Thanks to visit codestin.com
Credit goes to llvm.org

LLVM 22.0.0git
Instructions.cpp
Go to the documentation of this file.
1//===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements all of the non-inline methods for the LLVM instruction
10// classes.
11//
12//===----------------------------------------------------------------------===//
13
15#include "LLVMContextImpl.h"
18#include "llvm/ADT/Twine.h"
19#include "llvm/IR/Attributes.h"
20#include "llvm/IR/BasicBlock.h"
21#include "llvm/IR/Constant.h"
23#include "llvm/IR/Constants.h"
24#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/Function.h"
27#include "llvm/IR/InstrTypes.h"
28#include "llvm/IR/Instruction.h"
29#include "llvm/IR/Intrinsics.h"
30#include "llvm/IR/LLVMContext.h"
31#include "llvm/IR/MDBuilder.h"
32#include "llvm/IR/Metadata.h"
33#include "llvm/IR/Module.h"
34#include "llvm/IR/Operator.h"
37#include "llvm/IR/Type.h"
38#include "llvm/IR/Value.h"
46#include "llvm/Support/ModRef.h"
48#include <algorithm>
49#include <cassert>
50#include <cstdint>
51#include <optional>
52#include <vector>
53
54using namespace llvm;
55
57 "disable-i2p-p2i-opt", cl::init(false),
58 cl::desc("Disables inttoptr/ptrtoint roundtrip optimization"));
59
60//===----------------------------------------------------------------------===//
61// AllocaInst Class
62//===----------------------------------------------------------------------===//
63
64std::optional<TypeSize>
66 TypeSize Size = DL.getTypeAllocSize(getAllocatedType());
67 if (isArrayAllocation()) {
69 if (!C)
70 return std::nullopt;
71 assert(!Size.isScalable() && "Array elements cannot have a scalable size");
72 auto CheckedProd =
73 checkedMulUnsigned(Size.getKnownMinValue(), C->getZExtValue());
74 if (!CheckedProd)
75 return std::nullopt;
76 return TypeSize::getFixed(*CheckedProd);
77 }
78 return Size;
79}
80
81std::optional<TypeSize>
83 std::optional<TypeSize> Size = getAllocationSize(DL);
84 if (!Size)
85 return std::nullopt;
86 auto CheckedProd = checkedMulUnsigned(Size->getKnownMinValue(),
87 static_cast<TypeSize::ScalarTy>(8));
88 if (!CheckedProd)
89 return std::nullopt;
90 return TypeSize::get(*CheckedProd, Size->isScalable());
91}
92
93//===----------------------------------------------------------------------===//
94// SelectInst Class
95//===----------------------------------------------------------------------===//
96
97/// areInvalidOperands - Return a string if the specified operands are invalid
98/// for a select operation, otherwise return null.
99const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
100 if (Op1->getType() != Op2->getType())
101 return "both values to select must have same type";
102
103 if (Op1->getType()->isTokenTy())
104 return "select values cannot have token type";
105
106 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
107 // Vector select.
108 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
109 return "vector select condition element type must be i1";
111 if (!ET)
112 return "selected values for vector select must be vectors";
113 if (ET->getElementCount() != VT->getElementCount())
114 return "vector select requires selected vectors to have "
115 "the same vector length as select condition";
116 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
117 return "select condition must be i1 or <n x i1>";
118 }
119 return nullptr;
120}
121
122//===----------------------------------------------------------------------===//
123// PHINode Class
124//===----------------------------------------------------------------------===//
125
126PHINode::PHINode(const PHINode &PN)
127 : Instruction(PN.getType(), Instruction::PHI, AllocMarker),
128 ReservedSpace(PN.getNumOperands()) {
131 std::copy(PN.op_begin(), PN.op_end(), op_begin());
132 copyIncomingBlocks(make_range(PN.block_begin(), PN.block_end()));
134}
135
136// removeIncomingValue - Remove an incoming value. This is useful if a
137// predecessor basic block is deleted.
138Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
139 Value *Removed = getIncomingValue(Idx);
140
141 // Move everything after this operand down.
142 //
143 // FIXME: we could just swap with the end of the list, then erase. However,
144 // clients might not expect this to happen. The code as it is thrashes the
145 // use/def lists, which is kinda lame.
146 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
147 copyIncomingBlocks(drop_begin(blocks(), Idx + 1), Idx);
148
149 // Nuke the last value.
150 Op<-1>().set(nullptr);
152
153 // If the PHI node is dead, because it has zero entries, nuke it now.
154 if (getNumOperands() == 0 && DeletePHIIfEmpty) {
155 // If anyone is using this PHI, make them use a dummy value instead...
158 }
159 return Removed;
160}
161
162void PHINode::removeIncomingValueIf(function_ref<bool(unsigned)> Predicate,
163 bool DeletePHIIfEmpty) {
164 SmallDenseSet<unsigned> RemoveIndices;
165 for (unsigned Idx = 0; Idx < getNumIncomingValues(); ++Idx)
166 if (Predicate(Idx))
167 RemoveIndices.insert(Idx);
168
169 if (RemoveIndices.empty())
170 return;
171
172 // Remove operands.
173 auto NewOpEnd = remove_if(operands(), [&](Use &U) {
174 return RemoveIndices.contains(U.getOperandNo());
175 });
176 for (Use &U : make_range(NewOpEnd, op_end()))
177 U.set(nullptr);
178
179 // Remove incoming blocks.
180 (void)std::remove_if(const_cast<block_iterator>(block_begin()),
181 const_cast<block_iterator>(block_end()), [&](BasicBlock *&BB) {
182 return RemoveIndices.contains(&BB - block_begin());
183 });
184
185 setNumHungOffUseOperands(getNumOperands() - RemoveIndices.size());
186
187 // If the PHI node is dead, because it has zero entries, nuke it now.
188 if (getNumOperands() == 0 && DeletePHIIfEmpty) {
189 // If anyone is using this PHI, make them use a dummy value instead...
192 }
193}
194
195/// growOperands - grow operands - This grows the operand list in response
196/// to a push_back style of operation. This grows the number of ops by 1.5
197/// times.
198///
199void PHINode::growOperands() {
200 unsigned e = getNumOperands();
201 unsigned NumOps = e + e / 2;
202 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
203
204 ReservedSpace = NumOps;
205 growHungoffUses(ReservedSpace, /* IsPhi */ true);
206}
207
208/// hasConstantValue - If the specified PHI node always merges together the same
209/// value, return the value, otherwise return null.
211 // Exploit the fact that phi nodes always have at least one entry.
212 Value *ConstantValue = getIncomingValue(0);
213 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
214 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
215 if (ConstantValue != this)
216 return nullptr; // Incoming values not all the same.
217 // The case where the first value is this PHI.
218 ConstantValue = getIncomingValue(i);
219 }
220 if (ConstantValue == this)
221 return PoisonValue::get(getType());
222 return ConstantValue;
223}
224
225/// hasConstantOrUndefValue - Whether the specified PHI node always merges
226/// together the same value, assuming that undefs result in the same value as
227/// non-undefs.
228/// Unlike \ref hasConstantValue, this does not return a value because the
229/// unique non-undef incoming value need not dominate the PHI node.
231 Value *ConstantValue = nullptr;
232 for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
234 if (Incoming != this && !isa<UndefValue>(Incoming)) {
235 if (ConstantValue && ConstantValue != Incoming)
236 return false;
237 ConstantValue = Incoming;
238 }
239 }
240 return true;
241}
242
243//===----------------------------------------------------------------------===//
244// LandingPadInst Implementation
245//===----------------------------------------------------------------------===//
246
247LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
248 const Twine &NameStr,
249 InsertPosition InsertBefore)
250 : Instruction(RetTy, Instruction::LandingPad, AllocMarker, InsertBefore) {
251 init(NumReservedValues, NameStr);
252}
253
254LandingPadInst::LandingPadInst(const LandingPadInst &LP)
255 : Instruction(LP.getType(), Instruction::LandingPad, AllocMarker),
256 ReservedSpace(LP.getNumOperands()) {
259 Use *OL = getOperandList();
260 const Use *InOL = LP.getOperandList();
261 for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
262 OL[I] = InOL[I];
263
264 setCleanup(LP.isCleanup());
265}
266
267LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
268 const Twine &NameStr,
269 InsertPosition InsertBefore) {
270 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
271}
272
273void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
274 ReservedSpace = NumReservedValues;
276 allocHungoffUses(ReservedSpace);
277 setName(NameStr);
278 setCleanup(false);
279}
280
281/// growOperands - grow operands - This grows the operand list in response to a
282/// push_back style of operation. This grows the number of ops by 2 times.
283void LandingPadInst::growOperands(unsigned Size) {
284 unsigned e = getNumOperands();
285 if (ReservedSpace >= e + Size) return;
286 ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
287 growHungoffUses(ReservedSpace);
288}
289
291 unsigned OpNo = getNumOperands();
292 growOperands(1);
293 assert(OpNo < ReservedSpace && "Growing didn't work!");
295 getOperandList()[OpNo] = Val;
296}
297
298//===----------------------------------------------------------------------===//
299// CallBase Implementation
300//===----------------------------------------------------------------------===//
301
303 InsertPosition InsertPt) {
304 switch (CB->getOpcode()) {
305 case Instruction::Call:
306 return CallInst::Create(cast<CallInst>(CB), Bundles, InsertPt);
307 case Instruction::Invoke:
308 return InvokeInst::Create(cast<InvokeInst>(CB), Bundles, InsertPt);
309 case Instruction::CallBr:
310 return CallBrInst::Create(cast<CallBrInst>(CB), Bundles, InsertPt);
311 default:
312 llvm_unreachable("Unknown CallBase sub-class!");
313 }
314}
315
317 InsertPosition InsertPt) {
319 for (unsigned i = 0, e = CI->getNumOperandBundles(); i < e; ++i) {
320 auto ChildOB = CI->getOperandBundleAt(i);
321 if (ChildOB.getTagName() != OpB.getTag())
322 OpDefs.emplace_back(ChildOB);
323 }
324 OpDefs.emplace_back(OpB);
325 return CallBase::Create(CI, OpDefs, InsertPt);
326}
327
329
331 assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
332 return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
333}
334
336 const Value *V = getCalledOperand();
337 if (isa<Function>(V) || isa<Constant>(V))
338 return false;
339 return !isInlineAsm();
340}
341
342/// Tests if this call site must be tail call optimized. Only a CallInst can
343/// be tail call optimized.
345 if (auto *CI = dyn_cast<CallInst>(this))
346 return CI->isMustTailCall();
347 return false;
348}
349
350/// Tests if this call site is marked as a tail call.
352 if (auto *CI = dyn_cast<CallInst>(this))
353 return CI->isTailCall();
354 return false;
355}
356
359 return F->getIntrinsicID();
361}
362
364 FPClassTest Mask = Attrs.getRetNoFPClass();
365
366 if (const Function *F = getCalledFunction())
367 Mask |= F->getAttributes().getRetNoFPClass();
368 return Mask;
369}
370
372 FPClassTest Mask = Attrs.getParamNoFPClass(i);
373
374 if (const Function *F = getCalledFunction())
375 Mask |= F->getAttributes().getParamNoFPClass(i);
376 return Mask;
377}
378
379std::optional<ConstantRange> CallBase::getRange() const {
380 Attribute CallAttr = Attrs.getRetAttr(Attribute::Range);
382 if (const Function *F = getCalledFunction())
383 FnAttr = F->getRetAttribute(Attribute::Range);
384
385 if (CallAttr.isValid() && FnAttr.isValid())
386 return CallAttr.getRange().intersectWith(FnAttr.getRange());
387 if (CallAttr.isValid())
388 return CallAttr.getRange();
389 if (FnAttr.isValid())
390 return FnAttr.getRange();
391 return std::nullopt;
392}
393
395 if (hasRetAttr(Attribute::NonNull))
396 return true;
397
398 if (getRetDereferenceableBytes() > 0 &&
400 return true;
401
402 return false;
403}
404
406 unsigned Index;
407
408 if (Attrs.hasAttrSomewhere(Kind, &Index))
409 return getArgOperand(Index - AttributeList::FirstArgIndex);
410 if (const Function *F = getCalledFunction())
411 if (F->getAttributes().hasAttrSomewhere(Kind, &Index))
412 return getArgOperand(Index - AttributeList::FirstArgIndex);
413
414 return nullptr;
415}
416
417/// Determine whether the argument or parameter has the given attribute.
418bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
419 assert(ArgNo < arg_size() && "Param index out of bounds!");
420
421 if (Attrs.hasParamAttr(ArgNo, Kind))
422 return true;
423
424 const Function *F = getCalledFunction();
425 if (!F)
426 return false;
427
428 if (!F->getAttributes().hasParamAttr(ArgNo, Kind))
429 return false;
430
431 // Take into account mod/ref by operand bundles.
432 switch (Kind) {
433 case Attribute::ReadNone:
435 case Attribute::ReadOnly:
437 case Attribute::WriteOnly:
438 return !hasReadingOperandBundles();
439 default:
440 return true;
441 }
442}
443
445 bool AllowUndefOrPoison) const {
447 "Argument must be a pointer");
448 if (paramHasAttr(ArgNo, Attribute::NonNull) &&
449 (AllowUndefOrPoison || paramHasAttr(ArgNo, Attribute::NoUndef)))
450 return true;
451
452 if (paramHasAttr(ArgNo, Attribute::Dereferenceable) &&
454 getCaller(),
456 return true;
457
458 return false;
459}
460
461bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
463 return F->getAttributes().hasFnAttr(Kind);
464
465 return false;
466}
467
468bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
470 return F->getAttributes().hasFnAttr(Kind);
471
472 return false;
473}
474
475template <typename AK>
476Attribute CallBase::getFnAttrOnCalledFunction(AK Kind) const {
477 if constexpr (std::is_same_v<AK, Attribute::AttrKind>) {
478 // getMemoryEffects() correctly combines memory effects from the call-site,
479 // operand bundles and function.
480 assert(Kind != Attribute::Memory && "Use getMemoryEffects() instead");
481 }
482
484 return F->getAttributes().getFnAttr(Kind);
485
486 return Attribute();
487}
488
489template LLVM_ABI Attribute
490CallBase::getFnAttrOnCalledFunction(Attribute::AttrKind Kind) const;
491template LLVM_ABI Attribute
492CallBase::getFnAttrOnCalledFunction(StringRef Kind) const;
493
494template <typename AK>
495Attribute CallBase::getParamAttrOnCalledFunction(unsigned ArgNo,
496 AK Kind) const {
498
499 if (auto *F = dyn_cast<Function>(V))
500 return F->getAttributes().getParamAttr(ArgNo, Kind);
501
502 return Attribute();
503}
504template LLVM_ABI Attribute CallBase::getParamAttrOnCalledFunction(
505 unsigned ArgNo, Attribute::AttrKind Kind) const;
506template LLVM_ABI Attribute
507CallBase::getParamAttrOnCalledFunction(unsigned ArgNo, StringRef Kind) const;
508
511 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
513}
514
517 const unsigned BeginIndex) {
518 auto It = op_begin() + BeginIndex;
519 for (auto &B : Bundles)
520 It = std::copy(B.input_begin(), B.input_end(), It);
521
522 auto *ContextImpl = getContext().pImpl;
523 auto BI = Bundles.begin();
524 unsigned CurrentIndex = BeginIndex;
525
526 for (auto &BOI : bundle_op_infos()) {
527 assert(BI != Bundles.end() && "Incorrect allocation?");
528
529 BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
530 BOI.Begin = CurrentIndex;
531 BOI.End = CurrentIndex + BI->input_size();
532 CurrentIndex = BOI.End;
533 BI++;
534 }
535
536 assert(BI == Bundles.end() && "Incorrect allocation?");
537
538 return It;
539}
540
542 /// When there isn't many bundles, we do a simple linear search.
543 /// Else fallback to a binary-search that use the fact that bundles usually
544 /// have similar number of argument to get faster convergence.
546 for (auto &BOI : bundle_op_infos())
547 if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
548 return BOI;
549
550 llvm_unreachable("Did not find operand bundle for operand!");
551 }
552
553 assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles");
555 OpIdx < std::prev(bundle_op_info_end())->End &&
556 "The Idx isn't in the operand bundle");
557
558 /// We need a decimal number below and to prevent using floating point numbers
559 /// we use an intergal value multiplied by this constant.
560 constexpr unsigned NumberScaling = 1024;
561
564 bundle_op_iterator Current = Begin;
565
566 while (Begin != End) {
567 unsigned ScaledOperandPerBundle =
568 NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin);
569 Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) /
570 ScaledOperandPerBundle);
571 if (Current >= End)
572 Current = std::prev(End);
573 assert(Current < End && Current >= Begin &&
574 "the operand bundle doesn't cover every value in the range");
575 if (OpIdx >= Current->Begin && OpIdx < Current->End)
576 break;
577 if (OpIdx >= Current->End)
578 Begin = Current + 1;
579 else
580 End = Current;
581 }
582
583 assert(OpIdx >= Current->Begin && OpIdx < Current->End &&
584 "the operand bundle doesn't cover every value in the range");
585 return *Current;
586}
587
590 InsertPosition InsertPt) {
591 if (CB->getOperandBundle(ID))
592 return CB;
593
595 CB->getOperandBundlesAsDefs(Bundles);
596 Bundles.push_back(OB);
597 return Create(CB, Bundles, InsertPt);
598}
599
601 InsertPosition InsertPt) {
603 bool CreateNew = false;
604
605 for (unsigned I = 0, E = CB->getNumOperandBundles(); I != E; ++I) {
606 auto Bundle = CB->getOperandBundleAt(I);
607 if (Bundle.getTagID() == ID) {
608 CreateNew = true;
609 continue;
610 }
611 Bundles.emplace_back(Bundle);
612 }
613
614 return CreateNew ? Create(CB, Bundles, InsertPt) : CB;
615}
616
618 // Implementation note: this is a conservative implementation of operand
619 // bundle semantics, where *any* non-assume operand bundle (other than
620 // ptrauth) forces a callsite to be at least readonly.
624 getIntrinsicID() != Intrinsic::assume;
625}
626
634
636 MemoryEffects ME = getAttributes().getMemoryEffects();
637 if (auto *Fn = dyn_cast<Function>(getCalledOperand())) {
638 MemoryEffects FnME = Fn->getMemoryEffects();
639 if (hasOperandBundles()) {
640 // TODO: Add a method to get memory effects for operand bundles instead.
642 FnME |= MemoryEffects::readOnly();
644 FnME |= MemoryEffects::writeOnly();
645 }
646 if (isVolatile()) {
647 // Volatile operations also access inaccessible memory.
649 }
650 ME &= FnME;
651 }
652 return ME;
653}
657
658/// Determine if the function does not access memory.
665
666/// Determine if the function does not access or only reads memory.
673
674/// Determine if the function does not access or only writes memory.
681
682/// Determine if the call can access memmory only using pointers based
683/// on its arguments.
690
691/// Determine if the function may only access memory that is
692/// inaccessible from the IR.
699
700/// Determine if the function may only access memory that is
701/// either inaccessible from the IR or pointed to by its arguments.
709
711 if (OpNo < arg_size()) {
712 // If the argument is passed byval, the callee does not have access to the
713 // original pointer and thus cannot capture it.
714 if (isByValArgument(OpNo))
715 return CaptureInfo::none();
716
718 if (auto *Fn = dyn_cast<Function>(getCalledOperand()))
719 CI &= Fn->getAttributes().getParamAttrs(OpNo).getCaptureInfo();
720 return CI;
721 }
722
723 // Bundles on assumes are captures(none).
724 if (getIntrinsicID() == Intrinsic::assume)
725 return CaptureInfo::none();
726
727 // deopt operand bundles are captures(none)
728 auto &BOI = getBundleOpInfoForOperand(OpNo);
729 auto OBU = operandBundleFromBundleOpInfo(BOI);
730 return OBU.isDeoptOperandBundle() ? CaptureInfo::none() : CaptureInfo::all();
731}
732
734 for (unsigned I = 0, E = arg_size(); I < E; ++I) {
736 continue;
737
739 if (auto *Fn = dyn_cast<Function>(getCalledOperand()))
740 CI &= Fn->getAttributes().getParamAttrs(I).getCaptureInfo();
742 return true;
743 }
744 return false;
745}
746
747//===----------------------------------------------------------------------===//
748// CallInst Implementation
749//===----------------------------------------------------------------------===//
750
751void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
752 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
753 this->FTy = FTy;
754 assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
755 "NumOperands not set up?");
756
757#ifndef NDEBUG
758 assert((Args.size() == FTy->getNumParams() ||
759 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
760 "Calling a function with bad signature!");
761
762 for (unsigned i = 0; i != Args.size(); ++i)
763 assert((i >= FTy->getNumParams() ||
764 FTy->getParamType(i) == Args[i]->getType()) &&
765 "Calling a function with a bad signature!");
766#endif
767
768 // Set operands in order of their index to match use-list-order
769 // prediction.
770 llvm::copy(Args, op_begin());
771 setCalledOperand(Func);
772
773 auto It = populateBundleOperandInfos(Bundles, Args.size());
774 (void)It;
775 assert(It + 1 == op_end() && "Should add up!");
776
777 setName(NameStr);
778}
779
780void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
781 this->FTy = FTy;
782 assert(getNumOperands() == 1 && "NumOperands not set up?");
783 setCalledOperand(Func);
784
785 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
786
787 setName(NameStr);
788}
789
790CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
791 AllocInfo AllocInfo, InsertPosition InsertBefore)
792 : CallBase(Ty->getReturnType(), Instruction::Call, AllocInfo,
793 InsertBefore) {
794 init(Ty, Func, Name);
795}
796
797CallInst::CallInst(const CallInst &CI, AllocInfo AllocInfo)
798 : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call, AllocInfo) {
800 "Wrong number of operands allocated");
801 setTailCallKind(CI.getTailCallKind());
803
804 std::copy(CI.op_begin(), CI.op_end(), op_begin());
805 std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
808}
809
811 InsertPosition InsertPt) {
812 std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
813
814 auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledOperand(),
815 Args, OpB, CI->getName(), InsertPt);
816 NewCI->setTailCallKind(CI->getTailCallKind());
817 NewCI->setCallingConv(CI->getCallingConv());
818 NewCI->SubclassOptionalData = CI->SubclassOptionalData;
819 NewCI->setAttributes(CI->getAttributes());
820 NewCI->setDebugLoc(CI->getDebugLoc());
821 return NewCI;
822}
823
824// Update profile weight for call instruction by scaling it using the ratio
825// of S/T. The meaning of "branch_weights" meta data for call instruction is
826// transfered to represent call count.
