledIntrinsicOperands(IntrinsicInst *II)
If all arguments of the intrinsic are unary shuffles with the same mask, try to shuffle after the int...
Instruction * visitInvokeInst(InvokeInst &II)
bool SimplifyDemandedInstructionBits(Instruction &Inst)
Tries to simplify operands to an integer instruction based on its demanded bits.
void CreateNonTerminatorUnreachable(Instruction *InsertAt)
Create and insert the idiom we use to indicate a block is unreachable without having to rewrite the C...
Instruction * visitVAEndInst(VAEndInst &I)
Instruction * matchBSwapOrBitReverse(Instruction &I, bool MatchBSwaps, bool MatchBitReversals)
Given an initial instruction, check to see if it is the root of a bswap/bitreverse idiom.
Constant * unshuffleConstant(ArrayRef< int > ShMask, Constant *C, VectorType *NewCTy)
Find a constant NewC that has property: shuffle(NewC, ShMask) = C Returns nullptr if such a constant ...
Instruction * visitAllocSite(Instruction &FI)
Instruction * SimplifyAnyMemTransfer(AnyMemTransferInst *MI)
OverflowResult computeOverflow(Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS, Instruction *CxtI) const
Instruction * visitCallInst(CallInst &CI)
CallInst simplification.
unsigned ComputeMaxSignificantBits(const Value *Op, const Instruction *CxtI=nullptr, unsigned Depth=0) const
IRBuilder< TargetFolder, IRBuilderCallbackInserter > BuilderTy
An IRBuilder that automatically inserts new instructions into the worklist.
bool isFreeToInvert(Value *V, bool WillInvertAllUses, bool &DoesConsume)
Return true if the specified value is free to invert (apply ~ to).
DominatorTree & getDominatorTree() const
Instruction * InsertNewInstBefore(Instruction *New, BasicBlock::iterator Old)
Inserts an instruction New before instruction Old.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
void replaceUse(Use &U, Value *NewValue)
Replace use and add the previously used value to the worklist.
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
std::optional< Instruction * > targetInstCombineIntrinsic(IntrinsicInst &II)
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
bool MaskedValueIsZero(const Value *V, const APInt &Mask, const Instruction *CxtI=nullptr, unsigned Depth=0) const
AssumptionCache & getAssumptionCache() const
OptimizationRemarkEmitter & ORE
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
const SimplifyQuery & getSimplifyQuery() const
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero=false, const Instruction *CxtI=nullptr, unsigned Depth=0)
LLVM_ABI void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI bool mayWriteToMemory() const LLVM_READONLY
Return true if this instruction may modify memory.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
LLVM_ABI void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void setAAMetadata(const AAMDNodes &N)
Sets the AA metadata on this instruction from the AAMDNodes structure.
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
bool isTerminator() const
LLVM_ABI void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
LLVM_ABI std::optional< InstListType::iterator > getInsertionPointAfterDef()
Get the first insertion point at which the result of this instruction is defined.
LLVM_ABI bool isIdenticalTo(const Instruction *I) const LLVM_READONLY
Return true if the specified instruction is exactly identical to the current one.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
LLVM_ABI void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
A wrapper class for inspecting calls to intrinsic functions.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
An instruction for reading from memory.
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
ICmpInst::Predicate getPredicate() const
Returns the comparison predicate underlying the intrinsic.
bool isSigned() const
Whether the intrinsic is signed or unsigned.
A Module instance is used to store all the information related to an LLVM module.
StringRef getName() const
Get a short "name" for the module.
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
bool isCommutative() const
Return true if the instruction is commutative.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Represents a saturating add/sub intrinsic.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
This instruction constructs a fixed permutation of two input vectors.
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
bool test(unsigned Idx) const
bool all() const
Returns true if all bits are set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
void setVolatile(bool V)
Specify whether this is a volatile store or not.
void setAlignment(Align Align)
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this store instruction.
Class to represent struct types.
static LLVM_ABI bool isCallingConvCCompatible(CallBase *CI)
Returns true if call site / callee has cdecl-compatible calling conventions.
Provides information about what library functions are available for the current target.
This class represents a truncation of integer types.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
LLVM_ABI unsigned getIntegerBitWidth() const
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI bool canLosslesslyBitCastTo(Type *Ty) const
Return true if this type could be converted with a lossless BitCast to type 'Ty'.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isStructTy() const
True if this is an instance of StructType.
LLVM_ABI Type * getWithNewBitWidth(unsigned NewBitWidth) const
Given an integer or vector type, change the lane bitwidth to NewBitwidth, whilst keeping the old numb...
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
static UnaryOperator * CreateWithCopiedFlags(UnaryOps Opc, Value *V, Instruction *CopyO, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static UnaryOperator * CreateFNegFMF(Value *Op, Instruction *FMFSource, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
LLVM_ABI unsigned getOperandNo() const
Return the operand # of this use in its User.