828 if (T == 0) {
829 LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
830 "div by 0. Ignoring. Likely the function "
831 << getParent()->getParent()->getName()
832 << " has 0 entry count, and contains call instructions "
833 "with non-zero prof info.");
834 return;
835 }
836 scaleProfData(*this, S, T);
837}
838
839//===----------------------------------------------------------------------===//
840// InvokeInst Implementation
841//===----------------------------------------------------------------------===//
842
843void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
844 BasicBlock *IfException, ArrayRef<Value *> Args,
846 const Twine &NameStr) {
847 this->FTy = FTy;
848
850 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
851 "NumOperands not set up?");
852
853#ifndef NDEBUG
854 assert(((Args.size() == FTy->getNumParams()) ||
855 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
856 "Invoking a function with bad signature");
857
858 for (unsigned i = 0, e = Args.size(); i != e; i++)
859 assert((i >= FTy->getNumParams() ||
860 FTy->getParamType(i) == Args[i]->getType()) &&
861 "Invoking a function with a bad signature!");
862#endif
863
864 // Set operands in order of their index to match use-list-order
865 // prediction.
866 llvm::copy(Args, op_begin());
867 setNormalDest(IfNormal);
868 setUnwindDest(IfException);
870
871 auto It = populateBundleOperandInfos(Bundles, Args.size());
872 (void)It;
873 assert(It + 3 == op_end() && "Should add up!");
874
875 setName(NameStr);
876}
877
878InvokeInst::InvokeInst(const InvokeInst &II, AllocInfo AllocInfo)
879 : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke, AllocInfo) {
880 assert(getNumOperands() == II.getNumOperands() &&
881 "Wrong number of operands allocated");
882 setCallingConv(II.getCallingConv());
883 std::copy(II.op_begin(), II.op_end(), op_begin());
884 std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
886 SubclassOptionalData = II.SubclassOptionalData;
887}
888
890 InsertPosition InsertPt) {
891 std::vector<Value *> Args(II->arg_begin(), II->arg_end());
892
893 auto *NewII = InvokeInst::Create(
894 II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(),
895 II->getUnwindDest(), Args, OpB, II->getName(), InsertPt);
896 NewII->setCallingConv(II->getCallingConv());
897 NewII->SubclassOptionalData = II->SubclassOptionalData;
898 NewII->setAttributes(II->getAttributes());
899 NewII->setDebugLoc(II->getDebugLoc());
900 return NewII;
901}
902
904 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHIIt());
905}
906
908 if (T == 0) {
909 LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
910 "div by 0. Ignoring. Likely the function "
911 << getParent()->getParent()->getName()
912 << " has 0 entry count, and contains call instructions "
913 "with non-zero prof info.");
914 return;
915 }
916 scaleProfData(*this, S, T);
917}
918
919//===----------------------------------------------------------------------===//
920// CallBrInst Implementation
921//===----------------------------------------------------------------------===//
922
923void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
924 ArrayRef<BasicBlock *> IndirectDests,
927 const Twine &NameStr) {
928 this->FTy = FTy;
929
930 assert(getNumOperands() == ComputeNumOperands(Args.size(),
931 IndirectDests.size(),
932 CountBundleInputs(Bundles)) &&
933 "NumOperands not set up?");
934
935#ifndef NDEBUG
936 assert(((Args.size() == FTy->getNumParams()) ||
937 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
938 "Calling a function with bad signature");
939
940 for (unsigned i = 0, e = Args.size(); i != e; i++)
941 assert((i >= FTy->getNumParams() ||
942 FTy->getParamType(i) == Args[i]->getType()) &&
943 "Calling a function with a bad signature!");
944#endif
945
946 // Set operands in order of their index to match use-list-order
947 // prediction.
948 llvm::copy(Args, op_begin());
949 NumIndirectDests = IndirectDests.size();
950 setDefaultDest(Fallthrough);
951 for (unsigned i = 0; i != NumIndirectDests; ++i)
952 setIndirectDest(i, IndirectDests[i]);
954
955 auto It = populateBundleOperandInfos(Bundles, Args.size());
956 (void)It;
957 assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
958
959 setName(NameStr);
960}
961
962CallBrInst::CallBrInst(const CallBrInst &CBI, AllocInfo AllocInfo)
963 : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
964 AllocInfo) {
966 "Wrong number of operands allocated");
968 std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
969 std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
972 NumIndirectDests = CBI.NumIndirectDests;
973}
974
975CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
976 InsertPosition InsertPt) {
977 std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
978
979 auto *NewCBI = CallBrInst::Create(
980 CBI->getFunctionType(), CBI->getCalledOperand(), CBI->getDefaultDest(),
981 CBI->getIndirectDests(), Args, OpB, CBI->getName(), InsertPt);
982 NewCBI->setCallingConv(CBI->getCallingConv());
983 NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
984 NewCBI->setAttributes(CBI->getAttributes());
985 NewCBI->setDebugLoc(CBI->getDebugLoc());
986 NewCBI->NumIndirectDests = CBI->NumIndirectDests;
987 return NewCBI;
988}
989
990//===----------------------------------------------------------------------===//
991// ReturnInst Implementation
992//===----------------------------------------------------------------------===//
993
994ReturnInst::ReturnInst(const ReturnInst &RI, AllocInfo AllocInfo)
995 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
996 AllocInfo) {
998 "Wrong number of operands allocated");
999 if (RI.getNumOperands())
1000 Op<0>() = RI.Op<0>();
1002}
1003
1004ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, AllocInfo AllocInfo,
1005 InsertPosition InsertBefore)
1006 : Instruction(Type::getVoidTy(C), Instruction::Ret, AllocInfo,
1007 InsertBefore) {
1008 if (retVal)
1009 Op<0>() = retVal;
1010}
1011
1012//===----------------------------------------------------------------------===//
1013// ResumeInst Implementation
1014//===----------------------------------------------------------------------===//
1015
1016ResumeInst::ResumeInst(const ResumeInst &RI)
1017 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
1018 AllocMarker) {
1019 Op<0>() = RI.Op<0>();
1020}
1021
1022ResumeInst::ResumeInst(Value *Exn, InsertPosition InsertBefore)
1023 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1024 AllocMarker, InsertBefore) {
1025 Op<0>() = Exn;
1026}
1027
1028//===----------------------------------------------------------------------===//
1029// CleanupReturnInst Implementation
1030//===----------------------------------------------------------------------===//
1031
1032CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI,
1034 : Instruction(CRI.getType(), Instruction::CleanupRet, AllocInfo) {
1036 "Wrong number of operands allocated");
1037 setSubclassData<Instruction::OpaqueField>(
1039 Op<0>() = CRI.Op<0>();
1040 if (CRI.hasUnwindDest())
1041 Op<1>() = CRI.Op<1>();
1042}
1043
1044void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
1045 if (UnwindBB)
1046 setSubclassData<UnwindDestField>(true);
1047
1048 Op<0>() = CleanupPad;
1049 if (UnwindBB)
1050 Op<1>() = UnwindBB;
1051}
1052
1053CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1055 InsertPosition InsertBefore)
1056 : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1057 Instruction::CleanupRet, AllocInfo, InsertBefore) {
1058 init(CleanupPad, UnwindBB);
1059}
1060
1061//===----------------------------------------------------------------------===//
1062// CatchReturnInst Implementation
1063//===----------------------------------------------------------------------===//
1064void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
1065 Op<0>() = CatchPad;
1066 Op<1>() = BB;
1067}
1068
1069CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
1070 : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
1071 AllocMarker) {
1072 Op<0>() = CRI.Op<0>();
1073 Op<1>() = CRI.Op<1>();
1074}
1075
1076CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1077 InsertPosition InsertBefore)
1078 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1079 AllocMarker, InsertBefore) {
1080 init(CatchPad, BB);
1081}
1082
1083//===----------------------------------------------------------------------===//
1084// CatchSwitchInst Implementation
1085//===----------------------------------------------------------------------===//
1086
1087CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1088 unsigned NumReservedValues,
1089 const Twine &NameStr,
1090 InsertPosition InsertBefore)
1091 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, AllocMarker,
1092 InsertBefore) {
1093 if (UnwindDest)
1094 ++NumReservedValues;
1095 init(ParentPad, UnwindDest, NumReservedValues + 1);
1096 setName(NameStr);
1097}
1098
1099CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1100 : Instruction(CSI.getType(), Instruction::CatchSwitch, AllocMarker) {
1102 init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1103 setNumHungOffUseOperands(ReservedSpace);
1104 Use *OL = getOperandList();
1105 const Use *InOL = CSI.getOperandList();
1106 for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1107 OL[I] = InOL[I];
1108}
1109
1110void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1111 unsigned NumReservedValues) {
1112 assert(ParentPad && NumReservedValues);
1113
1114 ReservedSpace = NumReservedValues;
1115 setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1116 allocHungoffUses(ReservedSpace);
1117
1118 Op<0>() = ParentPad;
1119 if (UnwindDest) {
1121 setUnwindDest(UnwindDest);
1122 }
1123}
1124
1125/// growOperands - grow operands - This grows the operand list in response to a
1126/// push_back style of operation. This grows the number of ops by 2 times.
1127void CatchSwitchInst::growOperands(unsigned Size) {
1128 unsigned NumOperands = getNumOperands();
1129 assert(NumOperands >= 1);
1130 if (ReservedSpace >= NumOperands + Size)
1131 return;
1132 ReservedSpace = (NumOperands + Size / 2) * 2;
1133 growHungoffUses(ReservedSpace);
1134}
1135
1137 unsigned OpNo = getNumOperands();
1138 growOperands(1);
1139 assert(OpNo < ReservedSpace && "Growing didn't work!");
1141 getOperandList()[OpNo] = Handler;
1142}
1143
1145 // Move all subsequent handlers up one.
1146 Use *EndDst = op_end() - 1;
1147 for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1148 *CurDst = *(CurDst + 1);
1149 // Null out the last handler use.
1150 *EndDst = nullptr;
1151
1153}
1154
1155//===----------------------------------------------------------------------===//
1156// FuncletPadInst Implementation
1157//===----------------------------------------------------------------------===//
1158void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1159 const Twine &NameStr) {
1160 assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1161 llvm::copy(Args, op_begin());
1162 setParentPad(ParentPad);
1163 setName(NameStr);
1164}
1165
1166FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI, AllocInfo AllocInfo)
1167 : Instruction(FPI.getType(), FPI.getOpcode(), AllocInfo) {
1169 "Wrong number of operands allocated");
1170 std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1172}
1173
1174FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1176 const Twine &NameStr,
1177 InsertPosition InsertBefore)
1178 : Instruction(ParentPad->getType(), Op, AllocInfo, InsertBefore) {
1179 init(ParentPad, Args, NameStr);
1180}
1181
1182//===----------------------------------------------------------------------===//
1183// UnreachableInst Implementation
1184//===----------------------------------------------------------------------===//
1185
1187 InsertPosition InsertBefore)
1188 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable,
1189 AllocMarker, InsertBefore) {}
1190
1191//===----------------------------------------------------------------------===//
1192// BranchInst Implementation
1193//===----------------------------------------------------------------------===//
1194
1195void BranchInst::AssertOK() {
1196 if (isConditional())
1197 assert(getCondition()->getType()->isIntegerTy(1) &&
1198 "May only branch on boolean predicates!");
1199}
1200
1201BranchInst::BranchInst(BasicBlock *IfTrue, AllocInfo AllocInfo,
1202 InsertPosition InsertBefore)
1203 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1204 AllocInfo, InsertBefore) {
1205 assert(IfTrue && "Branch destination may not be null!");
1206 Op<-1>() = IfTrue;
1207}
1208
1209BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1210 AllocInfo AllocInfo, InsertPosition InsertBefore)
1211 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1212 AllocInfo, InsertBefore) {
1213 // Assign in order of operand index to make use-list order predictable.
1214 Op<-3>() = Cond;
1215 Op<-2>() = IfFalse;
1216 Op<-1>() = IfTrue;
1217#ifndef NDEBUG
1218 AssertOK();
1219#endif
1220}
1221
1222BranchInst::BranchInst(const BranchInst &BI, AllocInfo AllocInfo)
1223 : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1224 AllocInfo) {
1226 "Wrong number of operands allocated");
1227 // Assign in order of operand index to make use-list order predictable.
1228 if (BI.getNumOperands() != 1) {
1229 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1230 Op<-3>() = BI.Op<-3>();
1231 Op<-2>() = BI.Op<-2>();
1232 }
1233 Op<-1>() = BI.Op<-1>();
1235}
1236
1239 "Cannot swap successors of an unconditional branch");
1240 Op<-1>().swap(Op<-2>());
1241
1242 // Update profile metadata if present and it matches our structural
1243 // expectations.
1245}
1246
1247//===----------------------------------------------------------------------===//
1248// AllocaInst Implementation
1249//===----------------------------------------------------------------------===//
1250
1251static Value *getAISize(LLVMContext &Context, Value *Amt) {
1252 if (!Amt)
1253 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1254 else {
1255 assert(!isa<BasicBlock>(Amt) &&
1256 "Passed basic block into allocation size parameter! Use other ctor");
1257 assert(Amt->getType()->isIntegerTy() &&
1258 "Allocation array size is not an integer!");
1259 }
1260 return Amt;
1261}
1262
1264 assert(Pos.isValid() &&
1265 "Insertion position cannot be null when alignment not provided!");
1266 BasicBlock *BB = Pos.getBasicBlock();
1267 assert(BB->getParent() &&
1268 "BB must be in a Function when alignment not provided!");
1269 const DataLayout &DL = BB->getDataLayout();
1270 return DL.getPrefTypeAlign(Ty);
1271}
1272
1273AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1274 InsertPosition InsertBefore)
1275 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1276
1277AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1278 const Twine &Name, InsertPosition InsertBefore)
1279 : AllocaInst(Ty, AddrSpace, ArraySize,
1280 computeAllocaDefaultAlign(Ty, InsertBefore), Name,
1281 InsertBefore) {}
1282
1283AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1284 Align Align, const Twine &Name,
1285 InsertPosition InsertBefore)
1286 : UnaryInstruction(PointerType::get(Ty->getContext(), AddrSpace), Alloca,
1287 getAISize(Ty->getContext(), ArraySize), InsertBefore),
1288 AllocatedType(Ty) {
1290 assert(!Ty->isVoidTy() && "Cannot allocate void!");
1291 setName(Name);
1292}
1293
1296 return !CI->isOne();
1297 return true;
1298}
1299
1300/// isStaticAlloca - Return true if this alloca is in the entry block of the
1301/// function and is a constant size. If so, the code generator will fold it
1302/// into the prolog/epilog code, so it is basically free.
1304 // Must be constant size.
1305 if (!isa<ConstantInt>(getArraySize())) return false;
1306
1307 // Must be in the entry block.
1308 const BasicBlock *Parent = getParent();
1309 return Parent->isEntryBlock() && !isUsedWithInAlloca();
1310}
1311
1312//===----------------------------------------------------------------------===//
1313// LoadInst Implementation
1314//===----------------------------------------------------------------------===//
1315
1316void LoadInst::AssertOK() {
1318 "Ptr must have pointer type.");
1319}
1320
1322 assert(Pos.isValid() &&
1323 "Insertion position cannot be null when alignment not provided!");
1324 BasicBlock *BB = Pos.getBasicBlock();
1325 assert(BB->getParent() &&
1326 "BB must be in a Function when alignment not provided!");
1327 const DataLayout &DL = BB->getDataLayout();
1328 return DL.getABITypeAlign(Ty);
1329}
1330
1332 InsertPosition InsertBef)
1333 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1334
1336 InsertPosition InsertBef)
1337 : LoadInst(Ty, Ptr, Name, isVolatile,
1338 computeLoadStoreDefaultAlign(Ty, InsertBef), InsertBef) {}
1339
1341 Align Align, InsertPosition InsertBef)
1343 SyncScope::System, InsertBef) {}
1344
1347 InsertPosition InsertBef)
1348 : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1351 setAtomic(Order, SSID);
1352 AssertOK();
1353 setName(Name);
1354}
1355
1356//===----------------------------------------------------------------------===//
1357// StoreInst Implementation
1358//===----------------------------------------------------------------------===//
1359
1360void StoreInst::AssertOK() {
1361 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1363 "Ptr must have pointer type!");
1364}
1365
1367 : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1368
1370 InsertPosition InsertBefore)
1371 : StoreInst(val, addr, isVolatile,
1372 computeLoadStoreDefaultAlign(val->getType(), InsertBefore),
1373 InsertBefore) {}
1374
1376 InsertPosition InsertBefore)
1378 SyncScope::System, InsertBefore) {}
1379
1381 AtomicOrdering Order, SyncScope::ID SSID,
1382 InsertPosition InsertBefore)
1383 : Instruction(Type::getVoidTy(val->getContext()), Store, AllocMarker,
1384 InsertBefore) {
1385 Op<0>() = val;
1386 Op<1>() = addr;
1389 setAtomic(Order, SSID);
1390 AssertOK();
1391}
1392
1393//===----------------------------------------------------------------------===//
1394// AtomicCmpXchgInst Implementation
1395//===----------------------------------------------------------------------===//
1396
1397void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1398 Align Alignment, AtomicOrdering SuccessOrdering,
1399 AtomicOrdering FailureOrdering,
1400 SyncScope::ID SSID) {
1401 Op<0>() = Ptr;
1402 Op<1>() = Cmp;
1403 Op<2>() = NewVal;
1404 setSuccessOrdering(SuccessOrdering);
1405 setFailureOrdering(FailureOrdering);
1406 setSyncScopeID(SSID);
1407 setAlignment(Alignment);
1408
1409 assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1410 "All operands must be non-null!");
1412 "Ptr must have pointer type!");
1413 assert(getOperand(1)->getType() == getOperand(2)->getType() &&
1414 "Cmp type and NewVal type must be same!");
1415}
1416
1418 Align Alignment,
1419 AtomicOrdering SuccessOrdering,
1420 AtomicOrdering FailureOrdering,
1421 SyncScope::ID SSID,
1422 InsertPosition InsertBefore)
1423 : Instruction(
1424 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1425 AtomicCmpXchg, AllocMarker, InsertBefore) {
1426 Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1427}
1428
1429//===----------------------------------------------------------------------===//
1430// AtomicRMWInst Implementation
1431//===----------------------------------------------------------------------===//
1432
1433void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1434 Align Alignment, AtomicOrdering Ordering,
1435 SyncScope::ID SSID) {
1436 assert(Ordering != AtomicOrdering::NotAtomic &&
1437 "atomicrmw instructions can only be atomic.");
1438 assert(Ordering != AtomicOrdering::Unordered &&
1439 "atomicrmw instructions cannot be unordered.");
1440 Op<0>() = Ptr;
1441 Op<1>() = Val;
1443 setOrdering(Ordering);
1444 setSyncScopeID(SSID);
1445 setAlignment(Alignment);
1446
1447 assert(getOperand(0) && getOperand(1) && "All operands must be non-null!");
1449 "Ptr must have pointer type!");
1450 assert(Ordering != AtomicOrdering::NotAtomic &&
1451 "AtomicRMW instructions must be atomic!");
1452}
1453
1455 Align Alignment, AtomicOrdering Ordering,
1456 SyncScope::ID SSID, InsertPosition InsertBefore)
1457 : Instruction(Val->getType(), AtomicRMW, AllocMarker, InsertBefore) {
1458 Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1459}
1460
1462 switch (Op) {
1464 return "xchg";
1465 case AtomicRMWInst::Add:
1466 return "add";
1467 case AtomicRMWInst::Sub:
1468 return "sub";
1469 case AtomicRMWInst::And:
1470 return "and";
1472 return "nand";
1473 case AtomicRMWInst::Or:
1474 return "or";
1475 case AtomicRMWInst::Xor:
1476 return "xor";
1477 case AtomicRMWInst::Max:
1478 return "max";
1479 case AtomicRMWInst::Min:
1480 return "min";
1482 return "umax";
1484 return "umin";
1486 return "fadd";
1488 return "fsub";
1490 return "fmax";
1492 return "fmin";
1494 return "fmaximum";
1496 return "fminimum";
1498 return "uinc_wrap";
1500 return "udec_wrap";
1502 return "usub_cond";
1504 return "usub_sat";
1506 return "<invalid operation>";
1507 }
1508
1509 llvm_unreachable("invalid atomicrmw operation");
1510}
1511
1512//===----------------------------------------------------------------------===//
1513// FenceInst Implementation
1514//===----------------------------------------------------------------------===//
1515
1517 SyncScope::ID SSID, InsertPosition InsertBefore)
1518 : Instruction(Type::getVoidTy(C), Fence, AllocMarker, InsertBefore) {
1519 setOrdering(Ordering);
1520 setSyncScopeID(SSID);
1521}
1522
1523//===----------------------------------------------------------------------===//
1524// GetElementPtrInst Implementation
1525//===----------------------------------------------------------------------===//
1526
1527void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1528 const Twine &Name) {
1529 assert(getNumOperands() == 1 + IdxList.size() &&
1530 "NumOperands not initialized?");
1531 Op<0>() = Ptr;
1532 llvm::copy(IdxList, op_begin() + 1);
1533 setName(Name);
1534}
1535
1536GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI,
1538 : Instruction(GEPI.getType(), GetElementPtr, AllocInfo),
1539 SourceElementType(GEPI.SourceElementType),
1540 ResultElementType(GEPI.ResultElementType) {
1541 assert(getNumOperands() == GEPI.getNumOperands() &&
1542 "Wrong number of operands allocated");
1543 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1545}
1546
1548 if (auto *Struct = dyn_cast<StructType>(Ty)) {
1549 if (!Struct->indexValid(Idx))
1550 return nullptr;
1551 return Struct->getTypeAtIndex(Idx);
1552 }
1553 if (!Idx->getType()->isIntOrIntVectorTy())
1554 return nullptr;
1555 if (auto *Array = dyn_cast<ArrayType>(Ty))
1556 return Array->getElementType();
1557 if (auto *Vector = dyn_cast<VectorType>(Ty))
1558 return Vector->getElementType();
1559 return nullptr;
1560}
1561
1563 if (auto *Struct = dyn_cast<StructType>(Ty)) {
1564 if (Idx >= Struct->getNumElements())
1565 return nullptr;
1566 return Struct->getElementType(Idx);
1567 }
1568 if (auto *Array = dyn_cast<ArrayType>(Ty))
1569 return Array->getElementType();
1570 if (auto *Vector = dyn_cast<VectorType>(Ty))
1571 return Vector->getElementType();
1572 return nullptr;
1573}
1574
1575template <typename IndexTy>
1577 if (IdxList.empty())
1578 return Ty;
1579 for (IndexTy V : IdxList.slice(1)) {
1581 if (!Ty)
1582 return Ty;
1583 }
1584 return Ty;
1585}
1586
1590
1592 ArrayRef<Constant *> IdxList) {
1593 return getIndexedTypeInternal(Ty, IdxList);
1594}
1595
1599
1600/// hasAllZeroIndices - Return true if all of the indices of this GEP are
1601/// zeros. If so, the result pointer and the first operand have the same
1602/// value, just potentially different types.
1604 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1606 if (!CI->isZero()) return false;
1607 } else {
1608 return false;
1609 }
1610 }
1611 return true;
1612}
1613
1614/// hasAllConstantIndices - Return true if all of the indices of this GEP are
1615/// constant integers. If so, the result pointer and the first operand have
1616/// a constant offset between them.
1618 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1620 return false;
1621 }
1622 return true;
1623}
1624
1628
1630 GEPNoWrapFlags NW = cast<GEPOperator>(this)->getNoWrapFlags();
1631 if (B)
1633 else
1634 NW = NW.withoutInBounds();
1635 setNoWrapFlags(NW);
1636}
1637
1639 return cast<GEPOperator>(this)->getNoWrapFlags();
1640}
1641
1643 return cast<GEPOperator>(this)->isInBounds();
1644}
1645
1647 return cast<GEPOperator>(this)->hasNoUnsignedSignedWrap();
1648}
1649
1651 return cast<GEPOperator>(this)->hasNoUnsignedWrap();
1652}
1653
1655 APInt &Offset) const {
1656 // Delegate to the generic GEPOperator implementation.
1657 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1658}
1659
1661 const DataLayout &DL, unsigned BitWidth,
1662 SmallMapVector<Value *, APInt, 4> &VariableOffsets,
1663 APInt &ConstantOffset) const {
1664 // Delegate to the generic GEPOperator implementation.
1665 return cast<GEPOperator>(this)->collectOffset(DL, BitWidth, VariableOffsets,
1666 ConstantOffset);
1667}
1668
1669//===----------------------------------------------------------------------===//
1670// ExtractElementInst Implementation
1671//===----------------------------------------------------------------------===//
1672
1673ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1674 const Twine &Name,
1675 InsertPosition InsertBef)
1676 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1677 ExtractElement, AllocMarker, InsertBef) {
1678 assert(isValidOperands(Val, Index) &&
1679 "Invalid extractelement instruction operands!");
1680 Op<0>() = Val;
1681 Op<1>() = Index;
1682 setName(Name);
1683}
1684
1685bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1686 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1687 return false;
1688 return true;
1689}
1690
1691//===----------------------------------------------------------------------===//
1692// InsertElementInst Implementation
1693//===----------------------------------------------------------------------===//
1694
1695InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1696 const Twine &Name,
1697 InsertPosition InsertBef)
1698 : Instruction(Vec->getType(), InsertElement, AllocMarker, InsertBef) {
1699 assert(isValidOperands(Vec, Elt, Index) &&
1700 "Invalid insertelement instruction operands!");
1701 Op<0>() = Vec;
1702 Op<1>() = Elt;
1703 Op<2>() = Index;
1704 setName(Name);
1705}
1706
1708 const Value *Index) {
1709 if (!Vec->getType()->isVectorTy())
1710 return false; // First operand of insertelement must be vector type.
1711
1712 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1713 return false;// Second operand of insertelement must be vector element type.
1714
1715 if (!Index->getType()->isIntegerTy())
1716 return false; // Third operand of insertelement must be i32.
1717 return true;
1718}
1719
1720//===----------------------------------------------------------------------===//
1721// ShuffleVectorInst Implementation
1722//===----------------------------------------------------------------------===//
1723
1725 assert(V && "Cannot create placeholder of nullptr V");
1726 return PoisonValue::get(V->getType());
1727}
1728
1730 InsertPosition InsertBefore)
1732 InsertBefore) {}
1733
1735 const Twine &Name,
1736 InsertPosition InsertBefore)
1738 InsertBefore) {}
1739
1741 const Twine &Name,
1742 InsertPosition InsertBefore)
1743 : Instruction(
1744 VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1745 cast<VectorType>(Mask->getType())->getElementCount()),
1746 ShuffleVector, AllocMarker, InsertBefore) {
1747 assert(isValidOperands(V1, V2, Mask) &&
1748 "Invalid shuffle vector instruction operands!");
1749
1750 Op<0>() = V1;
1751 Op<1>() = V2;
1752 SmallVector<int, 16> MaskArr;
1753 getShuffleMask(cast<Constant>(Mask), MaskArr);
1754 setShuffleMask(MaskArr);
1755 setName(Name);
1756}
1757
1759 const Twine &Name,
1760 InsertPosition InsertBefore)
1761 : Instruction(
1762 VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1763 Mask.size(), isa<ScalableVectorType>(V1->getType())),
1764 ShuffleVector, AllocMarker, InsertBefore) {
1765 assert(isValidOperands(V1, V2, Mask) &&
1766 "Invalid shuffle vector instruction operands!");
1767 Op<0>() = V1;
1768 Op<1>() = V2;
1769 setShuffleMask(Mask);
1770 setName(Name);
1771}
1772
1774 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
1775 int NumMaskElts = ShuffleMask.size();
1776 SmallVector<int, 16> NewMask(NumMaskElts);
1777 for (int i = 0; i != NumMaskElts; ++i) {
1778 int MaskElt = getMaskValue(i);
1779 if (MaskElt == PoisonMaskElem) {
1780 NewMask[i] = PoisonMaskElem;
1781 continue;
1782 }
1783 assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
1784 MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1785 NewMask[i] = MaskElt;
1786 }
1787 setShuffleMask(NewMask);
1788 Op<0>().swap(Op<1>());
1789}
1790
1792 ArrayRef<int> Mask) {
1793 // V1 and V2 must be vectors of the same type.
1794 if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType())
1795 return false;
1796
1797 // Make sure the mask elements make sense.
1798 int V1Size =
1799 cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
1800 for (int Elem : Mask)
1801 if (Elem != PoisonMaskElem && Elem >= V1Size * 2)
1802 return false;
1803
1805 if ((Mask[0] != 0 && Mask[0] != PoisonMaskElem) || !all_equal(Mask))
1806 return false;
1807
1808 return true;
1809}
1810
1812 const Value *Mask) {
1813 // V1 and V2 must be vectors of the same type.
1814 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1815 return false;
1816
1817 // Mask must be vector of i32, and must be the same kind of vector as the
1818 // input vectors
1819 auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
1820 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) ||
1822 return false;
1823
1824 // Check to see if Mask is valid.
1826 return true;
1827
1828 // NOTE: Through vector ConstantInt we have the potential to support more
1829 // than just zero splat masks but that requires a LangRef change.
1830 if (isa<ScalableVectorType>(MaskTy))
1831 return false;
1832
1833 unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
1834
1835 if (const auto *CI = dyn_cast<ConstantInt>(Mask))
1836 return !CI->uge(V1Size * 2);
1837
1838 if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
1839 for (Value *Op : MV->operands()) {
1840 if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1841 if (CI->uge(V1Size*2))
1842 return false;
1843 } else if (!isa<UndefValue>(Op)) {
1844 return false;
1845 }
1846 }
1847 return true;
1848 }
1849
1850 if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1851 for (unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->getNumElements();
1852 i != e; ++i)
1853 if (CDS->getElementAsInteger(i) >= V1Size*2)
1854 return false;
1855 return true;
1856 }
1857
1858 return false;
1859}
1860
1862 SmallVectorImpl<int> &Result) {
1863 ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount();
1864
1865 if (isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) {
1866 int MaskVal = isa<UndefValue>(Mask) ? -1 : 0;
1867 Result.append(EC.getKnownMinValue(), MaskVal);
1868 return;
1869 }
1870
1871 assert(!EC.isScalable() &&
1872 "Scalable vector shuffle mask must be undef or zeroinitializer");
1873
1874 unsigned NumElts = EC.getFixedValue();
1875
1876 Result.reserve(NumElts);
1877
1878 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1879 for (unsigned i = 0; i != NumElts; ++i)
1880 Result.push_back(CDS->getElementAsInteger(i));
1881 return;
1882 }
1883 for (unsigned i = 0; i != NumElts; ++i) {
1884 Constant *C = Mask->getAggregateElement(i);
1885 Result.push_back(isa<UndefValue>(C) ? -1 :
1886 cast<ConstantInt>(C)->getZExtValue());
1887 }
1888}
1889
1891 ShuffleMask.assign(Mask.begin(), Mask.end());
1892 ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, getType());
1893}
1894
1896 Type *ResultTy) {
1897 Type *Int32Ty = Type::getInt32Ty(ResultTy->getContext());
1898 if (isa<ScalableVectorType>(ResultTy)) {
1899 assert(all_equal(Mask) && "Unexpected shuffle");
1900 Type *VecTy = VectorType::get(Int32Ty, Mask.size(), true);
1901 if (Mask[0] == 0)
1902 return Constant::getNullValue(VecTy);
1903 return PoisonValue::get(VecTy);
1904 }
1906 for (int Elem : Mask) {
1907 if (Elem == PoisonMaskElem)
1909 else
1910 MaskConst.push_back(ConstantInt::get(Int32Ty, Elem));
1911 }
1912 return ConstantVector::get(MaskConst);
1913}
1914
1915static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1916 assert(!Mask.empty() && "Shuffle mask must contain elements");
1917 bool UsesLHS = false;
1918 bool UsesRHS = false;
1919 for (int I : Mask) {
1920 if (I == -1)
1921 continue;
1922 assert(I >= 0 && I < (NumOpElts * 2) &&
1923 "Out-of-bounds shuffle mask element");
1924 UsesLHS |= (I < NumOpElts);
1925 UsesRHS |= (I >= NumOpElts);
1926 if (UsesLHS && UsesRHS)
1927 return false;
1928 }
1929 // Allow for degenerate case: completely undef mask means neither source is used.
1930 return UsesLHS || UsesRHS;
1931}
1932
1934 // We don't have vector operand size information, so assume operands are the
1935 // same size as the mask.
1936 return isSingleSourceMaskImpl(Mask, NumSrcElts);
1937}
1938
1939static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1940 if (!isSingleSourceMaskImpl(Mask, NumOpElts))
1941 return false;
1942 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1943 if (Mask[i] == -1)
1944 continue;
1945 if (Mask[i] != i && Mask[i] != (NumOpElts + i))
1946 return false;
1947 }
1948 return true;
1949}
1950
1952 if (Mask.size() != static_cast<unsigned>(NumSrcElts))
1953 return false;
1954 // We don't have vector operand size information, so assume operands are the
1955 // same size as the mask.
1956 return isIdentityMaskImpl(Mask, NumSrcElts);
1957}
1958
1960 if (Mask.size() != static_cast<unsigned>(NumSrcElts))
1961 return false;
1962 if (!isSingleSourceMask(Mask, NumSrcElts))
1963 return false;
1964
1965 // The number of elements in the mask must be at least 2.
1966 if (NumSrcElts < 2)
1967 return false;
1968
1969 for (int I = 0, E = Mask.size(); I < E; ++I) {
1970 if (Mask[I] == -1)
1971 continue;
1972 if (Mask[I] != (NumSrcElts - 1 - I) &&
1973 Mask[I] != (NumSrcElts + NumSrcElts - 1 - I))
1974 return false;
1975 }
1976 return true;
1977}
1978
1980 if (Mask.size() != static_cast<unsigned>(NumSrcElts))
1981 return false;
1982 if (!isSingleSourceMask(Mask, NumSrcElts))
1983 return false;
1984 for (int I = 0, E = Mask.size(); I < E; ++I) {
1985 if (Mask[I] == -1)
1986 continue;
1987 if (Mask[I] != 0 && Mask[I] != NumSrcElts)
1988 return false;
1989 }
1990 return true;
1991}
1992
1994 if (Mask.size() != static_cast<unsigned>(NumSrcElts))
1995 return false;
1996 // Select is differentiated from identity. It requires using both sources.
1997 if (isSingleSourceMask(Mask, NumSrcElts))
1998 return false;
1999 for (int I = 0, E = Mask.size(); I < E; ++I) {
2000 if (Mask[I] == -1)
2001 continue;
2002 if (Mask[I] != I && Mask[I] != (NumSrcElts + I))
2003 return false;
2004 }
2005 return true;
2006}
2007
2009 // Example masks that will return true:
2010 // v1 = <a, b, c, d>
2011 // v2 = <e, f, g, h>
2012 // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
2013 // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
2014
2015 if (Mask.size() != static_cast<unsigned>(NumSrcElts))
2016 return false;
2017 // 1. The number of elements in the mask must be a power-of-2 and at least 2.
2018 int Sz = Mask.size();
2019 if (Sz < 2 || !isPowerOf2_32(Sz))
2020 return false;
2021
2022 // 2. The first element of the mask must be either a 0 or a 1.
2023 if (Mask[0] != 0 && Mask[0] != 1)
2024 return false;
2025
2026 // 3. The difference between the first 2 elements must be equal to the
2027 // number of elements in the mask.
2028 if ((Mask[1] - Mask[0]) != NumSrcElts)
2029 return false;
2030
2031 // 4. The difference between consecutive even-numbered and odd-numbered
2032 // elements must be equal to 2.
2033 for (int I = 2; I < Sz; ++I) {
2034 int MaskEltVal = Mask[I];
2035 if (MaskEltVal == -1)
2036 return false;
2037 int MaskEltPrevVal = Mask[I - 2];
2038 if (MaskEltVal - MaskEltPrevVal != 2)
2039 return false;
2040 }
2041 return true;
2042}
2043
2045 int &Index) {
2046 if (Mask.size() != static_cast<unsigned>(NumSrcElts))
2047 return false;
2048 // Example: shufflevector <4 x n> A, <4 x n> B, <1,2,3,4>
2049 int StartIndex = -1;
2050 for (int I = 0, E = Mask.size(); I != E; ++I) {
2051 int MaskEltVal = Mask[I];
2052 if (MaskEltVal == -1)
2053 continue;
2054
2055 if (StartIndex == -1) {
2056 // Don't support a StartIndex that begins in the second input, or if the
2057 // first non-undef index would access below the StartIndex.
2058 if (MaskEltVal < I || NumSrcElts <= (MaskEltVal - I))
2059 return false;
2060
2061 StartIndex = MaskEltVal - I;
2062 continue;
2063 }
2064
2065 // Splice is sequential starting from StartIndex.
2066 if (MaskEltVal != (StartIndex + I))
2067 return false;
2068 }
2069
2070 if (StartIndex == -1)
2071 return false;
2072
2073 // NOTE: This accepts StartIndex == 0 (COPY).
2074 Index = StartIndex;
2075 return true;
2076}
2077
2079 int NumSrcElts, int &Index) {
2080 // Must extract from a single source.
2081 if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2082 return false;
2083
2084 // Must be smaller (else this is an Identity shuffle).
2085 if (NumSrcElts <= (int)Mask.size())
2086 return false;
2087
2088 // Find start of extraction, accounting that we may start with an UNDEF.
2089 int SubIndex = -1;
2090 for (int i = 0, e = Mask.size(); i != e; ++i) {
2091 int M = Mask[i];
2092 if (M < 0)
2093 continue;
2094 int Offset = (M % NumSrcElts) - i;
2095 if (0 <= SubIndex && SubIndex != Offset)
2096 return false;
2097 SubIndex = Offset;
2098 }
2099
2100 if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) {
2101 Index = SubIndex;
2102 return true;
2103 }
2104 return false;
2105}
2106
2108 int NumSrcElts, int &NumSubElts,
2109 int &Index) {
2110 int NumMaskElts = Mask.size();
2111
2112 // Don't try to match if we're shuffling to a smaller size.
2113 if (NumMaskElts < NumSrcElts)
2114 return false;
2115
2116 // TODO: We don't recognize self-insertion/widening.
2117 if (isSingleSourceMaskImpl(Mask, NumSrcElts))
2118 return false;
2119
2120 // Determine which mask elements are attributed to which source.
2121 APInt UndefElts = APInt::getZero(NumMaskElts);
2122 APInt Src0Elts = APInt::getZero(NumMaskElts);
2123 APInt Src1Elts = APInt::getZero(NumMaskElts);
2124 bool Src0Identity = true;
2125 bool Src1Identity = true;
2126
2127 for (int i = 0; i != NumMaskElts; ++i) {
2128 int M = Mask[i];
2129 if (M < 0) {
2130 UndefElts.setBit(i);
2131 continue;
2132 }
2133 if (M < NumSrcElts) {
2134 Src0Elts.setBit(i);
2135 Src0Identity &= (M == i);
2136 continue;
2137 }
2138 Src1Elts.setBit(i);
2139 Src1Identity &= (M == (i + NumSrcElts));
2140 }
2141 assert((Src0Elts | Src1Elts | UndefElts).isAllOnes() &&
2142 "unknown shuffle elements");
2143 assert(!Src0Elts.isZero() && !Src1Elts.isZero() &&
2144 "2-source shuffle not found");
2145
2146 // Determine lo/hi span ranges.
2147 // TODO: How should we handle undefs at the start of subvector insertions?
2148 int Src0Lo = Src0Elts.countr_zero();
2149 int Src1Lo = Src1Elts.countr_zero();
2150 int Src0Hi = NumMaskElts - Src0Elts.countl_zero();
2151 int Src1Hi = NumMaskElts - Src1Elts.countl_zero();
2152
2153 // If src0 is in place, see if the src1 elements is inplace within its own
2154 // span.
2155 if (Src0Identity) {
2156 int NumSub1Elts = Src1Hi - Src1Lo;
2157 ArrayRef<int> Sub1Mask = Mask.slice(Src1Lo, NumSub1Elts);
2158 if (isIdentityMaskImpl(Sub1Mask, NumSrcElts)) {
2159 NumSubElts = NumSub1Elts;
2160 Index = Src1Lo;
2161 return true;
2162 }
2163 }
2164
2165 // If src1 is in place, see if the src0 elements is inplace within its own
2166 // span.
2167 if (Src1Identity) {
2168 int NumSub0Elts = Src0Hi - Src0Lo;
2169 ArrayRef<int> Sub0Mask = Mask.slice(Src0Lo, NumSub0Elts);
2170 if (isIdentityMaskImpl(Sub0Mask, NumSrcElts)) {
2171 NumSubElts = NumSub0Elts;
2172 Index = Src0Lo;
2173 return true;
2174 }
2175 }
2176
2177 return false;
2178}
2179
2181 // FIXME: Not currently possible to express a shuffle mask for a scalable
2182 // vector for this case.
2184 return false;
2185
2186 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2187 int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2188 if (NumMaskElts <= NumOpElts)
2189 return false;
2190
2191 // The first part of the mask must choose elements from exactly 1 source op.
2193 if (!isIdentityMaskImpl(Mask, NumOpElts))
2194 return false;
2195
2196 // All extending must be with undef elements.
2197 for (int i = NumOpElts; i < NumMaskElts; ++i)
2198 if (Mask[i] != -1)
2199 return false;
2200
2201 return true;
2202}
2203
2205 // FIXME: Not currently possible to express a shuffle mask for a scalable
2206 // vector for this case.
2208 return false;
2209
2210 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2211 int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2212 if (NumMaskElts >= NumOpElts)
2213 return false;
2214
2215 return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2216}
2217
2219 // Vector concatenation is differentiated from identity with padding.
2221 return false;
2222
2223 // FIXME: Not currently possible to express a shuffle mask for a scalable
2224 // vector for this case.
2226 return false;
2227
2228 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2229 int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2230 if (NumMaskElts != NumOpElts * 2)
2231 return false;
2232
2233 // Use the mask length rather than the operands' vector lengths here. We
2234 // already know that the shuffle returns a vector twice as long as the inputs,
2235 // and neither of the inputs are undef vectors. If the mask picks consecutive
2236 // elements from both inputs, then this is a concatenation of the inputs.
2237 return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2238}
2239
2241 int ReplicationFactor, int VF) {
2242 assert(Mask.size() == (unsigned)ReplicationFactor * VF &&
2243 "Unexpected mask size.");
2244
2245 for (int CurrElt : seq(VF)) {
2246 ArrayRef<int> CurrSubMask = Mask.take_front(ReplicationFactor);
2247 assert(CurrSubMask.size() == (unsigned)ReplicationFactor &&
2248 "Run out of mask?");
2249 Mask = Mask.drop_front(ReplicationFactor);
2250 if (!all_of(CurrSubMask, [CurrElt](int MaskElt) {
2251 return MaskElt == PoisonMaskElem || MaskElt == CurrElt;
2252 }))
2253 return false;
2254 }
2255 assert(Mask.empty() && "Did not consume the whole mask?");
2256
2257 return true;
2258}
2259
2261 int &ReplicationFactor, int &VF) {
2262 // undef-less case is trivial.
2263 if (!llvm::is_contained(Mask, PoisonMaskElem)) {
2264 ReplicationFactor =
2265 Mask.take_while([](int MaskElt) { return MaskElt == 0; }).size();
2266 if (ReplicationFactor == 0 || Mask.size() % ReplicationFactor != 0)
2267 return false;
2268 VF = Mask.size() / ReplicationFactor;
2269 return isReplicationMaskWithParams(Mask, ReplicationFactor, VF);
2270 }
2271
2272 // However, if the mask contains undef's, we have to enumerate possible tuples
2273 // and pick one. There are bounds on replication factor: [1, mask size]
2274 // (where RF=1 is an identity shuffle, RF=mask size is a broadcast shuffle)
2275 // Additionally, mask size is a replication factor multiplied by vector size,
2276 // which further significantly reduces the search space.
2277
2278 // Before doing that, let's perform basic correctness checking first.
2279 int Largest = -1;
2280 for (int MaskElt : Mask) {
2281 if (MaskElt == PoisonMaskElem)
2282 continue;
2283 // Elements must be in non-decreasing order.
2284 if (MaskElt < Largest)
2285 return false;
2286 Largest = std::max(Largest, MaskElt);
2287 }
2288
2289 // Prefer larger replication factor if all else equal.
2290 for (int PossibleReplicationFactor :
2291 reverse(seq_inclusive<unsigned>(1, Mask.size()))) {
2292 if (Mask.size() % PossibleReplicationFactor != 0)
2293 continue;
2294 int PossibleVF = Mask.size() / PossibleReplicationFactor;
2295 if (!isReplicationMaskWithParams(Mask, PossibleReplicationFactor,
2296 PossibleVF))
2297 continue;
2298 ReplicationFactor = PossibleReplicationFactor;
2299 VF = PossibleVF;
2300 return true;
2301 }
2302
2303 return false;
2304}
2305
2306bool ShuffleVectorInst::isReplicationMask(int &ReplicationFactor,
2307 int &VF) const {
2308 // Not possible to express a shuffle mask for a scalable vector for this
2309 // case.