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
This represents the llvm.va_end intrinsic.
static LLVM_ABI void ValueIsDeleted(Value *V)
static LLVM_ABI void ValueIsRAUWd(Value *Old, Value *New)
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
static constexpr uint64_t MaximumAlignment
bool hasOneUse() const
Return true if there is exactly one use of this value.
iterator_range< user_iterator > users()
static LLVM_ABI void dropDroppableUse(Use &U)
Remove the droppable use U.
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
static constexpr unsigned MaxAlignmentExponent
The maximum alignment for instructions.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
const ParentTy * getParent() const
self_iterator getIterator()
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
m_Intrinsic_Ty< Opnd0 >::Ty m_BitReverse(const Opnd0 &Op0)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
ap_match< APInt > m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
ap_match< APFloat > m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
OverflowingBinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWNeg(const ValTy &V)
Matches a 'Neg' as 'sub nsw 0, V'.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
cstfp_pred_ty< is_neg_zero_fp > m_NegZeroFP()
Match a floating-point negative zero.
specific_fpval m_SpecificFP(double V)
Match a specific floating point value or vector with all elements equal to the value.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
BinOpPred_match< LHS, RHS, is_logical_shift_op > m_LogicalShift(const LHS &L, const RHS &R)
Matches logical shift operations.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
match_combine_or< match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > >, OpTy > m_ZExtOrSExtOrSelf(const OpTy &Op)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
cst_pred_ty< is_strictlypositive > m_StrictlyPositive()
Match an integer or vector of strictly positive values.
ThreeOps_match< decltype(m_Value()), LHS, RHS, Instruction::Select, true > m_c_Select(const LHS &L, const RHS &R)
Match Select(C, LHS, RHS) or Select(C, RHS, LHS)
CastInst_match< OpTy, FPExtInst > m_FPExt(const OpTy &Op)
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWShl(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWMul(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
cst_pred_ty< is_negated_power2 > m_NegatedPower2()
Match a integer or vector negated power-of-2.
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
cst_pred_ty< custom_checkfn< APInt > > m_CheckedInt(function_ref< bool(const APInt &)> CheckFn)
Match an integer or vector where CheckFn(ele) for each element is true.
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > > > m_c_MaxOrMin(const LHS &L, const RHS &R)
class_match< UnaryOperator > m_UnOp()
Match an arbitrary unary operation and ignore it.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
Exact_match< T > m_Exact(const T &SubPattern)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
m_Intrinsic_Ty< Opnd0 >::Ty m_BSwap(const Opnd0 &Op0)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
BinOpPred_match< LHS, RHS, is_bitwiselogic_op > m_BitwiseLogic(const LHS &L, const RHS &R)
Matches bitwise logic operations.
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_CopySign(const Opnd0 &Op0, const Opnd1 &Op1)
CastOperator_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
@ SingleThread
Synchronized with respect to signal handlers executing in the same thread.
@ System
Synchronized with respect to all concurrently executing threads.
SmallVector< DbgVariableRecord * > getDVRAssignmentMarkers(const Instruction *Inst)
Return a range of dbg_assign records for which Inst performs the assignment they encode.
initializer< Ty > init(const Ty &Val)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
DiagnosticInfoOptimizationBase::Argument NV
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI cl::opt< bool > EnableKnowledgeRetention
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
FunctionAddr VTableAddr Value
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
LLVM_ABI Value * simplifyFMulInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FMul, fold the result or return null.
LLVM_ABI bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
LLVM_ABI APInt possiblyDemandedEltsInMask(Value *Mask)
Given a mask vector of the form <Y x i1>, return an APInt (of bitwidth Y) for each lane which may be ...
LLVM_ABI RetainedKnowledge simplifyRetainedKnowledge(AssumeInst *Assume, RetainedKnowledge RK, AssumptionCache *AC, DominatorTree *DT)
canonicalize the RetainedKnowledge RK.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isRemovableAlloc(const CallBase *V, const TargetLibraryInfo *TLI)
Return true if this is a call to an allocation function that does not have side effects that we are r...
LLVM_ABI Value * lowerObjectSizeCall(IntrinsicInst *ObjectSize, const DataLayout &DL, const TargetLibraryInfo *TLI, bool MustSucceed)
Try to turn a call to @llvm.objectsize into an integer value of the given Type.
LLVM_ABI Value * getAllocAlignment(const CallBase *V, const TargetLibraryInfo *TLI)
Gets the alignment argument for an aligned_alloc-like function, using either built-in knowledge based...
LLVM_ABI RetainedKnowledge getKnowledgeFromOperandInAssume(AssumeInst &Assume, unsigned Idx)
Retreive the information help by Assume on the operand at index Idx.
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
LLVM_ABI Value * simplifyCall(CallBase *Call, Value *Callee, ArrayRef< Value * > Args, const SimplifyQuery &Q)
Given a callsite, callee, and arguments, fold the result or return null.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
LLVM_ABI bool isAssumeWithEmptyBundle(const AssumeInst &Assume)
Return true iff the operand bundles of the provided llvm.assume doesn't contain any valuable informat...
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
constexpr T MinAlign(U A, V B)
A and B are either alignments or offsets.