2311 return false;
2312
2313 VF = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2314 if (ShuffleMask.size() % VF != 0)
2315 return false;
2316 ReplicationFactor = ShuffleMask.size() / VF;
2317
2318 return isReplicationMaskWithParams(ShuffleMask, ReplicationFactor, VF);
2319}
2320
2322 if (VF <= 0 || Mask.size() < static_cast<unsigned>(VF) ||
2323 Mask.size() % VF != 0)
2324 return false;
2325 for (unsigned K = 0, Sz = Mask.size(); K < Sz; K += VF) {
2326 ArrayRef<int> SubMask = Mask.slice(K, VF);
2327 if (all_of(SubMask, [](int Idx) { return Idx == PoisonMaskElem; }))
2328 continue;
2329 SmallBitVector Used(VF, false);
2330 for (int Idx : SubMask) {
2331 if (Idx != PoisonMaskElem && Idx < VF)
2332 Used.set(Idx);
2333 }
2334 if (!Used.all())
2335 return false;
2336 }
2337 return true;
2338}
2339
2340/// Return true if this shuffle mask is a replication mask.
2342 // Not possible to express a shuffle mask for a scalable vector for this
2343 // case.
2345 return false;
2346 if (!isSingleSourceMask(ShuffleMask, VF))
2347 return false;
2348
2349 return isOneUseSingleSourceMask(ShuffleMask, VF);
2350}
2351
2352bool ShuffleVectorInst::isInterleave(unsigned Factor) {
2354 // shuffle_vector can only interleave fixed length vectors - for scalable
2355 // vectors, see the @llvm.vector.interleave2 intrinsic
2356 if (!OpTy)
2357 return false;
2358 unsigned OpNumElts = OpTy->getNumElements();
2359
2360 return isInterleaveMask(ShuffleMask, Factor, OpNumElts * 2);
2361}
2362
2364 ArrayRef<int> Mask, unsigned Factor, unsigned NumInputElts,
2365 SmallVectorImpl<unsigned> &StartIndexes) {
2366 unsigned NumElts = Mask.size();
2367 if (NumElts % Factor)
2368 return false;
2369
2370 unsigned LaneLen = NumElts / Factor;
2371 if (!isPowerOf2_32(LaneLen))
2372 return false;
2373
2374 StartIndexes.resize(Factor);
2375
2376 // Check whether each element matches the general interleaved rule.
2377 // Ignore undef elements, as long as the defined elements match the rule.
2378 // Outer loop processes all factors (x, y, z in the above example)
2379 unsigned I = 0, J;
2380 for (; I < Factor; I++) {
2381 unsigned SavedLaneValue;
2382 unsigned SavedNoUndefs = 0;
2383
2384 // Inner loop processes consecutive accesses (x, x+1... in the example)
2385 for (J = 0; J < LaneLen - 1; J++) {
2386 // Lane computes x's position in the Mask
2387 unsigned Lane = J * Factor + I;
2388 unsigned NextLane = Lane + Factor;
2389 int LaneValue = Mask[Lane];
2390 int NextLaneValue = Mask[NextLane];
2391
2392 // If both are defined, values must be sequential
2393 if (LaneValue >= 0 && NextLaneValue >= 0 &&
2394 LaneValue + 1 != NextLaneValue)
2395 break;
2396
2397 // If the next value is undef, save the current one as reference
2398 if (LaneValue >= 0 && NextLaneValue < 0) {
2399 SavedLaneValue = LaneValue;
2400 SavedNoUndefs = 1;
2401 }
2402
2403 // Undefs are allowed, but defined elements must still be consecutive:
2404 // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, ....
2405 // Verify this by storing the last non-undef followed by an undef
2406 // Check that following non-undef masks are incremented with the
2407 // corresponding distance.
2408 if (SavedNoUndefs > 0 && LaneValue < 0) {
2409 SavedNoUndefs++;
2410 if (NextLaneValue >= 0 &&
2411 SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue)
2412 break;
2413 }
2414 }
2415
2416 if (J < LaneLen - 1)
2417 return false;
2418
2419 int StartMask = 0;
2420 if (Mask[I] >= 0) {
2421 // Check that the start of the I range (J=0) is greater than 0
2422 StartMask = Mask[I];
2423 } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) {
2424 // StartMask defined by the last value in lane
2425 StartMask = Mask[(LaneLen - 1) * Factor + I] - J;
2426 } else if (SavedNoUndefs > 0) {
2427 // StartMask defined by some non-zero value in the j loop
2428 StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
2429 }
2430 // else StartMask remains set to 0, i.e. all elements are undefs
2431
2432 if (StartMask < 0)
2433 return false;
2434 // We must stay within the vectors; This case can happen with undefs.
2435 if (StartMask + LaneLen > NumInputElts)
2436 return false;
2437
2438 StartIndexes[I] = StartMask;
2439 }
2440
2441 return true;
2442}
2443
2444/// Check if the mask is a DE-interleave mask of the given factor
2445/// \p Factor like:
2446/// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
2448 unsigned Factor,
2449 unsigned &Index) {
2450 // Check all potential start indices from 0 to (Factor - 1).
2451 for (unsigned Idx = 0; Idx < Factor; Idx++) {
2452 unsigned I = 0;
2453
2454 // Check that elements are in ascending order by Factor. Ignore undef
2455 // elements.
2456 for (; I < Mask.size(); I++)
2457 if (Mask[I] >= 0 && static_cast<unsigned>(Mask[I]) != Idx + I * Factor)
2458 break;
2459
2460 if (I == Mask.size()) {
2461 Index = Idx;
2462 return true;
2463 }
2464 }
2465
2466 return false;
2467}
2468
2469/// Try to lower a vector shuffle as a bit rotation.
2470///
2471/// Look for a repeated rotation pattern in each sub group.
2472/// Returns an element-wise left bit rotation amount or -1 if failed.
2473static int matchShuffleAsBitRotate(ArrayRef<int> Mask, int NumSubElts) {
2474 int NumElts = Mask.size();
2475 assert((NumElts % NumSubElts) == 0 && "Illegal shuffle mask");
2476
2477 int RotateAmt = -1;
2478 for (int i = 0; i != NumElts; i += NumSubElts) {
2479 for (int j = 0; j != NumSubElts; ++j) {
2480 int M = Mask[i + j];
2481 if (M < 0)
2482 continue;
2483 if (M < i || M >= i + NumSubElts)
2484 return -1;
2485 int Offset = (NumSubElts - (M - (i + j))) % NumSubElts;
2486 if (0 <= RotateAmt && Offset != RotateAmt)
2487 return -1;
2488 RotateAmt = Offset;
2489 }
2490 }
2491 return RotateAmt;
2492}
2493
2495 ArrayRef<int> Mask, unsigned EltSizeInBits, unsigned MinSubElts,
2496 unsigned MaxSubElts, unsigned &NumSubElts, unsigned &RotateAmt) {
2497 for (NumSubElts = MinSubElts; NumSubElts <= MaxSubElts; NumSubElts *= 2) {
2498 int EltRotateAmt = matchShuffleAsBitRotate(Mask, NumSubElts);
2499 if (EltRotateAmt < 0)
2500 continue;
2501 RotateAmt = EltRotateAmt * EltSizeInBits;
2502 return true;
2503 }
2504
2505 return false;
2506}
2507
2508//===----------------------------------------------------------------------===//
2509// InsertValueInst Class
2510//===----------------------------------------------------------------------===//
2511
2512void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2513 const Twine &Name) {
2514 assert(getNumOperands() == 2 && "NumOperands not initialized?");
2515
2516 // There's no fundamental reason why we require at least one index
2517 // (other than weirdness with &*IdxBegin being invalid; see
2518 // getelementptr's init routine for example). But there's no
2519 // present need to support it.
2520 assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2521
2523 Val->getType() && "Inserted value must match indexed type!");
2524 Op<0>() = Agg;
2525 Op<1>() = Val;
2526
2527 Indices.append(Idxs.begin(), Idxs.end());
2528 setName(Name);
2529}
2530
2531InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2532 : Instruction(IVI.getType(), InsertValue, AllocMarker),
2533 Indices(IVI.Indices) {
2534 Op<0>() = IVI.getOperand(0);
2535 Op<1>() = IVI.getOperand(1);
2537}
2538
2539//===----------------------------------------------------------------------===//
2540// ExtractValueInst Class
2541//===----------------------------------------------------------------------===//
2542
2543void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2544 assert(getNumOperands() == 1 && "NumOperands not initialized?");
2545
2546 // There's no fundamental reason why we require at least one index.
2547 // But there's no present need to support it.
2548 assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2549
2550 Indices.append(Idxs.begin(), Idxs.end());
2551 setName(Name);
2552}
2553
2554ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2555 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0),
2556 (BasicBlock *)nullptr),
2557 Indices(EVI.Indices) {
2559}
2560
2561// getIndexedType - Returns the type of the element that would be extracted
2562// with an extractvalue instruction with the specified parameters.
2563//
2564// A null type is returned if the indices are invalid for the specified
2565// pointer type.
2566//
2568 ArrayRef<unsigned> Idxs) {
2569 for (unsigned Index : Idxs) {
2570 // We can't use CompositeType::indexValid(Index) here.
2571 // indexValid() always returns true for arrays because getelementptr allows
2572 // out-of-bounds indices. Since we don't allow those for extractvalue and
2573 // insertvalue we need to check array indexing manually.
2574 // Since the only other types we can index into are struct types it's just
2575 // as easy to check those manually as well.
2576 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2577 if (Index >= AT->getNumElements())
2578 return nullptr;
2579 Agg = AT->getElementType();
2580 } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2581 if (Index >= ST->getNumElements())
2582 return nullptr;
2583 Agg = ST->getElementType(Index);
2584 } else {
2585 // Not a valid type to index into.
2586 return nullptr;
2587 }
2588 }
2589 return Agg;
2590}
2591
2592//===----------------------------------------------------------------------===//
2593// UnaryOperator Class
2594//===----------------------------------------------------------------------===//
2595
2597 const Twine &Name, InsertPosition InsertBefore)
2598 : UnaryInstruction(Ty, iType, S, InsertBefore) {
2599 Op<0>() = S;
2600 setName(Name);
2601 AssertOK();
2602}
2603
2605 InsertPosition InsertBefore) {
2606 return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2607}
2608
2609void UnaryOperator::AssertOK() {
2610 Value *LHS = getOperand(0);
2611 (void)LHS; // Silence warnings.
2612#ifndef NDEBUG
2613 switch (getOpcode()) {
2614 case FNeg:
2615 assert(getType() == LHS->getType() &&
2616 "Unary operation should return same type as operand!");
2617 assert(getType()->isFPOrFPVectorTy() &&
2618 "Tried to create a floating-point operation on a "
2619 "non-floating-point type!");
2620 break;
2621 default: llvm_unreachable("Invalid opcode provided");
2622 }
2623#endif
2624}
2625
2626//===----------------------------------------------------------------------===//
2627// BinaryOperator Class
2628//===----------------------------------------------------------------------===//
2629
2631 const Twine &Name, InsertPosition InsertBefore)
2632 : Instruction(Ty, iType, AllocMarker, InsertBefore) {
2633 Op<0>() = S1;
2634 Op<1>() = S2;
2635 setName(Name);
2636 AssertOK();
2637}
2638
2639void BinaryOperator::AssertOK() {
2640 Value *LHS = getOperand(0), *RHS = getOperand(1);
2641 (void)LHS; (void)RHS; // Silence warnings.
2642 assert(LHS->getType() == RHS->getType() &&
2643 "Binary operator operand types must match!");
2644#ifndef NDEBUG
2645 switch (getOpcode()) {
2646 case Add: case Sub:
2647 case Mul:
2648 assert(getType() == LHS->getType() &&
2649 "Arithmetic operation should return same type as operands!");
2650 assert(getType()->isIntOrIntVectorTy() &&
2651 "Tried to create an integer operation on a non-integer type!");
2652 break;
2653 case FAdd: case FSub:
2654 case FMul:
2655 assert(getType() == LHS->getType() &&
2656 "Arithmetic operation should return same type as operands!");
2657 assert(getType()->isFPOrFPVectorTy() &&
2658 "Tried to create a floating-point operation on a "
2659 "non-floating-point type!");
2660 break;
2661 case UDiv:
2662 case SDiv:
2663 assert(getType() == LHS->getType() &&
2664 "Arithmetic operation should return same type as operands!");
2665 assert(getType()->isIntOrIntVectorTy() &&
2666 "Incorrect operand type (not integer) for S/UDIV");
2667 break;
2668 case FDiv:
2669 assert(getType() == LHS->getType() &&
2670 "Arithmetic operation should return same type as operands!");
2671 assert(getType()->isFPOrFPVectorTy() &&
2672 "Incorrect operand type (not floating point) for FDIV");
2673 break;
2674 case URem:
2675 case SRem:
2676 assert(getType() == LHS->getType() &&
2677 "Arithmetic operation should return same type as operands!");
2678 assert(getType()->isIntOrIntVectorTy() &&
2679 "Incorrect operand type (not integer) for S/UREM");
2680 break;
2681 case FRem:
2682 assert(getType() == LHS->getType() &&
2683 "Arithmetic operation should return same type as operands!");
2684 assert(getType()->isFPOrFPVectorTy() &&
2685 "Incorrect operand type (not floating point) for FREM");
2686 break;
2687 case Shl:
2688 case LShr:
2689 case AShr:
2690 assert(getType() == LHS->getType() &&
2691 "Shift operation should return same type as operands!");
2692 assert(getType()->isIntOrIntVectorTy() &&
2693 "Tried to create a shift operation on a non-integral type!");
2694 break;
2695 case And: case Or:
2696 case Xor:
2697 assert(getType() == LHS->getType() &&
2698 "Logical operation should return same type as operands!");
2699 assert(getType()->isIntOrIntVectorTy() &&
2700 "Tried to create a logical operation on a non-integral type!");
2701 break;
2702 default: llvm_unreachable("Invalid opcode provided");
2703 }
2704#endif
2705}
2706
2708 const Twine &Name,
2709 InsertPosition InsertBefore) {
2710 assert(S1->getType() == S2->getType() &&
2711 "Cannot create binary operator with two operands of differing type!");
2712 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2713}
2714
2716 InsertPosition InsertBefore) {
2717 Value *Zero = ConstantInt::get(Op->getType(), 0);
2718 return new BinaryOperator(Instruction::Sub, Zero, Op, Op->getType(), Name,
2719 InsertBefore);
2720}
2721
2723 InsertPosition InsertBefore) {
2724 Value *Zero = ConstantInt::get(Op->getType(), 0);
2725 return BinaryOperator::CreateNSWSub(Zero, Op, Name, InsertBefore);
2726}
2727
2729 InsertPosition InsertBefore) {
2730 Constant *C = Constant::getAllOnesValue(Op->getType());
2731 return new BinaryOperator(Instruction::Xor, Op, C,
2732 Op->getType(), Name, InsertBefore);
2733}
2734
2735// Exchange the two operands to this instruction. This instruction is safe to
2736// use on any binary instruction and does not modify the semantics of the
2737// instruction.
2739 if (!isCommutative())
2740 return true; // Can't commute operands
2741 Op<0>().swap(Op<1>());
2742 return false;
2743}
2744
2745//===----------------------------------------------------------------------===//
2746// FPMathOperator Class
2747//===----------------------------------------------------------------------===//
2748
2750 const MDNode *MD =
2751 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2752 if (!MD)
2753 return 0.0;
2755 return Accuracy->getValueAPF().convertToFloat();
2756}
2757
2758//===----------------------------------------------------------------------===//
2759// CastInst Class
2760//===----------------------------------------------------------------------===//
2761
2762// Just determine if this cast only deals with integral->integral conversion.
2764 switch (getOpcode()) {
2765 default: return false;
2766 case Instruction::ZExt:
2767 case Instruction::SExt:
2768 case Instruction::Trunc:
2769 return true;
2770 case Instruction::BitCast:
2771 return getOperand(0)->getType()->isIntegerTy() &&
2772 getType()->isIntegerTy();
2773 }
2774}
2775
2776/// This function determines if the CastInst does not require any bits to be
2777/// changed in order to effect the cast. Essentially, it identifies cases where
2778/// no code gen is necessary for the cast, hence the name no-op cast. For
2779/// example, the following are all no-op casts:
2780/// # bitcast i32* %x to i8*
2781/// # bitcast <2 x i32> %x to <4 x i16>
2782/// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2783/// Determine if the described cast is a no-op.
2785 Type *SrcTy,
2786 Type *DestTy,
2787 const DataLayout &DL) {
2788 assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition");
2789 switch (Opcode) {
2790 default: llvm_unreachable("Invalid CastOp");
2791 case Instruction::Trunc:
2792 case Instruction::ZExt:
2793 case Instruction::SExt:
2794 case Instruction::FPTrunc:
2795 case Instruction::FPExt:
2796 case Instruction::UIToFP:
2797 case Instruction::SIToFP:
2798 case Instruction::FPToUI:
2799 case Instruction::FPToSI:
2800 case Instruction::AddrSpaceCast:
2801 // TODO: Target informations may give a more accurate answer here.
2802 return false;
2803 case Instruction::BitCast:
2804 return true; // BitCast never modifies bits.
2805 case Instruction::PtrToAddr:
2806 case Instruction::PtrToInt:
2807 return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2808 DestTy->getScalarSizeInBits();
2809 case Instruction::IntToPtr:
2810 return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2811 SrcTy->getScalarSizeInBits();
2812 }
2813}
2814
2816 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2817}
2818
2819/// This function determines if a pair of casts can be eliminated and what
2820/// opcode should be used in the elimination. This assumes that there are two
2821/// instructions like this:
2822/// * %F = firstOpcode SrcTy %x to MidTy
2823/// * %S = secondOpcode MidTy %F to DstTy
2824/// The function returns a resultOpcode so these two casts can be replaced with:
2825/// * %Replacement = resultOpcode %SrcTy %x to DstTy
2826/// If no such cast is permitted, the function returns 0.
2829 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2830 Type *DstIntPtrTy) {
2831 // Define the 144 possibilities for these two cast instructions. The values
2832 // in this matrix determine what to do in a given situation and select the
2833 // case in the switch below. The rows correspond to firstOp, the columns
2834 // correspond to secondOp. In looking at the table below, keep in mind
2835 // the following cast properties:
2836 //
2837 // Size Compare Source Destination
2838 // Operator Src ? Size Type Sign Type Sign
2839 // -------- ------------ ------------------- ---------------------
2840 // TRUNC > Integer Any Integral Any
2841 // ZEXT < Integral Unsigned Integer Any
2842 // SEXT < Integral Signed Integer Any
2843 // FPTOUI n/a FloatPt n/a Integral Unsigned
2844 // FPTOSI n/a FloatPt n/a Integral Signed
2845 // UITOFP n/a Integral Unsigned FloatPt n/a
2846 // SITOFP n/a Integral Signed FloatPt n/a
2847 // FPTRUNC > FloatPt n/a FloatPt n/a
2848 // FPEXT < FloatPt n/a FloatPt n/a
2849 // PTRTOINT n/a Pointer n/a Integral Unsigned
2850 // PTRTOADDR n/a Pointer n/a Integral Unsigned
2851 // INTTOPTR n/a Integral Unsigned Pointer n/a
2852 // BITCAST = FirstClass n/a FirstClass n/a
2853 // ADDRSPCST n/a Pointer n/a Pointer n/a
2854 //
2855 // NOTE: some transforms are safe, but we consider them to be non-profitable.
2856 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2857 // into "fptoui double to i64", but this loses information about the range
2858 // of the produced value (we no longer know the top-part is all zeros).
2859 // Further this conversion is often much more expensive for typical hardware,
2860 // and causes issues when building libgcc. We disallow fptosi+sext for the
2861 // same reason.
2862 const unsigned numCastOps =
2863 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2864 // clang-format off
2865 static const uint8_t CastResults[numCastOps][numCastOps] = {
2866 // T F F U S F F P P I B A -+
2867 // R Z S P P I I T P 2 2 N T S |
2868 // U E E 2 2 2 2 R E I A T C C +- secondOp
2869 // N X X U S F F N X N D 2 V V |
2870 // C T T I I P P C T T R P T T -+
2871 { 1, 0, 0,99,99, 0, 0,99,99,99,99, 0, 3, 0}, // Trunc -+
2872 { 8, 1, 9,99,99, 2,17,99,99,99,99, 2, 3, 0}, // ZExt |
2873 { 8, 0, 1,99,99, 0, 2,99,99,99,99, 0, 3, 0}, // SExt |
2874 { 0, 0, 0,99,99, 0, 0,99,99,99,99, 0, 3, 0}, // FPToUI |
2875 { 0, 0, 0,99,99, 0, 0,99,99,99,99, 0, 3, 0}, // FPToSI |
2876 { 99,99,99, 0, 0,99,99, 0, 0,99,99,99, 4, 0}, // UIToFP +- firstOp
2877 { 99,99,99, 0, 0,99,99, 0, 0,99,99,99, 4, 0}, // SIToFP |
2878 { 99,99,99, 0, 0,99,99, 0, 0,99,99,99, 4, 0}, // FPTrunc |
2879 { 99,99,99, 2, 2,99,99, 8, 2,99,99,99, 4, 0}, // FPExt |
2880 { 1, 0, 0,99,99, 0, 0,99,99,99,99, 7, 3, 0}, // PtrToInt |
2881 { 1, 0, 0,99,99, 0, 0,99,99,99,99, 0, 3, 0}, // PtrToAddr |
2882 { 99,99,99,99,99,99,99,99,99,11,11,99,15, 0}, // IntToPtr |
2883 { 5, 5, 5, 0, 0, 5, 5, 0, 0,16,16, 5, 1,14}, // BitCast |
2884 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2885 };
2886 // clang-format on
2887
2888 // TODO: This logic could be encoded into the table above and handled in the
2889 // switch below.
2890 // If either of the casts are a bitcast from scalar to vector, disallow the
2891 // merging. However, any pair of bitcasts are allowed.
2892 bool IsFirstBitcast = (firstOp == Instruction::BitCast);
2893 bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2894 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2895
2896 // Check if any of the casts convert scalars <-> vectors.
2897 if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2898 (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2899 if (!AreBothBitcasts)
2900 return 0;
2901
2902 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2903 [secondOp-Instruction::CastOpsBegin];
2904 switch (ElimCase) {
2905 case 0:
2906 // Categorically disallowed.
2907 return 0;
2908 case 1:
2909 // Allowed, use first cast's opcode.
2910 return firstOp;
2911 case 2:
2912 // Allowed, use second cast's opcode.
2913 return secondOp;
2914 case 3:
2915 // No-op cast in second op implies firstOp as long as the DestTy
2916 // is integer and we are not converting between a vector and a
2917 // non-vector type.
2918 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2919 return firstOp;
2920 return 0;
2921 case 4:
2922 // No-op cast in second op implies firstOp as long as the DestTy
2923 // matches MidTy.
2924 if (DstTy == MidTy)
2925 return firstOp;
2926 return 0;
2927 case 5:
2928 // No-op cast in first op implies secondOp as long as the SrcTy
2929 // is an integer.
2930 if (SrcTy->isIntegerTy())
2931 return secondOp;
2932 return 0;
2933 case 7: {
2934 // Disable inttoptr/ptrtoint optimization if enabled.
2935 if (DisableI2pP2iOpt)
2936 return 0;
2937
2938 // Cannot simplify if address spaces are different!
2939 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2940 return 0;
2941
2942 unsigned MidSize = MidTy->getScalarSizeInBits();
2943 // We can still fold this without knowing the actual sizes as long we
2944 // know that the intermediate pointer is the largest possible
2945 // pointer size.
2946 // FIXME: Is this always true?
2947 if (MidSize == 64)
2948 return Instruction::BitCast;
2949
2950 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2951 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2952 return 0;
2953 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2954 if (MidSize >= PtrSize)
2955 return Instruction::BitCast;
2956 return 0;
2957 }
2958 case 8: {
2959 // ext, trunc -> bitcast, if the SrcTy and DstTy are the same
2960 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2961 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2962 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2963 unsigned DstSize = DstTy->getScalarSizeInBits();
2964 if (SrcTy == DstTy)
2965 return Instruction::BitCast;
2966 if (SrcSize < DstSize)
2967 return firstOp;
2968 if (SrcSize > DstSize)
2969 return secondOp;
2970 return 0;
2971 }
2972 case 9:
2973 // zext, sext -> zext, because sext can't sign extend after zext
2974 return Instruction::ZExt;
2975 case 11: {
2976 // inttoptr, ptrtoint/ptrtoaddr -> bitcast if SrcSize<=PtrSize and
2977 // SrcSize==DstSize
2978 if (!MidIntPtrTy)
2979 return 0;
2980 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2981 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2982 unsigned DstSize = DstTy->getScalarSizeInBits();
2983 if (SrcSize <= PtrSize && SrcSize == DstSize)
2984 return Instruction::BitCast;
2985 return 0;
2986 }
2987 case 12:
2988 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS
2989 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2990 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2991 return Instruction::AddrSpaceCast;
2992 return Instruction::BitCast;
2993 case 13:
2994 // FIXME: this state can be merged with (1), but the following assert
2995 // is useful to check the correcteness of the sequence due to semantic
2996 // change of bitcast.
2997 assert(
2998 SrcTy->isPtrOrPtrVectorTy() &&
2999 MidTy->isPtrOrPtrVectorTy() &&
3000 DstTy->isPtrOrPtrVectorTy() &&
3001 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
3002 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
3003 "Illegal addrspacecast, bitcast sequence!");
3004 // Allowed, use first cast's opcode
3005 return firstOp;
3006 case 14:
3007 // bitcast, addrspacecast -> addrspacecast
3008 return Instruction::AddrSpaceCast;
3009 case 15:
3010 // FIXME: this state can be merged with (1), but the following assert
3011 // is useful to check the correcteness of the sequence due to semantic
3012 // change of bitcast.
3013 assert(
3014 SrcTy->isIntOrIntVectorTy() &&
3015 MidTy->isPtrOrPtrVectorTy() &&
3016 DstTy->isPtrOrPtrVectorTy() &&
3017 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
3018 "Illegal inttoptr, bitcast sequence!");
3019 // Allowed, use first cast's opcode
3020 return firstOp;
3021 case 16:
3022 // FIXME: this state can be merged with (2), but the following assert
3023 // is useful to check the correcteness of the sequence due to semantic
3024 // change of bitcast.
3025 assert(
3026 SrcTy->isPtrOrPtrVectorTy() &&
3027 MidTy->isPtrOrPtrVectorTy() &&
3028 DstTy->isIntOrIntVectorTy() &&
3029 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
3030 "Illegal bitcast, ptrtoint sequence!");
3031 // Allowed, use second cast's opcode
3032 return secondOp;
3033 case 17:
3034 // (sitofp (zext x)) -> (uitofp x)
3035 return Instruction::UIToFP;
3036 case 99:
3037 // Cast combination can't happen (error in input). This is for all cases
3038 // where the MidTy is not the same for the two cast instructions.
3039 llvm_unreachable("Invalid Cast Combination");
3040 default:
3041 llvm_unreachable("Error in CastResults table!!!");
3042 }
3043}
3044
3046 const Twine &Name, InsertPosition InsertBefore) {
3047 assert(castIsValid(op, S, Ty) && "Invalid cast!");
3048 // Construct and return the appropriate CastInst subclass
3049 switch (op) {
3050 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
3051 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
3052 case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
3053 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
3054 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
3055 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
3056 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
3057 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
3058 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
3059 case PtrToAddr: return new PtrToAddrInst (S, Ty, Name, InsertBefore);
3060 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
3061 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
3062 case BitCast:
3063 return new BitCastInst(S, Ty, Name, InsertBefore);
3064 case AddrSpaceCast:
3065 return new AddrSpaceCastInst(S, Ty, Name, InsertBefore);
3066 default:
3067 llvm_unreachable("Invalid opcode provided");
3068 }
3069}
3070
3072 InsertPosition InsertBefore) {
3073 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3074 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3075 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
3076}
3077
3079 InsertPosition InsertBefore) {
3080 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3081 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3082 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
3083}
3084
3086 InsertPosition InsertBefore) {
3087 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3088 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3089 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
3090}
3091
3092/// Create a BitCast or a PtrToInt cast instruction
3094 InsertPosition InsertBefore) {
3095 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3096 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3097 "Invalid cast");
3098 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3099 assert((!Ty->isVectorTy() ||
3100 cast<VectorType>(Ty)->getElementCount() ==
3101 cast<VectorType>(S->getType())->getElementCount()) &&
3102 "Invalid cast");
3103
3104 if (Ty->isIntOrIntVectorTy())
3105 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3106
3107 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
3108}
3109
3111 Value *S, Type *Ty, const Twine &Name, InsertPosition InsertBefore) {
3112 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3113 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3114
3115 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3116 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
3117
3118 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3119}
3120
3122 const Twine &Name,
3123 InsertPosition InsertBefore) {
3124 if (S->getType()->isPointerTy() && Ty->isIntegerTy())
3125 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3126 if (S->getType()->isIntegerTy() && Ty->isPointerTy())
3127 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
3128
3129 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3130}
3131
3133 const Twine &Name,
3134 InsertPosition InsertBefore) {
3135 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3136 "Invalid integer cast");
3137 unsigned SrcBits = C->getType()->getScalarSizeInBits();
3138 unsigned DstBits = Ty->getScalarSizeInBits();
3139 Instruction::CastOps opcode =
3140 (SrcBits == DstBits ? Instruction::BitCast :
3141 (SrcBits > DstBits ? Instruction::Trunc :
3142 (isSigned ? Instruction::SExt : Instruction::ZExt)));
3143 return Create(opcode, C, Ty, Name, InsertBefore);
3144}
3145
3147 InsertPosition InsertBefore) {
3148 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3149 "Invalid cast");
3150 unsigned SrcBits = C->getType()->getScalarSizeInBits();
3151 unsigned DstBits = Ty->getScalarSizeInBits();
3152 assert((C->getType() == Ty || SrcBits != DstBits) && "Invalid cast");
3153 Instruction::CastOps opcode =
3154 (SrcBits == DstBits ? Instruction::BitCast :
3155 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3156 return Create(opcode, C, Ty, Name, InsertBefore);
3157}
3158
3159bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3160 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3161 return false;
3162
3163 if (SrcTy == DestTy)
3164 return true;
3165
3166 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3167 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3168 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3169 // An element by element cast. Valid if casting the elements is valid.
3170 SrcTy = SrcVecTy->getElementType();
3171 DestTy = DestVecTy->getElementType();
3172 }
3173 }
3174 }
3175
3176 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3177 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3178 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3179 }
3180 }
3181
3182 TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
3183 TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3184
3185 // Could still have vectors of pointers if the number of elements doesn't
3186 // match
3187 if (SrcBits.getKnownMinValue() == 0 || DestBits.getKnownMinValue() == 0)
3188 return false;
3189
3190 if (SrcBits != DestBits)
3191 return false;
3192
3193 return true;
3194}
3195
3197 const DataLayout &DL) {
3198 // ptrtoint and inttoptr are not allowed on non-integral pointers
3199 if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3200 if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3201 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3202 !DL.isNonIntegralPointerType(PtrTy));
3203 if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3204 if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3205 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3206 !DL.isNonIntegralPointerType(PtrTy));
3207
3208 return isBitCastable(SrcTy, DestTy);
3209}
3210
3211// Provide a way to get a "cast" where the cast opcode is inferred from the
3212// types and size of the operand. This, basically, is a parallel of the
3213// logic in the castIsValid function below. This axiom should hold:
3214// castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3215// should not assert in castIsValid. In other words, this produces a "correct"
3216// casting opcode for the arguments passed to it.
3219 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3220 Type *SrcTy = Src->getType();
3221
3222 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3223 "Only first class types are castable!");
3224
3225 if (SrcTy == DestTy)
3226 return BitCast;
3227
3228 // FIXME: Check address space sizes here
3229 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3230 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3231 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3232 // An element by element cast. Find the appropriate opcode based on the
3233 // element types.
3234 SrcTy = SrcVecTy->getElementType();
3235 DestTy = DestVecTy->getElementType();
3236 }
3237
3238 // Get the bit sizes, we'll need these
3239 // FIXME: This doesn't work for scalable vector types with different element
3240 // counts that don't call getElementType above.
3241 unsigned SrcBits =
3242 SrcTy->getPrimitiveSizeInBits().getFixedValue(); // 0 for ptr
3243 unsigned DestBits =
3244 DestTy->getPrimitiveSizeInBits().getFixedValue(); // 0 for ptr
3245
3246 // Run through the possibilities ...
3247 if (DestTy->isIntegerTy()) { // Casting to integral
3248 if (SrcTy->isIntegerTy()) { // Casting from integral
3249 if (DestBits < SrcBits)
3250 return Trunc; // int -> smaller int
3251 else if (DestBits > SrcBits) { // its an extension
3252 if (SrcIsSigned)
3253 return SExt; // signed -> SEXT
3254 else
3255 return ZExt; // unsigned -> ZEXT
3256 } else {
3257 return BitCast; // Same size, No-op cast
3258 }
3259 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
3260 if (DestIsSigned)
3261 return FPToSI; // FP -> sint
3262 else
3263 return FPToUI; // FP -> uint
3264 } else if (SrcTy->isVectorTy()) {
3265 assert(DestBits == SrcBits &&
3266 "Casting vector to integer of different width");
3267 return BitCast; // Same size, no-op cast
3268 } else {
3269 assert(SrcTy->isPointerTy() &&
3270 "Casting from a value that is not first-class type");
3271 return PtrToInt; // ptr -> int
3272 }
3273 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
3274 if (SrcTy->isIntegerTy()) { // Casting from integral
3275 if (SrcIsSigned)
3276 return SIToFP; // sint -> FP
3277 else
3278 return UIToFP; // uint -> FP
3279 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
3280 if (DestBits < SrcBits) {
3281 return FPTrunc; // FP -> smaller FP
3282 } else if (DestBits > SrcBits) {
3283 return FPExt; // FP -> larger FP
3284 } else {
3285 return BitCast; // same size, no-op cast
3286 }
3287 } else if (SrcTy->isVectorTy()) {
3288 assert(DestBits == SrcBits &&
3289 "Casting vector to floating point of different width");
3290 return BitCast; // same size, no-op cast
3291 }
3292 llvm_unreachable("Casting pointer or non-first class to float");
3293 } else if (DestTy->isVectorTy()) {
3294 assert(DestBits == SrcBits &&
3295 "Illegal cast to vector (wrong type or size)");
3296 return BitCast;
3297 } else if (DestTy->isPointerTy()) {
3298 if (SrcTy->isPointerTy()) {
3299 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3300 return AddrSpaceCast;
3301 return BitCast; // ptr -> ptr
3302 } else if (SrcTy->isIntegerTy()) {
3303 return IntToPtr; // int -> ptr
3304 }
3305 llvm_unreachable("Casting pointer to other than pointer or int");
3306 }
3307 llvm_unreachable("Casting to type that is not first-class");
3308}
3309
3310//===----------------------------------------------------------------------===//
3311// CastInst SubClass Constructors
3312//===----------------------------------------------------------------------===//
3313
3314/// Check that the construction parameters for a CastInst are correct. This
3315/// could be broken out into the separate constructors but it is useful to have
3316/// it in one place and to eliminate the redundant code for getting the sizes
3317/// of the types involved.
3318bool
3320 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3321 SrcTy->isAggregateType() || DstTy->isAggregateType())
3322 return false;
3323
3324 // Get the size of the types in bits, and whether we are dealing
3325 // with vector types, we'll need this later.
3326 bool SrcIsVec = isa<VectorType>(SrcTy);
3327 bool DstIsVec = isa<VectorType>(DstTy);
3328 unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits();
3329 unsigned DstScalarBitSize = DstTy->getScalarSizeInBits();
3330
3331 // If these are vector types, get the lengths of the vectors (using zero for
3332 // scalar types means that checking that vector lengths match also checks that
3333 // scalars are not being converted to vectors or vectors to scalars).
3334 ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount()
3336 ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount()
3338
3339 // Switch on the opcode provided
3340 switch (op) {
3341 default: return false; // This is an input error
3342 case Instruction::Trunc:
3343 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3344 SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3345 case Instruction::ZExt:
3346 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3347 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3348 case Instruction::SExt:
3349 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3350 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3351 case Instruction::FPTrunc:
3352 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3353 SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3354 case Instruction::FPExt:
3355 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3356 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3357 case Instruction::UIToFP:
3358 case Instruction::SIToFP:
3359 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3360 SrcEC == DstEC;
3361 case Instruction::FPToUI:
3362 case Instruction::FPToSI:
3363 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3364 SrcEC == DstEC;
3365 case Instruction::PtrToAddr:
3366 case Instruction::PtrToInt:
3367 if (SrcEC != DstEC)
3368 return false;
3369 return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3370 case Instruction::IntToPtr:
3371 if (SrcEC != DstEC)
3372 return false;
3373 return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3374 case Instruction::BitCast: {
3375 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3376 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3377
3378 // BitCast implies a no-op cast of type only. No bits change.
3379 // However, you can't cast pointers to anything but pointers.
3380 if (!SrcPtrTy != !DstPtrTy)
3381 return false;
3382
3383 // For non-pointer cases, the cast is okay if the source and destination bit
3384 // widths are identical.
3385 if (!SrcPtrTy)
3386 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3387
3388 // If both are pointers then the address spaces must match.
3389 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3390 return false;
3391
3392 // A vector of pointers must have the same number of elements.
3393 if (SrcIsVec && DstIsVec)
3394 return SrcEC == DstEC;
3395 if (SrcIsVec)
3396 return SrcEC == ElementCount::getFixed(1);
3397 if (DstIsVec)
3398 return DstEC == ElementCount::getFixed(1);
3399
3400 return true;
3401 }
3402 case Instruction::AddrSpaceCast: {
3403 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3404 if (!SrcPtrTy)
3405 return false;
3406
3407 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3408 if (!DstPtrTy)
3409 return false;
3410
3411 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3412 return false;
3413
3414 return SrcEC == DstEC;
3415 }
3416 }
3417}
3418
3420 InsertPosition InsertBefore)
3421 : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3422 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3423}
3424
3425ZExtInst::ZExtInst(Value *S, Type *Ty, const Twine &Name,
3426 InsertPosition InsertBefore)
3427 : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3428 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3429}
3430
3431SExtInst::SExtInst(Value *S, Type *Ty, const Twine &Name,
3432 InsertPosition InsertBefore)
3433 : CastInst(Ty, SExt, S, Name, InsertBefore) {
3434 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3435}
3436
3438 InsertPosition InsertBefore)
3439 : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3440 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3441}
3442
3444 InsertPosition InsertBefore)
3445 : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3446 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3447}
3448
3450 InsertPosition InsertBefore)
3451 : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3452 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3453}
3454
3456 InsertPosition InsertBefore)
3457 : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3458 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3459}
3460
3462 InsertPosition InsertBefore)
3463 : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3464 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3465}
3466
3468 InsertPosition InsertBefore)
3469 : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3470 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3471}
3472
3474 InsertPosition InsertBefore)
3475 : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3476 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3477}
3478
3480 InsertPosition InsertBefore)
3481 : CastInst(Ty, PtrToAddr, S, Name, InsertBefore) {
3482 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToAddr");
3483}
3484
3486 InsertPosition InsertBefore)
3487 : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3488 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3489}
3490
3492 InsertPosition InsertBefore)
3493 : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3494 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3495}
3496
3498 InsertPosition InsertBefore)
3499 : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3500 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3501}
3502
3503//===----------------------------------------------------------------------===//
3504// CmpInst Classes
3505//===----------------------------------------------------------------------===//
3506
3508 Value *RHS, const Twine &Name, InsertPosition InsertBefore,
3509 Instruction *FlagsSource)
3510 : Instruction(ty, op, AllocMarker, InsertBefore) {
3511 Op<0>() = LHS;
3512 Op<1>() = RHS;
3513 setPredicate(predicate);
3514 setName(Name);
3515 if (FlagsSource)
3516 copyIRFlags(FlagsSource);
3517}
3518
3520 const Twine &Name, InsertPosition InsertBefore) {
3521 if (Op == Instruction::ICmp) {
3522 if (InsertBefore.isValid())
3523 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3524 S1, S2, Name);
3525 else
3526 return new ICmpInst(CmpInst::Predicate(predicate),
3527 S1, S2, Name);
3528 }
3529
3530 if (InsertBefore.isValid())
3531 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3532 S1, S2, Name);
3533 else
3534 return new FCmpInst(CmpInst::Predicate(predicate),
3535 S1, S2, Name);
3536}
3537
3539 Value *S2,
3540 const Instruction *FlagsSource,
3541 const Twine &Name,
3542 InsertPosition InsertBefore) {
3543 CmpInst *Inst = Create(Op, Pred, S1, S2, Name, InsertBefore);
3544 Inst->copyIRFlags(FlagsSource);
3545 return Inst;
3546}
3547
3549 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3550 IC->swapOperands();
3551 else
3552 cast<FCmpInst>(this)->swapOperands();
3553}
3554
3556 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3557 return IC->isCommutative();
3558 return cast<FCmpInst>(this)->isCommutative();
3559}
3560
3563 return ICmpInst::isEquality(P);
3565 return FCmpInst::isEquality(P);
3566 llvm_unreachable("Unsupported predicate kind");
3567}
3568
3569// Returns true if either operand of CmpInst is a provably non-zero
3570// floating-point constant.
3571static bool hasNonZeroFPOperands(const CmpInst *Cmp) {
3572 auto *LHS = dyn_cast<Constant>(Cmp->getOperand(0));
3573 auto *RHS = dyn_cast<Constant>(Cmp->getOperand(1));
3574 if (auto *Const = LHS ? LHS : RHS) {
3575 using namespace llvm::PatternMatch;
3576 return match(Const, m_NonZeroNotDenormalFP());
3577 }
3578 return false;
3579}
3580
3581// Floating-point equality is not an equivalence when comparing +0.0 with
3582// -0.0, when comparing NaN with another value, or when flushing
3583// denormals-to-zero.