LLVM_ABI RetainedKnowledge getKnowledgeFromBundle(AssumeInst &Assume, const CallBase::BundleOpInfo &BOI)
This extracts the Knowledge from an element of an operand bundle.
auto dyn_cast_or_null(const Y &Val)
Align getKnownAlignment(Value *V, const DataLayout &DL, const Instruction *CxtI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr)
Try to infer an alignment for the specified pointer.
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
LLVM_ABI FPClassTest fneg(FPClassTest Mask)
Return the test mask which returns true if the value's sign bit is flipped.
SelectPatternFlavor
Specific patterns of select instructions we can match.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
LLVM_ABI Constant * getLosslessUnsignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool isModSet(const ModRefInfo MRI)
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI bool matchSimpleBinaryIntrinsicRecurrence(const IntrinsicInst *I, PHINode *&P, Value *&Init, Value *&OtherOp)
Attempt to match a simple value-accumulating recurrence of the form: llvm.intrinsic....
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
auto find_if_not(R &&Range, UnaryPredicate P)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
bool isAtLeastOrStrongerThan(AtomicOrdering AO, AtomicOrdering Other)
LLVM_ABI Constant * getLosslessSignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI AssumeInst * buildAssumeFromKnowledge(ArrayRef< RetainedKnowledge > Knowledge, Instruction *CtxI, AssumptionCache *AC=nullptr, DominatorTree *DT=nullptr)
Build and return a new assume created from the provided knowledge if the knowledge in the assume is f...
LLVM_ABI FPClassTest inverse_fabs(FPClassTest Mask)
Return the test mask which returns true after fabs is applied to the value.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool isNotCrossLaneOperation(const Instruction *I)
Return true if the instruction doesn't potentially cross vector lanes.
LLVM_ABI bool maskIsAllOneOrUndef(Value *Mask)
Given a mask vector of i1, Return true if all of the elements of this predicate mask are known to be ...
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
@ Mod
The access may modify the value stored in memory.
LLVM_ABI Value * simplifyFMAFMul(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for the multiplication of a FMA, fold the result or return null.
FunctionAddr VTableAddr uintptr_t uintptr_t Data
LLVM_ABI Value * simplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q)
Given a constrained FP intrinsic call, tries to compute its simplified version.
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
OperandBundleDefT< Value * > OperandBundleDef
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI ConstantRange computeConstantRangeIncludingKnownBits(const WithCache< const Value * > &V, bool ForSigned, const SimplifyQuery &SQ)
Combine constant ranges from computeConstantRange() and computeKnownBits().
FunctionAddr VTableAddr Next
DWARFExpression::Operation Op
bool isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction *I, bool IgnoreUBImplyingAttrs=true)
Don't use information from its non-constant operands.
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI Value * getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI)
If this if a call to a free function, return the freed operand.
constexpr unsigned BitWidth
LLVM_ABI bool isDereferenceablePointer(const Value *V, Type *Ty, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Return true if this is always a dereferenceable pointer.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
LLVM_ABI std::optional< APInt > getAllocSize(const CallBase *CB, const TargetLibraryInfo *TLI, function_ref< const Value *(const Value *)> Mapper=[](const Value *V) { return V;})
Return the size of the requested allocation.
unsigned Log2(Align A)
Returns the log2 of the alignment.
LLVM_ABI bool maskContainsAllOneOrUndef(Value *Mask)
Given a mask vector of i1, Return true if any of the elements of this predicate mask are known to be ...
LLVM_ABI std::optional< bool > isImpliedByDomCondition(const Value *Cond, const Instruction *ContextI, const DataLayout &DL)
Return the boolean condition value in the context of the given instruction if it is known based on do...
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
LLVM_ABI bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false, bool AllowPoison=true)
Return true if the two given values are negation.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
LLVM_ABI std::optional< bool > computeKnownFPSignBit(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return false if we can prove that the specified FP value's sign bit is 0.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
This struct is a compact representation of a valid (non-zero power of two) alignment.
@ IEEE
IEEE-754 denormal numbers preserved.
bool isNonNegative() const
Returns true if this value is known to be non-negative.
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
unsigned getBitWidth() const
Get the bit width of this value.
bool isNonZero() const
Returns true if this value is known to be non-zero.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
bool isNegative() const
Returns true if this value is known to be negative.
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
unsigned countMinPopulation() const
Returns the number of bits known to be one.
bool isAllOnes() const
Returns true if value is all one bits.
FPClassTest KnownFPClasses
Floating-point classes the value could be one of.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Align valueOrOne() const
For convenience, returns a valid alignment or 1 if undefined.
A lightweight accessor for an operand bundle meant to be passed around by value.
StringRef getTagName() const
Return the tag of this operand bundle as a string.
uint32_t getTagID() const
Return the tag of this operand bundle as an integer.
Represent one information held inside an operand bundle of an llvm.assume.
Attribute::AttrKind AttrKind
SelectPatternFlavor Flavor
SimplifyQuery getWithInstruction(const Instruction *I) const