3584bool CmpInst::isEquivalence(bool Invert) const {
3585 switch (Invert ? getInversePredicate() : getPredicate()) {
3587 return true;
3589 if (!hasNoNaNs())
3590 return false;
3591 [[fallthrough]];
3593 return hasNonZeroFPOperands(this);
3594 default:
3595 return false;
3596 }
3597}
3598
3600 switch (pred) {
3601 default: llvm_unreachable("Unknown cmp predicate!");
3602 case ICMP_EQ: return ICMP_NE;
3603 case ICMP_NE: return ICMP_EQ;
3604 case ICMP_UGT: return ICMP_ULE;
3605 case ICMP_ULT: return ICMP_UGE;
3606 case ICMP_UGE: return ICMP_ULT;
3607 case ICMP_ULE: return ICMP_UGT;
3608 case ICMP_SGT: return ICMP_SLE;
3609 case ICMP_SLT: return ICMP_SGE;
3610 case ICMP_SGE: return ICMP_SLT;
3611 case ICMP_SLE: return ICMP_SGT;
3612
3613 case FCMP_OEQ: return FCMP_UNE;
3614 case FCMP_ONE: return FCMP_UEQ;
3615 case FCMP_OGT: return FCMP_ULE;
3616 case FCMP_OLT: return FCMP_UGE;
3617 case FCMP_OGE: return FCMP_ULT;
3618 case FCMP_OLE: return FCMP_UGT;
3619 case FCMP_UEQ: return FCMP_ONE;
3620 case FCMP_UNE: return FCMP_OEQ;
3621 case FCMP_UGT: return FCMP_OLE;
3622 case FCMP_ULT: return FCMP_OGE;
3623 case FCMP_UGE: return FCMP_OLT;
3624 case FCMP_ULE: return FCMP_OGT;
3625 case FCMP_ORD: return FCMP_UNO;
3626 case FCMP_UNO: return FCMP_ORD;
3627 case FCMP_TRUE: return FCMP_FALSE;
3628 case FCMP_FALSE: return FCMP_TRUE;
3629 }
3630}
3631
3633 switch (Pred) {
3634 default: return "unknown";
3635 case FCmpInst::FCMP_FALSE: return "false";
3636 case FCmpInst::FCMP_OEQ: return "oeq";
3637 case FCmpInst::FCMP_OGT: return "ogt";
3638 case FCmpInst::FCMP_OGE: return "oge";
3639 case FCmpInst::FCMP_OLT: return "olt";
3640 case FCmpInst::FCMP_OLE: return "ole";
3641 case FCmpInst::FCMP_ONE: return "one";
3642 case FCmpInst::FCMP_ORD: return "ord";
3643 case FCmpInst::FCMP_UNO: return "uno";
3644 case FCmpInst::FCMP_UEQ: return "ueq";
3645 case FCmpInst::FCMP_UGT: return "ugt";
3646 case FCmpInst::FCMP_UGE: return "uge";
3647 case FCmpInst::FCMP_ULT: return "ult";
3648 case FCmpInst::FCMP_ULE: return "ule";
3649 case FCmpInst::FCMP_UNE: return "une";
3650 case FCmpInst::FCMP_TRUE: return "true";
3651 case ICmpInst::ICMP_EQ: return "eq";
3652 case ICmpInst::ICMP_NE: return "ne";
3653 case ICmpInst::ICMP_SGT: return "sgt";
3654 case ICmpInst::ICMP_SGE: return "sge";
3655 case ICmpInst::ICMP_SLT: return "slt";
3656 case ICmpInst::ICMP_SLE: return "sle";
3657 case ICmpInst::ICMP_UGT: return "ugt";
3658 case ICmpInst::ICMP_UGE: return "uge";
3659 case ICmpInst::ICMP_ULT: return "ult";
3660 case ICmpInst::ICMP_ULE: return "ule";
3661 }
3662}
3663
3665 OS << CmpInst::getPredicateName(Pred);
3666 return OS;
3667}
3668
3670 switch (pred) {
3671 default: llvm_unreachable("Unknown icmp predicate!");
3672 case ICMP_EQ: case ICMP_NE:
3673 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3674 return pred;
3675 case ICMP_UGT: return ICMP_SGT;
3676 case ICMP_ULT: return ICMP_SLT;
3677 case ICMP_UGE: return ICMP_SGE;
3678 case ICMP_ULE: return ICMP_SLE;
3679 }
3680}
3681
3683 switch (pred) {
3684 default: llvm_unreachable("Unknown icmp predicate!");
3685 case ICMP_EQ: case ICMP_NE:
3686 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3687 return pred;
3688 case ICMP_SGT: return ICMP_UGT;
3689 case ICMP_SLT: return ICMP_ULT;
3690 case ICMP_SGE: return ICMP_UGE;
3691 case ICMP_SLE: return ICMP_ULE;
3692 }
3693}
3694
3696 switch (pred) {
3697 default: llvm_unreachable("Unknown cmp predicate!");
3698 case ICMP_EQ: case ICMP_NE:
3699 return pred;
3700 case ICMP_SGT: return ICMP_SLT;
3701 case ICMP_SLT: return ICMP_SGT;
3702 case ICMP_SGE: return ICMP_SLE;
3703 case ICMP_SLE: return ICMP_SGE;
3704 case ICMP_UGT: return ICMP_ULT;
3705 case ICMP_ULT: return ICMP_UGT;
3706 case ICMP_UGE: return ICMP_ULE;
3707 case ICMP_ULE: return ICMP_UGE;
3708
3709 case FCMP_FALSE: case FCMP_TRUE:
3710 case FCMP_OEQ: case FCMP_ONE:
3711 case FCMP_UEQ: case FCMP_UNE:
3712 case FCMP_ORD: case FCMP_UNO:
3713 return pred;
3714 case FCMP_OGT: return FCMP_OLT;
3715 case FCMP_OLT: return FCMP_OGT;
3716 case FCMP_OGE: return FCMP_OLE;
3717 case FCMP_OLE: return FCMP_OGE;
3718 case FCMP_UGT: return FCMP_ULT;
3719 case FCMP_ULT: return FCMP_UGT;
3720 case FCMP_UGE: return FCMP_ULE;
3721 case FCMP_ULE: return FCMP_UGE;
3722 }
3723}
3724
3726 switch (pred) {
3727 case ICMP_SGE:
3728 case ICMP_SLE:
3729 case ICMP_UGE:
3730 case ICMP_ULE:
3731 case FCMP_OGE:
3732 case FCMP_OLE:
3733 case FCMP_UGE:
3734 case FCMP_ULE:
3735 return true;
3736 default:
3737 return false;
3738 }
3739}
3740
3742 switch (pred) {
3743 case ICMP_SGT:
3744 case ICMP_SLT:
3745 case ICMP_UGT:
3746 case ICMP_ULT:
3747 case FCMP_OGT:
3748 case FCMP_OLT:
3749 case FCMP_UGT:
3750 case FCMP_ULT:
3751 return true;
3752 default:
3753 return false;
3754 }
3755}
3756
3758 switch (pred) {
3759 case ICMP_SGE:
3760 return ICMP_SGT;
3761 case ICMP_SLE:
3762 return ICMP_SLT;
3763 case ICMP_UGE:
3764 return ICMP_UGT;
3765 case ICMP_ULE:
3766 return ICMP_ULT;
3767 case FCMP_OGE:
3768 return FCMP_OGT;
3769 case FCMP_OLE:
3770 return FCMP_OLT;
3771 case FCMP_UGE:
3772 return FCMP_UGT;
3773 case FCMP_ULE:
3774 return FCMP_ULT;
3775 default:
3776 return pred;
3777 }
3778}
3779
3781 switch (pred) {
3782 case ICMP_SGT:
3783 return ICMP_SGE;
3784 case ICMP_SLT:
3785 return ICMP_SLE;
3786 case ICMP_UGT:
3787 return ICMP_UGE;
3788 case ICMP_ULT:
3789 return ICMP_ULE;
3790 case FCMP_OGT:
3791 return FCMP_OGE;
3792 case FCMP_OLT:
3793 return FCMP_OLE;
3794 case FCMP_UGT:
3795 return FCMP_UGE;
3796 case FCMP_ULT:
3797 return FCMP_ULE;
3798 default:
3799 return pred;
3800 }
3801}
3802
3804 assert(CmpInst::isRelational(pred) && "Call only with relational predicate!");
3805
3806 if (isStrictPredicate(pred))
3807 return getNonStrictPredicate(pred);
3808 if (isNonStrictPredicate(pred))
3809 return getStrictPredicate(pred);
3810
3811 llvm_unreachable("Unknown predicate!");
3812}
3813
3815 switch (predicate) {
3816 default: return false;
3818 case ICmpInst::ICMP_UGE: return true;
3819 }
3820}
3821
3823 switch (predicate) {
3824 default: return false;
3826 case ICmpInst::ICMP_SGE: return true;
3827 }
3828}
3829
3830bool ICmpInst::compare(const APInt &LHS, const APInt &RHS,
3831 ICmpInst::Predicate Pred) {
3832 assert(ICmpInst::isIntPredicate(Pred) && "Only for integer predicates!");
3833 switch (Pred) {
3835 return LHS.eq(RHS);
3837 return LHS.ne(RHS);
3839 return LHS.ugt(RHS);
3841 return LHS.uge(RHS);
3843 return LHS.ult(RHS);
3845 return LHS.ule(RHS);
3847 return LHS.sgt(RHS);
3849 return LHS.sge(RHS);
3851 return LHS.slt(RHS);
3853 return LHS.sle(RHS);
3854 default:
3855 llvm_unreachable("Unexpected non-integer predicate.");
3856 };
3857}
3858
3859bool FCmpInst::compare(const APFloat &LHS, const APFloat &RHS,
3860 FCmpInst::Predicate Pred) {
3861 APFloat::cmpResult R = LHS.compare(RHS);
3862 switch (Pred) {
3863 default:
3864 llvm_unreachable("Invalid FCmp Predicate");
3866 return false;
3868 return true;
3869 case FCmpInst::FCMP_UNO:
3870 return R == APFloat::cmpUnordered;
3871 case FCmpInst::FCMP_ORD:
3872 return R != APFloat::cmpUnordered;
3873 case FCmpInst::FCMP_UEQ:
3874 return R == APFloat::cmpUnordered || R == APFloat::cmpEqual;
3875 case FCmpInst::FCMP_OEQ:
3876 return R == APFloat::cmpEqual;
3877 case FCmpInst::FCMP_UNE:
3878 return R != APFloat::cmpEqual;
3879 case FCmpInst::FCMP_ONE:
3881 case FCmpInst::FCMP_ULT:
3882 return R == APFloat::cmpUnordered || R == APFloat::cmpLessThan;
3883 case FCmpInst::FCMP_OLT:
3884 return R == APFloat::cmpLessThan;
3885 case FCmpInst::FCMP_UGT:
3887 case FCmpInst::FCMP_OGT:
3888 return R == APFloat::cmpGreaterThan;
3889 case FCmpInst::FCMP_ULE:
3890 return R != APFloat::cmpGreaterThan;
3891 case FCmpInst::FCMP_OLE:
3892 return R == APFloat::cmpLessThan || R == APFloat::cmpEqual;
3893 case FCmpInst::FCMP_UGE:
3894 return R != APFloat::cmpLessThan;
3895 case FCmpInst::FCMP_OGE:
3896 return R == APFloat::cmpGreaterThan || R == APFloat::cmpEqual;
3897 }
3898}
3899
3900std::optional<bool> ICmpInst::compare(const KnownBits &LHS,
3901 const KnownBits &RHS,
3902 ICmpInst::Predicate Pred) {
3903 switch (Pred) {
3904 case ICmpInst::ICMP_EQ:
3905 return KnownBits::eq(LHS, RHS);
3906 case ICmpInst::ICMP_NE:
3907 return KnownBits::ne(LHS, RHS);
3908 case ICmpInst::ICMP_UGE:
3909 return KnownBits::uge(LHS, RHS);
3910 case ICmpInst::ICMP_UGT:
3911 return KnownBits::ugt(LHS, RHS);
3912 case ICmpInst::ICMP_ULE:
3913 return KnownBits::ule(LHS, RHS);
3914 case ICmpInst::ICMP_ULT:
3915 return KnownBits::ult(LHS, RHS);
3916 case ICmpInst::ICMP_SGE:
3917 return KnownBits::sge(LHS, RHS);
3918 case ICmpInst::ICMP_SGT:
3919 return KnownBits::sgt(LHS, RHS);
3920 case ICmpInst::ICMP_SLE:
3921 return KnownBits::sle(LHS, RHS);
3922 case ICmpInst::ICMP_SLT:
3923 return KnownBits::slt(LHS, RHS);
3924 default:
3925 llvm_unreachable("Unexpected non-integer predicate.");
3926 }
3927}
3928
3930 if (CmpInst::isEquality(pred))
3931 return pred;
3932 if (isSigned(pred))
3933 return getUnsignedPredicate(pred);
3934 if (isUnsigned(pred))
3935 return getSignedPredicate(pred);
3936
3937 llvm_unreachable("Unknown predicate!");
3938}
3939
3941 switch (predicate) {
3942 default: return false;
3945 case FCmpInst::FCMP_ORD: return true;
3946 }
3947}
3948
3950 switch (predicate) {
3951 default: return false;
3954 case FCmpInst::FCMP_UNO: return true;
3955 }
3956}
3957
3959 switch(predicate) {
3960 default: return false;
3961 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3962 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3963 }
3964}
3965
3967 switch(predicate) {
3968 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3969 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3970 default: return false;
3971 }
3972}
3973
3975 // If the predicates match, then we know the first condition implies the
3976 // second is true.
3977 if (CmpPredicate::getMatching(Pred1, Pred2))
3978 return true;
3979
3980 if (Pred1.hasSameSign() && CmpInst::isSigned(Pred2))
3982 else if (Pred2.hasSameSign() && CmpInst::isSigned(Pred1))
3984
3985 switch (Pred1) {
3986 default:
3987 break;
3988 case CmpInst::ICMP_EQ:
3989 // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3990 return Pred2 == CmpInst::ICMP_UGE || Pred2 == CmpInst::ICMP_ULE ||
3991 Pred2 == CmpInst::ICMP_SGE || Pred2 == CmpInst::ICMP_SLE;
3992 case CmpInst::ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3993 return Pred2 == CmpInst::ICMP_NE || Pred2 == CmpInst::ICMP_UGE;
3994 case CmpInst::ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3995 return Pred2 == CmpInst::ICMP_NE || Pred2 == CmpInst::ICMP_ULE;
3996 case CmpInst::ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3997 return Pred2 == CmpInst::ICMP_NE || Pred2 == CmpInst::ICMP_SGE;
3998 case CmpInst::ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3999 return Pred2 == CmpInst::ICMP_NE || Pred2 == CmpInst::ICMP_SLE;
4000 }
4001 return false;
4002}
4003
4005 CmpPredicate Pred2) {
4006 return isImpliedTrueByMatchingCmp(Pred1,
4008}
4009
4011 CmpPredicate Pred2) {
4012 if (isImpliedTrueByMatchingCmp(Pred1, Pred2))
4013 return true;
4014 if (isImpliedFalseByMatchingCmp(Pred1, Pred2))
4015 return false;
4016 return std::nullopt;
4017}
4018
4019//===----------------------------------------------------------------------===//
4020// CmpPredicate Implementation
4021//===----------------------------------------------------------------------===//
4022
4023std::optional<CmpPredicate> CmpPredicate::getMatching(CmpPredicate A,
4024 CmpPredicate B) {
4025 if (A.Pred == B.Pred)
4026 return A.HasSameSign == B.HasSameSign ? A : CmpPredicate(A.Pred);
4028 return {};
4029 if (A.HasSameSign &&
4031 return B.Pred;
4032 if (B.HasSameSign &&
4034 return A.Pred;
4035 return {};
4036}
4037
4041
4043 if (auto *ICI = dyn_cast<ICmpInst>(Cmp))
4044 return ICI->getCmpPredicate();
4045 return Cmp->getPredicate();
4046}
4047
4051
4053 return getSwapped(get(Cmp));
4054}
4055
4056//===----------------------------------------------------------------------===//
4057// SwitchInst Implementation
4058//===----------------------------------------------------------------------===//
4059
4060void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
4061 assert(Value && Default && NumReserved);
4062 ReservedSpace = NumReserved;
4064 allocHungoffUses(ReservedSpace);
4065
4066 Op<0>() = Value;
4067 Op<1>() = Default;
4068}
4069
4070/// SwitchInst ctor - Create a new switch instruction, specifying a value to
4071/// switch on and a default destination. The number of additional cases can
4072/// be specified here to make memory allocation more efficient. This
4073/// constructor can also autoinsert before another instruction.
4074SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4075 InsertPosition InsertBefore)
4076 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4077 AllocMarker, InsertBefore) {
4078 init(Value, Default, 2+NumCases*2);
4079}
4080
4081SwitchInst::SwitchInst(const SwitchInst &SI)
4082 : Instruction(SI.getType(), Instruction::Switch, AllocMarker) {
4083 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
4084 setNumHungOffUseOperands(SI.getNumOperands());
4085 Use *OL = getOperandList();
4086 const Use *InOL = SI.getOperandList();
4087 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
4088 OL[i] = InOL[i];
4089 OL[i+1] = InOL[i+1];
4090 }
4091 SubclassOptionalData = SI.SubclassOptionalData;
4092}
4093
4094/// addCase - Add an entry to the switch instruction...
4095///
4097 unsigned NewCaseIdx = getNumCases();
4098 unsigned OpNo = getNumOperands();
4099 if (OpNo+2 > ReservedSpace)
4100 growOperands(); // Get more space!
4101 // Initialize some new operands.
4102 assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
4104 CaseHandle Case(this, NewCaseIdx);
4105 Case.setValue(OnVal);
4106 Case.setSuccessor(Dest);
4107}
4108
4109/// removeCase - This method removes the specified case and its successor
4110/// from the switch instruction.
4112 unsigned idx = I->getCaseIndex();
4113
4114 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
4115
4116 unsigned NumOps = getNumOperands();
4117 Use *OL = getOperandList();
4118
4119 // Overwrite this case with the end of the list.
4120 if (2 + (idx + 1) * 2 != NumOps) {
4121 OL[2 + idx * 2] = OL[NumOps - 2];
4122 OL[2 + idx * 2 + 1] = OL[NumOps - 1];
4123 }
4124
4125 // Nuke the last value.
4126 OL[NumOps-2].set(nullptr);
4127 OL[NumOps-2+1].set(nullptr);
4129
4130 return CaseIt(this, idx);
4131}
4132
4133/// growOperands - grow operands - This grows the operand list in response
4134/// to a push_back style of operation. This grows the number of ops by 3 times.
4135///
4136void SwitchInst::growOperands() {
4137 unsigned e = getNumOperands();
4138 unsigned NumOps = e*3;
4139
4140 ReservedSpace = NumOps;
4141 growHungoffUses(ReservedSpace);
4142}
4143
4145 MDNode *ProfileData = getBranchWeightMDNode(SI);
4146 if (!ProfileData)
4147 return;
4148
4149 if (getNumBranchWeights(*ProfileData) != SI.getNumSuccessors()) {
4150 llvm_unreachable("number of prof branch_weights metadata operands does "
4151 "not correspond to number of succesors");
4152 }
4153
4155 if (!extractBranchWeights(ProfileData, Weights))
4156 return;
4157 this->Weights = std::move(Weights);
4158}
4159
4162 if (Weights) {
4163 assert(SI.getNumSuccessors() == Weights->size() &&
4164 "num of prof branch_weights must accord with num of successors");
4165 Changed = true;
4166 // Copy the last case to the place of the removed one and shrink.
4167 // This is tightly coupled with the way SwitchInst::removeCase() removes
4168 // the cases in SwitchInst::removeCase(CaseIt).
4169 (*Weights)[I->getCaseIndex() + 1] = Weights->back();
4170 Weights->pop_back();
4171 }
4172 return SI.removeCase(I);
4173}
4174
4176 ConstantInt *OnVal, BasicBlock *Dest,
4178 SI.addCase(OnVal, Dest);
4179
4180 if (!Weights && W && *W) {
4181 Changed = true;
4182 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4183 (*Weights)[SI.getNumSuccessors() - 1] = *W;
4184 } else if (Weights) {
4185 Changed = true;
4186 Weights->push_back(W.value_or(0));
4187 }
4188 if (Weights)
4189 assert(SI.getNumSuccessors() == Weights->size() &&
4190 "num of prof branch_weights must accord with num of successors");
4191}
4192
4195 // Instruction is erased. Mark as unchanged to not touch it in the destructor.
4196 Changed = false;
4197 if (Weights)
4198 Weights->resize(0);
4199 return SI.eraseFromParent();
4200}
4201
4204 if (!Weights)
4205 return std::nullopt;
4206 return (*Weights)[idx];
4207}
4208
4211 if (!W)
4212 return;
4213
4214 if (!Weights && *W)
4215 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4216
4217 if (Weights) {
4218 auto &OldW = (*Weights)[idx];
4219 if (*W != OldW) {
4220 Changed = true;
4221 OldW = *W;
4222 }
4223 }
4224}
4225
4228 unsigned idx) {
4229 if (MDNode *ProfileData = getBranchWeightMDNode(SI))
4230 if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4231 return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
4232 ->getValue()
4233 .getZExtValue();
4234
4235 return std::nullopt;
4236}
4237
4238//===----------------------------------------------------------------------===//
4239// IndirectBrInst Implementation
4240//===----------------------------------------------------------------------===//
4241
4242void IndirectBrInst::init(Value *Address, unsigned NumDests) {
4243 assert(Address && Address->getType()->isPointerTy() &&
4244 "Address of indirectbr must be a pointer");
4245 ReservedSpace = 1+NumDests;
4247 allocHungoffUses(ReservedSpace);
4248
4249 Op<0>() = Address;
4250}
4251
4252
4253/// growOperands - grow operands - This grows the operand list in response
4254/// to a push_back style of operation. This grows the number of ops by 2 times.
4255///
4256void IndirectBrInst::growOperands() {
4257 unsigned e = getNumOperands();
4258 unsigned NumOps = e*2;
4259
4260 ReservedSpace = NumOps;
4261 growHungoffUses(ReservedSpace);
4262}
4263
4264IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4265 InsertPosition InsertBefore)
4266 : Instruction(Type::getVoidTy(Address->getContext()),
4267 Instruction::IndirectBr, AllocMarker, InsertBefore) {
4268 init(Address, NumCases);
4269}
4270
4271IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
4272 : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
4273 AllocMarker) {
4274 NumUserOperands = IBI.NumUserOperands;
4275 allocHungoffUses(IBI.getNumOperands());
4276 Use *OL = getOperandList();
4277 const Use *InOL = IBI.getOperandList();
4278 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
4279 OL[i] = InOL[i];
4280 SubclassOptionalData = IBI.SubclassOptionalData;
4281}
4282
4283/// addDestination - Add a destination.
4284///
4286 unsigned OpNo = getNumOperands();
4287 if (OpNo+1 > ReservedSpace)
4288 growOperands(); // Get more space!
4289 // Initialize some new operands.
4290 assert(OpNo < ReservedSpace && "Growing didn't work!");
4292 getOperandList()[OpNo] = DestBB;
4293}
4294
4295/// removeDestination - This method removes the specified successor from the
4296/// indirectbr instruction.
4298 assert(idx < getNumOperands()-1 && "Successor index out of range!");
4299
4300 unsigned NumOps = getNumOperands();
4301 Use *OL = getOperandList();
4302
4303 // Replace this value with the last one.
4304 OL[idx+1] = OL[NumOps-1];
4305
4306 // Nuke the last value.
4307 OL[NumOps-1].set(nullptr);
4309}
4310
4311//===----------------------------------------------------------------------===//
4312// FreezeInst Implementation
4313//===----------------------------------------------------------------------===//
4314
4315FreezeInst::FreezeInst(Value *S, const Twine &Name, InsertPosition InsertBefore)
4316 : UnaryInstruction(S->getType(), Freeze, S, InsertBefore) {
4317 setName(Name);
4318}
4319
4320//===----------------------------------------------------------------------===//
4321// cloneImpl() implementations
4322//===----------------------------------------------------------------------===//
4323
4324// Define these methods here so vtables don't get emitted into every translation
4325// unit that uses these classes.
4326
4327GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
4329 return new (AllocMarker) GetElementPtrInst(*this, AllocMarker);
4330}
4331
4335
4339
4341 return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
4342}
4343
4345 return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
4346}
4347
4348ExtractValueInst *ExtractValueInst::cloneImpl() const {
4349 return new ExtractValueInst(*this);
4350}
4351
4352InsertValueInst *InsertValueInst::cloneImpl() const {
4353 return new InsertValueInst(*this);
4354}
4355
4358 getOperand(0), getAlign());
4359 Result->setUsedWithInAlloca(isUsedWithInAlloca());
4360 Result->setSwiftError(isSwiftError());
4361 return Result;
4362}
4363
4365 return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4367}
4368
4373
4378 Result->setVolatile(isVolatile());
4379 Result->setWeak(isWeak());
4380 return Result;
4381}
4382
4384 AtomicRMWInst *Result =
4387 Result->setVolatile(isVolatile());
4388 return Result;
4389}
4390
4394
4396 return new TruncInst(getOperand(0), getType());
4397}
4398
4400 return new ZExtInst(getOperand(0), getType());
4401}
4402
4404 return new SExtInst(getOperand(0), getType());
4405}
4406
4408 return new FPTruncInst(getOperand(0), getType());
4409}
4410
4412 return new FPExtInst(getOperand(0), getType());
4413}
4414
4416 return new UIToFPInst(getOperand(0), getType());
4417}
4418
4420 return new SIToFPInst(getOperand(0), getType());
4421}
4422
4424 return new FPToUIInst(getOperand(0), getType());
4425}
4426
4428 return new FPToSIInst(getOperand(0), getType());
4429}
4430
4432 return new PtrToIntInst(getOperand(0), getType());
4433}
4434
4438
4440 return new IntToPtrInst(getOperand(0), getType());
4441}
4442
4444 return new BitCastInst(getOperand(0), getType());
4445}
4446
4450
4451CallInst *CallInst::cloneImpl() const {
4452 if (hasOperandBundles()) {
4456 return new (AllocMarker) CallInst(*this, AllocMarker);
4457 }
4459 return new (AllocMarker) CallInst(*this, AllocMarker);
4460}
4461
4462SelectInst *SelectInst::cloneImpl() const {
4464}
4465
4467 return new VAArgInst(getOperand(0), getType());
4468}
4469
4470ExtractElementInst *ExtractElementInst::cloneImpl() const {
4472}
4473
4474InsertElementInst *InsertElementInst::cloneImpl() const {
4476}
4477
4481
4482PHINode *PHINode::cloneImpl() const { return new (AllocMarker) PHINode(*this); }
4483
4484LandingPadInst *LandingPadInst::cloneImpl() const {
4485 return new LandingPadInst(*this);
4486}
4487
4488ReturnInst *ReturnInst::cloneImpl() const {
4490 return new (AllocMarker) ReturnInst(*this, AllocMarker);
4491}
4492
4493BranchInst *BranchInst::cloneImpl() const {
4495 return new (AllocMarker) BranchInst(*this, AllocMarker);
4496}
4497
4498SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4499
4500IndirectBrInst *IndirectBrInst::cloneImpl() const {
4501 return new IndirectBrInst(*this);
4502}
4503
4504InvokeInst *InvokeInst::cloneImpl() const {
4505 if (hasOperandBundles()) {
4509 return new (AllocMarker) InvokeInst(*this, AllocMarker);
4510 }
4512 return new (AllocMarker) InvokeInst(*this, AllocMarker);
4513}
4514
4515CallBrInst *CallBrInst::cloneImpl() const {
4516 if (hasOperandBundles()) {
4520 return new (AllocMarker) CallBrInst(*this, AllocMarker);
4521 }
4523 return new (AllocMarker) CallBrInst(*this, AllocMarker);
4524}
4525
4526ResumeInst *ResumeInst::cloneImpl() const {
4527 return new (AllocMarker) ResumeInst(*this);
4528}
4529
4530CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4532 return new (AllocMarker) CleanupReturnInst(*this, AllocMarker);
4533}
4534
4535CatchReturnInst *CatchReturnInst::cloneImpl() const {
4536 return new (AllocMarker) CatchReturnInst(*this);
4537}
4538
4539CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4540 return new CatchSwitchInst(*this);
4541}
4542
4543FuncletPadInst *FuncletPadInst::cloneImpl() const {
4545 return new (AllocMarker) FuncletPadInst(*this, AllocMarker);
4546}
4547
4549 LLVMContext &Context = getContext();
4550 return new UnreachableInst(Context);
4551}
4552
4553bool UnreachableInst::shouldLowerToTrap(bool TrapUnreachable,
4554 bool NoTrapAfterNoreturn) const {
4555 if (!TrapUnreachable)
4556 return false;
4557
4558 // We may be able to ignore unreachable behind a noreturn call.
4560 Call && Call->doesNotReturn()) {
4561 if (NoTrapAfterNoreturn)
4562 return false;
4563 // Do not emit an additional trap instruction.
4564 if (Call->isNonContinuableTrap())
4565 return false;
4566 }
4567
4568 if (getFunction()->hasFnAttribute(Attribute::Naked))
4569 return false;
4570
4571 return true;
4572}
4573
4575 return new FreezeInst(getOperand(0));
4576}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
constexpr LLT S1
Rewrite undef for PHI
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Atomic ordering constants.
@ FnAttr
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_ABI
Definition Compiler.h:213
This file contains the declarations for the subclasses of Constant, which represent the different fla...
@ Default
static bool isSigned(unsigned int Opcode)
#define op(i)
Module.h This file contains the declarations for the Module class.
static Align computeLoadStoreDefaultAlign(Type *Ty, InsertPosition Pos)
static bool isImpliedFalseByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2)
static Value * createPlaceholderForShuffleVector(Value *V)
static Align computeAllocaDefaultAlign(Type *Ty, InsertPosition Pos)
static cl::opt< bool > DisableI2pP2iOpt("disable-i2p-p2i-opt", cl::init(false), cl::desc("Disables inttoptr/ptrtoint roundtrip optimization"))
static bool hasNonZeroFPOperands(const CmpInst *Cmp)
static int matchShuffleAsBitRotate(ArrayRef< int > Mask, int NumSubElts)
Try to lower a vector shuffle as a bit rotation.
static Type * getIndexedTypeInternal(Type *Ty, ArrayRef< IndexTy > IdxList)
static bool isReplicationMaskWithParams(ArrayRef< int > Mask, int ReplicationFactor, int VF)
static bool isIdentityMaskImpl(ArrayRef< int > Mask, int NumOpElts)
static bool isSingleSourceMaskImpl(ArrayRef< int > Mask, int NumOpElts)
static Value * getAISize(LLVMContext &Context, Value *Amt)
static bool isImpliedTrueByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2)
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
This file contains the declarations for metadata subclasses.
#define T
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
#define P(N)
PowerPC Reduce CR logical Operation
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static unsigned getNumElements(Type *Ty)
This file implements the SmallBitVector class.
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition VPlanSLP.cpp:247
Value * RHS
Value * LHS
LLVM_ABI float convertToFloat() const
Converts this APFloat to host float value.
Definition APFloat.cpp:6143
Class for arbitrary precision integers.
Definition APInt.h:78
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
Definition APInt.h:1330
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:380
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition APInt.h:1639
unsigned countl_zero() const
The APInt version of std::countl_zero.
Definition APInt.h:1598
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition APInt.h:200
This class represents a conversion between pointers from one address space to another.
LLVM_ABI AddrSpaceCastInst * cloneImpl() const
Clone an identical AddrSpaceCastInst.
LLVM_ABI AddrSpaceCastInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI std::optional< TypeSize > getAllocationSizeInBits(const DataLayout &DL) const
Get allocation size in bits.
bool isSwiftError() const
Return true if this alloca is used as a swifterror argument to a call.
LLVM_ABI bool isStaticAlloca() const
Return true if this alloca is in the entry block of the function and is a constant size.
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
LLVM_ABI AllocaInst * cloneImpl() const
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
bool isUsedWithInAlloca() const
Return true if this alloca is used as an inalloca argument to a call.
unsigned getAddressSpace() const
Return the address space for the allocation.
LLVM_ABI std::optional< TypeSize > getAllocationSize(const DataLayout &DL) const
Get allocation size in bytes.
LLVM_ABI bool isArrayAllocation() const
Return true if there is an allocation size parameter to the allocation instruction that is not 1.
void setAlignment(Align Align)
const Value * getArraySize() const
Get the number of elements allocated.
LLVM_ABI AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, const Twine &Name, InsertPosition InsertBefore)
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
iterator end() const
Definition ArrayRef.h:136
size_t size() const
size - Get the array size.
Definition ArrayRef.h:147
iterator begin() const
Definition ArrayRef.h:135
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:142
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
Definition ArrayRef.h:191
Class to represent array types.
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this cmpxchg instruction.
bool isVolatile() const
Return true if this is a cmpxchg from a volatile memory location.
void setFailureOrdering(AtomicOrdering Ordering)
Sets the failure ordering constraint of this cmpxchg instruction.
AtomicOrdering getFailureOrdering() const
Returns the failure ordering constraint of this cmpxchg instruction.
void setSuccessOrdering(AtomicOrdering Ordering)
Sets the success ordering constraint of this cmpxchg instruction.
LLVM_ABI AtomicCmpXchgInst * cloneImpl() const
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
bool isWeak() const
Return true if this cmpxchg may spuriously fail.
void setAlignment(Align Align)
AtomicOrdering getSuccessOrdering() const
Returns the success ordering constraint of this cmpxchg instruction.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this cmpxchg instruction.
LLVM_ABI AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, SyncScope::ID SSID, InsertPosition InsertBefore=nullptr)
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
LLVM_ABI AtomicRMWInst * cloneImpl() const
bool isVolatile() const
Return true if this is a RMW on a volatile memory location.
BinOp
This enumeration lists the possible modifications atomicrmw can make.
@ Add
*p = old + v
@ FAdd
*p = old + v
@ USubCond
Subtract only if no unsigned overflow.
@ FMinimum
*p = minimum(old, v) minimum matches the behavior of llvm.minimum.
@ Min
*p = old <signed v ? old : v
@ Sub
*p = old - v
@ And
*p = old & v
@ Xor
*p = old ^ v
@ USubSat
*p = usub.sat(old, v) usub.sat matches the behavior of llvm.usub.sat.
@ FMaximum
*p = maximum(old, v) maximum matches the behavior of llvm.maximum.
@ FSub
*p = old - v
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ FMin
*p = minnum(old, v) minnum matches the behavior of llvm.minnum.
@ UMax
*p = old >unsigned v ? old : v
@ FMax
*p = maxnum(old, v) maxnum matches the behavior of llvm.maxnum.
@ UDecWrap
Decrement one until a minimum value or zero.
@ Nand
*p = ~(old & v)
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this rmw instruction.
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this rmw instruction.
void setOperation(BinOp Operation)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
BinOp getOperation() const
LLVM_ABI AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, AtomicOrdering Ordering, SyncScope::ID SSID, InsertPosition InsertBefore=nullptr)
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this rmw instruction.
void setAlignment(Align Align)
static LLVM_ABI StringRef getOperationName(BinOp Op)
AtomicOrdering getOrdering() const
Returns the ordering constraint of this rmw instruction.
LLVM_ABI CaptureInfo getCaptureInfo() const
Functions, function parameters, and return types can have attributes to indicate how they should be t...
Definition Attributes.h:69
LLVM_ABI const ConstantRange & getRange() const
Returns the value of the range attribute.
AttrKind
This enumeration lists the attributes that can be associated with parameters, function results,...
Definition Attributes.h:88
static LLVM_ABI Attribute getWithMemoryEffects(LLVMContext &Context, MemoryEffects ME)
bool isValid() const
Return true if the attribute is any kind of attribute.
Definition Attributes.h:223
LLVM Basic Block Representation.
Definition BasicBlock.h:62
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
static LLVM_ABI BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
BinaryOps getOpcode() const
Definition InstrTypes.h:374
LLVM_ABI bool swapOperands()
Exchange the two operands to this instruction.
static LLVM_ABI BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition InstrTypes.h:181
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
LLVM_ABI BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty, const Twine &Name, InsertPosition InsertBefore)
static LLVM_ABI BinaryOperator * CreateNSWNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
LLVM_ABI BinaryOperator * cloneImpl() const
This class represents a no-op cast from one type to another.
LLVM_ABI BitCastInst * cloneImpl() const
Clone an identical BitCastInst.
LLVM_ABI BitCastInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Conditional or Unconditional Branch instruction.
LLVM_ABI void swapSuccessors()
Swap the successors of this branch instruction.
LLVM_ABI BranchInst * cloneImpl() const
bool isConditional() const
Value * getCondition() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
LLVM_ABI FPClassTest getParamNoFPClass(unsigned i) const
Extract a test mask for disallowed floating-point value classes for the parameter.
bool isInlineAsm() const
Check if this call is an inline asm statement.
LLVM_ABI BundleOpInfo & getBundleOpInfoForOperand(unsigned OpIdx)
Return the BundleOpInfo for the operand at index OpIdx.
void setCallingConv(CallingConv::ID CC)
LLVM_ABI FPClassTest getRetNoFPClass() const
Extract a test mask for disallowed floating-point value classes for the return value.
bundle_op_iterator bundle_op_info_begin()
Return the start of the list of BundleOpInfo instances associated with this OperandBundleUser.
LLVM_ABI bool paramHasNonNullAttr(unsigned ArgNo, bool AllowUndefOrPoison) const
Return true if this argument has the nonnull attribute on either the CallBase instruction or the call...
LLVM_ABI MemoryEffects getMemoryEffects() const
void addFnAttr(Attribute::AttrKind Kind)
Adds the attribute to the function.
LLVM_ABI bool doesNotAccessMemory() const
Determine if the call does not access memory.
LLVM_ABI void getOperandBundlesAsDefs(SmallVectorImpl< OperandBundleDef > &Defs) const
Return the list of operand bundles attached to this instruction as a vector of OperandBundleDefs.
LLVM_ABI void setOnlyAccessesArgMemory()
OperandBundleUse getOperandBundleAt(unsigned Index) const
Return the operand bundle at a specific index.
OperandBundleUse operandBundleFromBundleOpInfo(const BundleOpInfo &BOI) const
Simple helper function to map a BundleOpInfo to an OperandBundleUse.
LLVM_ABI void setOnlyAccessesInaccessibleMemOrArgMem()
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
LLVM_ABI void setDoesNotAccessMemory()
AttributeSet getParamAttributes(unsigned ArgNo) const
Return the param attributes for this call.
bool hasRetAttr(Attribute::AttrKind Kind) const
Determine whether the return value has the given attribute.
LLVM_ABI bool onlyAccessesInaccessibleMemory() const
Determine if the function may only access memory that is inaccessible from the IR.
unsigned getNumOperandBundles() const
Return the number of operand bundles associated with this User.
CallingConv::ID getCallingConv() const
bundle_op_iterator bundle_op_info_end()
Return the end of the list of BundleOpInfo instances associated with this OperandBundleUser.
LLVM_ABI unsigned getNumSubclassExtraOperandsDynamic() const
Get the number of extra operands for instructions that don't have a fixed number of extra operands.
BundleOpInfo * bundle_op_iterator
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
LLVM_ABI bool isMustTailCall() const
Tests if this call site must be tail call optimized.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
LLVM_ABI bool onlyReadsMemory() const
Determine if the call does not access or only reads memory.
bool isByValArgument(unsigned ArgNo) const
Determine whether this argument is passed by value.
iterator_range< bundle_op_iterator > bundle_op_infos()
Return the range [bundle_op_info_begin, bundle_op_info_end).
LLVM_ABI void setOnlyReadsMemory()
static LLVM_ABI CallBase * addOperandBundle(CallBase *CB, uint32_t ID, OperandBundleDef OB, InsertPosition InsertPt=nullptr)
Create a clone of CB with operand bundle OB added.
LLVM_ABI bool onlyAccessesInaccessibleMemOrArgMem() const
Determine if the function may only access memory that is either inaccessible from the IR or pointed t...
LLVM_ABI CaptureInfo getCaptureInfo(unsigned OpNo) const
Return which pointer components this operand may capture.
LLVM_ABI bool hasArgumentWithAdditionalReturnCaptureComponents() const
Returns whether the call has an argument that has an attribute like captures(ret: address,...
CallBase(AttributeList const &A, FunctionType *FT, ArgsTy &&... Args)
Value * getCalledOperand() const
LLVM_ABI void setOnlyWritesMemory()
LLVM_ABI op_iterator populateBundleOperandInfos(ArrayRef< OperandBundleDef > Bundles, const unsigned BeginIndex)
Populate the BundleOpInfo instances and the Use& vector from Bundles.
AttributeList Attrs
parameter attributes for callable
bool hasOperandBundlesOtherThan(ArrayRef< uint32_t > IDs) const
Return true if this operand bundle user contains operand bundles with tags other than those specified...
LLVM_ABI std::optional< ConstantRange > getRange() const
If this return value has a range attribute, return the value range of the argument.
LLVM_ABI bool isReturnNonNull() const
Return true if the return value is known to be not null.
Value * getArgOperand(unsigned i) const
FunctionType * FTy
uint64_t getRetDereferenceableBytes() const
Extract the number of dereferenceable bytes for a call or parameter (0=unknown).
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
FunctionType * getFunctionType() const
LLVM_ABI Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
static unsigned CountBundleInputs(ArrayRef< OperandBundleDef > Bundles)
Return the total number of values used in Bundles.
LLVM_ABI Value * getArgOperandWithAttribute(Attribute::AttrKind Kind) const
If one of the arguments has the specified attribute, returns its operand value.
LLVM_ABI void setOnlyAccessesInaccessibleMemory()
static LLVM_ABI CallBase * Create(CallBase *CB, ArrayRef< OperandBundleDef > Bundles, InsertPosition InsertPt=nullptr)
Create a clone of CB with a different set of operand bundles and insert it before InsertPt.
LLVM_ABI bool onlyWritesMemory() const
Determine if the call does not access or only writes memory.
LLVM_ABI bool hasClobberingOperandBundles() const
Return true if this operand bundle user has operand bundles that may write to the heap.
void setCalledOperand(Value *V)
static LLVM_ABI CallBase * removeOperandBundle(CallBase *CB, uint32_t ID, InsertPosition InsertPt=nullptr)
Create a clone of CB with operand bundle ID removed.
LLVM_ABI bool hasReadingOperandBundles() const
Return true if this operand bundle user has operand bundles that may read from the heap.
LLVM_ABI bool onlyAccessesArgMemory() const
Determine if the call can access memmory only using pointers based on its arguments.
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
LLVM_ABI void setMemoryEffects(MemoryEffects ME)
bool hasOperandBundles() const
Return true if this User has any operand bundles.
LLVM_ABI bool isTailCall() const
Tests if this call site is marked as a tail call.
LLVM_ABI Function * getCaller()
Helper to get the caller (the parent function).
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
SmallVector< BasicBlock *, 16 > getIndirectDests() const
void setDefaultDest(BasicBlock *B)
void setIndirectDest(unsigned i, BasicBlock *B)
BasicBlock * getDefaultDest() const
static CallBrInst * Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef< BasicBlock * > IndirectDests, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
LLVM_ABI CallBrInst * cloneImpl() const
This class represents a function call, abstracting a target machine's calling convention.
LLVM_ABI void updateProfWeight(uint64_t S, uint64_t T)
Updates profile metadata by scaling it by S / T.
TailCallKind getTailCallKind() const
LLVM_ABI CallInst * cloneImpl() const
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Represents which components of the pointer may be captured in which location.
Definition ModRef.h:354
CaptureComponents getOtherComponents() const
Get components potentially captured through locations other than the return value.
Definition ModRef.h:386
static CaptureInfo none()
Create CaptureInfo that does not capture any components of the pointer.
Definition ModRef.h:367
static CaptureInfo all()
Create CaptureInfo that may capture all components of the pointer.
Definition ModRef.h:370
CaptureComponents getRetComponents() const
Get components potentially captured by the return value.
Definition ModRef.h:382
static LLVM_ABI Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static LLVM_ABI CastInst * CreatePointerBitCastOrAddrSpaceCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast or an AddrSpaceCast cast instruction.
Instruction::CastOps getOpcode() const
Return the opcode of this CastInst.
Definition InstrTypes.h:612
static LLVM_ABI CastInst * CreateIntegerCast(Value *S, Type *Ty, bool isSigned, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a ZExt, BitCast, or Trunc for int -> int casts.
static LLVM_ABI CastInst * CreateFPCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create an FPExt, BitCast, or FPTrunc for fp -> fp casts.
static LLVM_ABI unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, Type *DstIntPtrTy)
Determine how a pair of casts can be eliminated, if they can be at all.
CastInst(Type *Ty, unsigned iType, Value *S, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics for subclasses.
Definition InstrTypes.h:451
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static LLVM_ABI bool isBitCastable(Type *SrcTy, Type *DestTy)
Check whether a bitcast between these types is valid.
static LLVM_ABI CastInst * CreateTruncOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a Trunc or BitCast cast instruction.
static LLVM_ABI CastInst * CreatePointerCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast, AddrSpaceCast or a PtrToInt cast instruction.
static LLVM_ABI CastInst * CreateBitOrPointerCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
static LLVM_ABI bool isNoopCast(Instruction::CastOps Opcode, Type *SrcTy, Type *DstTy, const DataLayout &DL)
A no-op cast is one that can be effected without changing any bits.
static LLVM_ABI CastInst * CreateZExtOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a ZExt or BitCast cast instruction.
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
LLVM_ABI bool isIntegerCast() const
There are several places where we need to know if a cast instruction only deals with integer source a...
static LLVM_ABI CastInst * CreateSExtOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a SExt or BitCast cast instruction.
static LLVM_ABI bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
LLVM_ABI CatchReturnInst * cloneImpl() const
void setUnwindDest(BasicBlock *UnwindDest)
LLVM_ABI void addHandler(BasicBlock *Dest)
Add an entry to the switch instruction... Note: This action invalidates handler_end().
LLVM_ABI CatchSwitchInst * cloneImpl() const
mapped_iterator< op_iterator, DerefFnTy > handler_iterator
Value * getParentPad() const
void setParentPad(Value *ParentPad)
BasicBlock * getUnwindDest() const
LLVM_ABI void removeHandler(handler_iterator HI)
LLVM_ABI CleanupReturnInst * cloneImpl() const
This class is the base class for the comparison instructions.
Definition InstrTypes.h:666
Predicate getStrictPredicate() const
For example, SGE -> SGT, SLE -> SLT, ULE -> ULT, UGE -> UGT.
Definition InstrTypes.h:860
bool isEquality() const
Determine if this is an equals/not equals predicate.
Definition InstrTypes.h:917
void setPredicate(Predicate P)
Set the predicate for this instruction to the specified value.
Definition InstrTypes.h:770
bool isFalseWhenEqual() const
This is just a convenience.
Definition InstrTypes.h:950
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:678
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
Definition InstrTypes.h:681
@ FCMP_TRUE
1 1 1 1 Always true (always folded)
Definition InstrTypes.h:695
@ ICMP_SLT
signed less than
Definition InstrTypes.h:707
@ ICMP_SLE
signed less or equal
Definition InstrTypes.h:708
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition InstrTypes.h:684
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
Definition InstrTypes.h:693
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition InstrTypes.h:682
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
Definition InstrTypes.h:683
@ ICMP_UGE
unsigned greater or equal
Definition InstrTypes.h:702
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:701
@ ICMP_SGT
signed greater than
Definition InstrTypes.h:705
@ FCMP_ULT
1 1 0 0 True if unordered or less than
Definition InstrTypes.h:692
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
Definition InstrTypes.h:686
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
Definition InstrTypes.h:689
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:703
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
Definition InstrTypes.h:690
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
Definition InstrTypes.h:685
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
Definition InstrTypes.h:687
@ ICMP_NE
not equal
Definition InstrTypes.h:700
@ ICMP_SGE
signed greater or equal
Definition InstrTypes.h:706
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
Definition InstrTypes.h:694
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:704
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
Definition InstrTypes.h:691
@ FCMP_FALSE
0 0 0 0 Always false (always folded)
Definition InstrTypes.h:680
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition InstrTypes.h:688
LLVM_ABI bool isEquivalence(bool Invert=false) const
Determine if one operand of this compare can always be replaced by the other operand,...
bool isSigned() const
Definition InstrTypes.h:932
static LLVM_ABI bool isEquality(Predicate pred)
Determine if this is an equals/not equals predicate.
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition InstrTypes.h:829
bool isTrueWhenEqual() const
This is just a convenience.
Definition InstrTypes.h:944
static LLVM_ABI CmpInst * Create(OtherOps Op, Predicate Pred, Value *S1, Value *S2, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Construct a compare instruction, given the opcode, the predicate and the two operands.
static bool isFPPredicate(Predicate P)
Definition InstrTypes.h:772
Predicate getNonStrictPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
Definition InstrTypes.h:873
static LLVM_ABI CmpInst * CreateWithCopiedFlags(OtherOps Op, Predicate Pred, Value *S1, Value *S2, const Instruction *FlagsSource, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Construct a compare instruction, given the opcode, the predicate, the two operands and the instructio...
bool isNonStrictPredicate() const
Definition InstrTypes.h:854
LLVM_ABI void swapOperands()
This is just a convenience that dispatches to the subclasses.
static bool isRelational(Predicate P)
Return true if the predicate is relational (not EQ or NE).
Definition InstrTypes.h:925
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition InstrTypes.h:791
static LLVM_ABI StringRef getPredicateName(Predicate P)
Predicate getPredicate() const
Return the predicate for this instruction.
Definition InstrTypes.h:767
bool isStrictPredicate() const
Definition InstrTypes.h:845
static LLVM_ABI bool isUnordered(Predicate predicate)
Determine if the predicate is an unordered operation.
Predicate getFlippedStrictnessPredicate() const
For predicate of kind "is X or equal to 0" returns the predicate "is X".
Definition InstrTypes.h:895
static bool isIntPredicate(Predicate P)
Definition InstrTypes.h:778
static LLVM_ABI bool isOrdered(Predicate predicate)
Determine if the predicate is an ordered operation.
LLVM_ABI CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred, Value *LHS, Value *RHS, const Twine &Name="", InsertPosition InsertBefore=nullptr, Instruction *FlagsSource=nullptr)
bool isUnsigned() const
Definition InstrTypes.h:938
LLVM_ABI bool isCommutative() const
This is just a convenience that dispatches to the subclasses.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
CmpPredicate()
Default constructor.
static LLVM_ABI CmpPredicate get(const CmpInst *Cmp)
Do a ICmpInst::getCmpPredicate() or CmpInst::getPredicate(), as appropriate.
LLVM_ABI CmpInst::Predicate getPreferredSignedPredicate() const
Attempts to return a signed CmpInst::Predicate from the CmpPredicate.
bool hasSameSign() const
Query samesign information, for optimizations.
static LLVM_ABI CmpPredicate getSwapped(CmpPredicate P)
Get the swapped predicate of a CmpPredicate.
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:277
const APFloat & getValueAPF() const
Definition Constants.h:320
This is the shared class of boolean and integer constants.
Definition Constants.h:87
LLVM_ABI ConstantRange intersectWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the intersection of this range with another range.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
Definition Constant.h:43
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:310
LLVM_ABI ExtractElementInst * cloneImpl() const
static ExtractElementInst * Create(Value *Vec, Value *Idx, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI bool isValidOperands(const Value *Vec, const Value *Idx)
Return true if an extractelement instruction can be formed with the specified operands.
This instruction extracts a struct member or array element value from an aggregate value.
static LLVM_ABI Type * getIndexedType(Type *Agg, ArrayRef< unsigned > Idxs)
Returns the type of the element that would be extracted with an extractvalue instruction with the spe...
LLVM_ABI ExtractValueInst * cloneImpl() const
This instruction compares its operands according to the predicate given to the constructor.
bool isEquality() const
static LLVM_ABI bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
LLVM_ABI FCmpInst * cloneImpl() const
Clone an identical FCmpInst.
FCmpInst(InsertPosition InsertBefore, Predicate pred, Value *LHS, Value *RHS, const Twine &NameStr="")
Constructor with insertion semantics.
This class represents an extension of floating point types.
LLVM_ABI FPExtInst * cloneImpl() const
Clone an identical FPExtInst.
LLVM_ABI FPExtInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI float getFPAccuracy() const
Get the maximum error permitted by this operation in ULPs.
This class represents a cast from floating point to signed integer.
LLVM_ABI FPToSIInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI FPToSIInst * cloneImpl() const
Clone an identical FPToSIInst.
This class represents a cast from floating point to unsigned integer.
LLVM_ABI FPToUIInst * cloneImpl() const
Clone an identical FPToUIInst.
LLVM_ABI FPToUIInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
This class represents a truncation of floating point types.
LLVM_ABI FPTruncInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI FPTruncInst * cloneImpl() const
Clone an identical FPTruncInst.
LLVM_ABI FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System, InsertPosition InsertBefore=nullptr)
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this fence instruction.
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this fence instruction.
LLVM_ABI FenceInst * cloneImpl() const
friend class Instruction
Iterator for Instructions in a `BasicBlock.
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this fence instruction.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this fence instruction.
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
LLVM_ABI FreezeInst(Value *S, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI FreezeInst * cloneImpl() const
Clone an identical FreezeInst.
void setParentPad(Value *ParentPad)
Value * getParentPad() const
Convenience accessors.
LLVM_ABI FuncletPadInst * cloneImpl() const
Class to represent function types.
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Type * getParamType(unsigned i) const
Parameter type accessors.
bool isVarArg() const
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
GEPNoWrapFlags withoutInBounds() const
unsigned getRaw() const
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
LLVM_ABI bool isInBounds() const
Determine whether the GEP has the inbounds flag.
LLVM_ABI bool hasNoUnsignedSignedWrap() const
Determine whether the GEP has the nusw flag.
static LLVM_ABI Type * getTypeAtIndex(Type *Ty, Value *Idx)
Return the type of the element at the given index of an indexable type.
LLVM_ABI bool hasAllZeroIndices() const
Return true if all of the indices of this GEP are zeros.
LLVM_ABI bool hasNoUnsignedWrap() const
Determine whether the GEP has the nuw flag.
LLVM_ABI bool hasAllConstantIndices() const
Return true if all of the indices of this GEP are constant integers.
LLVM_ABI void setIsInBounds(bool b=true)
Set or clear the inbounds flag on this GEP instruction.
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
LLVM_ABI bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const
Accumulate the constant address offset of this GEP if possible.
LLVM_ABI GetElementPtrInst * cloneImpl() const
LLVM_ABI bool collectOffset(const DataLayout &DL, unsigned BitWidth, SmallMapVector< Value *, APInt, 4 > &VariableOffsets, APInt &ConstantOffset) const
LLVM_ABI void setNoWrapFlags(GEPNoWrapFlags NW)
Set nowrap flags for GEP instruction.
LLVM_ABI GEPNoWrapFlags getNoWrapFlags() const
Get the nowrap flags for the GEP instruction.
Module * getParent()
Get the module that this global value is contained inside of...
This instruction compares its operands according to the predicate given to the constructor.
ICmpInst(InsertPosition InsertBefore, Predicate pred, Value *LHS, Value *RHS, const Twine &NameStr="")
Constructor with insertion semantics.
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
LLVM_ABI ICmpInst * cloneImpl() const
Clone an identical ICmpInst.
Predicate getFlippedSignednessPredicate() const
For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
static CmpPredicate getInverseCmpPredicate(CmpPredicate Pred)
bool isEquality() const
Return true if this predicate is either EQ or NE.
static LLVM_ABI Predicate getFlippedSignednessPredicate(Predicate Pred)
For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ.
static LLVM_ABI std::optional< bool > isImpliedByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2)
Determine if Pred1 implies Pred2 is true, false, or if nothing can be inferred about the implication,...
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
Indirect Branch Instruction.
LLVM_ABI void addDestination(BasicBlock *Dest)
Add a destination.
LLVM_ABI void removeDestination(unsigned i)
This method removes the specified successor from the indirectbr instruction.
LLVM_ABI IndirectBrInst * cloneImpl() const
LLVM_ABI InsertElementInst * cloneImpl() const
static InsertElementInst * Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI bool isValidOperands(const Value *Vec, const Value *NewElt, const Value *Idx)
Return true if an insertelement instruction can be formed with the specified operands.
bool isValid() const
Definition Instruction.h:62
BasicBlock * getBasicBlock()
Definition Instruction.h:63
This instruction inserts a struct field of array element value into an aggregate value.
LLVM_ABI InsertValueInst * cloneImpl() const
BitfieldElement::Type getSubclassData() const
LLVM_ABI bool hasNoNaNs() const LLVM_READONLY
Determine whether the no-NaNs flag is set.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
LLVM_ABI void swapProfMetadata()
If the instruction has "branch_weights" MD_prof metadata and the MDNode has three operands (including...
LLVM_ABI bool isVolatile() const LLVM_READONLY
Return true if this instruction has a volatile memory access.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Bitfield::Element< uint16_t, 0, 15 > OpaqueField
Instruction(const Instruction &)=delete
friend class BasicBlock
Various leaf nodes.
void setSubclassData(typename BitfieldElement::Type Value)
This class represents a cast from an integer to a pointer.
LLVM_ABI IntToPtrInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI IntToPtrInst * cloneImpl() const
Clone an identical IntToPtrInst.
Invoke instruction.
BasicBlock * getUnwindDest() const
void setNormalDest(BasicBlock *B)
LLVM_ABI InvokeInst * cloneImpl() const
LLVM_ABI LandingPadInst * getLandingPadInst() const
Get the landingpad instruction from the landing pad block (the unwind destination).
void setUnwindDest(BasicBlock *B)
LLVM_ABI void updateProfWeight(uint64_t S, uint64_t T)
Updates profile metadata by scaling it by S / T.
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
LLVMContextImpl *const pImpl
Definition LLVMContext.h:70
The landingpad instruction holds all of the information necessary to generate correct exception handl...
bool isCleanup() const
Return 'true' if this landingpad instruction is a cleanup.
LLVM_ABI LandingPadInst * cloneImpl() const
static LLVM_ABI LandingPadInst * Create(Type *RetTy, unsigned NumReservedClauses, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedClauses is a hint for the number of incoming clauses that this landingpad w...
LLVM_ABI void addClause(Constant *ClauseVal)
Add a catch or filter clause to the landing pad.
void setCleanup(bool V)
Indicate that this landingpad instruction is a cleanup.
void setAlignment(Align Align)
bool isVolatile() const
Return true if this is a load from a volatile memory location.
void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System)
Sets the ordering constraint and the synchronization scope ID of this load instruction.
LLVM_ABI LoadInst * cloneImpl() const
AtomicOrdering getOrdering() const
Returns the ordering constraint of this load instruction.
void setVolatile(bool V)
Specify whether this is a volatile load or not.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this load instruction.
LLVM_ABI LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, InsertPosition InsertBefore)
Align getAlign() const
Return the alignment of the access that is being performed.
Metadata node.
Definition Metadata.h:1078
const MDOperand & getOperand(unsigned I) const
Definition Metadata.h:1442
static MemoryEffectsBase readOnly()
Definition ModRef.h:125
bool onlyWritesMemory() const
Whether this function only (at most) writes memory.
Definition ModRef.h:221
bool doesNotAccessMemory() const
Whether this function accesses no memory.
Definition ModRef.h:215
static MemoryEffectsBase argMemOnly(ModRefInfo MR=ModRefInfo::ModRef)
Definition ModRef.h:135
static MemoryEffectsBase inaccessibleMemOnly(ModRefInfo MR=ModRefInfo::ModRef)
Definition ModRef.h:141
bool onlyAccessesInaccessibleMem() const
Whether this function only (at most) accesses inaccessible memory.
Definition ModRef.h:234
bool onlyAccessesArgPointees() const
Whether this function only (at most) accesses argument memory.
Definition ModRef.h:224
bool onlyReadsMemory() const
Whether this function only (at most) reads memory.
Definition ModRef.h:218
static MemoryEffectsBase writeOnly()
Definition ModRef.h:130
static MemoryEffectsBase inaccessibleOrArgMemOnly(ModRefInfo MR=ModRefInfo::ModRef)
Definition ModRef.h:158
static MemoryEffectsBase none()
Definition ModRef.h:120
bool onlyAccessesInaccessibleOrArgMem() const
Whether this function only (at most) accesses argument and inaccessible memory.
Definition ModRef.h:245
StringRef getTag() const
iterator_range< const_block_iterator > blocks() const
void allocHungoffUses(unsigned N)
const_block_iterator block_begin() const
LLVM_ABI void removeIncomingValueIf(function_ref< bool(unsigned)> Predicate, bool DeletePHIIfEmpty=true)
Remove all incoming values for which the predicate returns true.
BasicBlock ** block_iterator
LLVM_ABI Value * removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty=true)
Remove an incoming value.
LLVM_ABI bool hasConstantOrUndefValue() const
Whether the specified PHI node always merges together the same value, assuming undefs are equal to a ...
void copyIncomingBlocks(iterator_range< const_block_iterator > BBRange, uint32_t ToIdx=0)
Copies the basic blocks from BBRange to the incoming basic block list of this PHINode,...
const_block_iterator block_end() const
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
LLVM_ABI Value * hasConstantValue() const
If the specified PHI node always merges together the same value, return the value,...
LLVM_ABI PHINode * cloneImpl() const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
Class to represent pointers.
unsigned getAddressSpace() const
Return the address space of the Pointer type.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
This class represents a cast from a pointer to an address (non-capturing ptrtoint).
PtrToAddrInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
PtrToAddrInst * cloneImpl() const
Clone an identical PtrToAddrInst.
This class represents a cast from a pointer to an integer.
LLVM_ABI PtrToIntInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI PtrToIntInst * cloneImpl() const
Clone an identical PtrToIntInst.
Resume the propagation of an exception.
LLVM_ABI ResumeInst * cloneImpl() const
Return a value (possibly void), from a function.
LLVM_ABI ReturnInst * cloneImpl() const
This class represents a sign extension of integer types.
LLVM_ABI SExtInst * cloneImpl() const
Clone an identical SExtInst.
LLVM_ABI SExtInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
This class represents a cast from signed integer to floating point.
LLVM_ABI SIToFPInst * cloneImpl() const
Clone an identical SIToFPInst.
LLVM_ABI SIToFPInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Class to represent scalable SIMD vectors.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
LLVM_ABI SelectInst * cloneImpl() const
static LLVM_ABI const char * areInvalidOperands(Value *Cond, Value *True, Value *False)
Return a string if the specified operands are invalid for a select operation, otherwise return null.
static LLVM_ABI bool isZeroEltSplatMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses all elements with the same value as the first element of exa...
ArrayRef< int > getShuffleMask() const
static LLVM_ABI bool isSpliceMask(ArrayRef< int > Mask, int NumSrcElts, int &Index)
Return true if this shuffle mask is a splice mask, concatenating the two inputs together and then ext...
int getMaskValue(unsigned Elt) const
Return the shuffle mask value of this instruction for the given element index.
LLVM_ABI ShuffleVectorInst(Value *V1, Value *Mask, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI bool isValidOperands(const Value *V1, const Value *V2, const Value *Mask)
Return true if a shufflevector instruction can be formed with the specified operands.
static LLVM_ABI bool isSelectMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from its source vectors without lane crossings.
static LLVM_ABI bool isBitRotateMask(ArrayRef< int > Mask, unsigned EltSizeInBits, unsigned MinSubElts, unsigned MaxSubElts, unsigned &NumSubElts, unsigned &RotateAmt)
Checks if the shuffle is a bit rotation of the first operand across multiple subelements,...
VectorType * getType() const
Overload to return most specific vector type.
LLVM_ABI bool isIdentityWithExtract() const
Return true if this shuffle extracts the first N elements of exactly one source vector.
static LLVM_ABI bool isOneUseSingleSourceMask(ArrayRef< int > Mask, int VF)
Return true if this shuffle mask represents "clustered" mask of size VF, i.e.
LLVM_ABI bool isIdentityWithPadding() const
Return true if this shuffle lengthens exactly one source vector with undefs in the high elements.
static LLVM_ABI bool isSingleSourceMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector.
LLVM_ABI bool isConcat() const
Return true if this shuffle concatenates its 2 source vectors.
static LLVM_ABI bool isDeInterleaveMaskOfFactor(ArrayRef< int > Mask, unsigned Factor, unsigned &Index)
Check if the mask is a DE-interleave mask of the given factor Factor like: <Index,...
LLVM_ABI ShuffleVectorInst * cloneImpl() const
static LLVM_ABI bool isIdentityMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector without lane crossin...
static LLVM_ABI bool isExtractSubvectorMask(ArrayRef< int > Mask, int NumSrcElts, int &Index)
Return true if this shuffle mask is an extract subvector mask.
LLVM_ABI void setShuffleMask(ArrayRef< int > Mask)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
LLVM_ABI bool isInterleave(unsigned Factor)
Return if this shuffle interleaves its two input vectors together.
static LLVM_ABI bool isReverseMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask swaps the order of elements from exactly one source vector.
static LLVM_ABI bool isTransposeMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask is a transpose mask.
LLVM_ABI void commute()
Swap the operands and adjust the mask to preserve the semantics of the instruction.
static LLVM_ABI bool isInsertSubvectorMask(ArrayRef< int > Mask, int NumSrcElts, int &NumSubElts, int &Index)
Return true if this shuffle mask is an insert subvector mask.
static LLVM_ABI Constant * convertShuffleMaskForBitcode(ArrayRef< int > Mask, Type *ResultTy)
static LLVM_ABI bool isReplicationMask(ArrayRef< int > Mask, int &ReplicationFactor, int &VF)
Return true if this shuffle mask replicates each of the VF elements in a vector ReplicationFactor tim...
static LLVM_ABI bool isInterleaveMask(ArrayRef< int > Mask, unsigned Factor, unsigned NumInputElts, SmallVectorImpl< unsigned > &StartIndexes)
Return true if the mask interleaves one or more input vectors together.
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
Implements a dense probed hash-table based set with some number of buckets stored inline.
Definition DenseSet.h:291
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void resize(size_type N)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this store instruction.
Align getAlign() const
void setVolatile(bool V)
Specify whether this is a volatile store or not.
void setAlignment(Align Align)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
LLVM_ABI StoreInst * cloneImpl() const
LLVM_ABI StoreInst(Value *Val, Value *Ptr, InsertPosition InsertBefore)
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this store instruction.
bool isVolatile() const
Return true if this is a store to a volatile memory location.
void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System)
Sets the ordering constraint and the synchronization scope ID of this store instruction.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Class to represent struct types.
LLVM_ABI void setSuccessorWeight(unsigned idx, CaseWeightOpt W)
LLVM_ABI Instruction::InstListType::iterator eraseFromParent()
Delegate the call to the underlying SwitchInst::eraseFromParent() and mark this object to not touch t...
LLVM_ABI void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W)
Delegate the call to the underlying SwitchInst::addCase() and set the specified branch weight for the...
LLVM_ABI CaseWeightOpt getSuccessorWeight(unsigned idx)
std::optional< uint32_t > CaseWeightOpt
LLVM_ABI SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I)
Delegate the call to the underlying SwitchInst::removeCase() and remove correspondent branch weight.
void setValue(ConstantInt *V) const
Sets the new value for current case.
void setSuccessor(BasicBlock *S) const
Sets the new successor for current case.
Multiway switch.
LLVM_ABI SwitchInst * cloneImpl() const
LLVM_ABI void addCase(ConstantInt *OnVal, BasicBlock *Dest)
Add an entry to the switch instruction.
CaseIteratorImpl< CaseHandle > CaseIt
unsigned getNumCases() const
Return the number of 'cases' in this switch instruction, excluding the default case.
LLVM_ABI CaseIt removeCase(CaseIt I)
This method removes the specified case and its successor from the switch instruction.
This class represents a truncation of integer types.
LLVM_ABI TruncInst * cloneImpl() const
Clone an identical TruncInst.
LLVM_ABI TruncInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:344
static constexpr TypeSize get(ScalarTy Quantity, bool Scalable)
Definition TypeSize.h:341
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:297
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
Definition Type.h:246
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
LLVM_ABI bool isFirstClassType() const
Return true if the type is "first class", meaning it is a valid type for a Value.
Definition Type.cpp:250
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:198
bool isAggregateType() const
Return true if the type is an aggregate type.
Definition Type.h:304
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:294
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
Definition Type.h:270
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
bool isTokenTy() const
Return true if this is 'token'.
Definition Type.h:234
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
Definition Type.h:225
This class represents a cast unsigned integer to floating point.
LLVM_ABI UIToFPInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI UIToFPInst * cloneImpl() const
Clone an identical UIToFPInst.
UnaryInstruction(Type *Ty, unsigned iType, Value *V, InsertPosition InsertBefore=nullptr)
Definition InstrTypes.h:62
static LLVM_ABI UnaryOperator * Create(UnaryOps Op, Value *S, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a unary instruction, given the opcode and an operand.
LLVM_ABI UnaryOperator(UnaryOps iType, Value *S, Type *Ty, const Twine &Name, InsertPosition InsertBefore)
LLVM_ABI UnaryOperator * cloneImpl() const
UnaryOps getOpcode() const
Definition InstrTypes.h:154
LLVM_ABI UnreachableInst(LLVMContext &C, InsertPosition InsertBefore=nullptr)
LLVM_ABI bool shouldLowerToTrap(bool TrapUnreachable, bool NoTrapAfterNoreturn) const
friend class Instruction
Iterator for Instructions in a `BasicBlock.
LLVM_ABI UnreachableInst * cloneImpl() const
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
LLVM_ABI void set(Value *Val)
Definition Value.h:905
Use * op_iterator
Definition User.h:279
const Use * getOperandList() const
Definition User.h:225
op_range operands()
Definition User.h:292
LLVM_ABI void allocHungoffUses(unsigned N, bool IsPhi=false)
Allocate the array of Uses, followed by a pointer (with bottom bit set) to the User.
Definition User.cpp:50
op_iterator op_begin()
Definition User.h:284
void setNumHungOffUseOperands(unsigned NumOps)
Subclasses with hung off uses need to manage the operand count themselves.
Definition User.h:265
Use & Op()
Definition User.h:196
Value * getOperand(unsigned i) const
Definition User.h:232
unsigned getNumOperands() const
Definition User.h:254
op_iterator op_end()
Definition User.h:286
LLVM_ABI void growHungoffUses(unsigned N, bool IsPhi=false)
Grow the number of hung off uses.
Definition User.cpp:67
VAArgInst(Value *List, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI VAArgInst * cloneImpl() const
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI Value(Type *Ty, unsigned scid)
Definition Value.cpp:53
unsigned char SubclassOptionalData
Hold subclass data that can be dropped.
Definition Value.h:85
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
Definition Value.cpp:390
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition Value.cpp:546
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1099
unsigned NumUserOperands
Definition Value.h:109
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
This class represents zero extension of integer types.
LLVM_ABI ZExtInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI ZExtInst * cloneImpl() const
Clone an identical ZExtInst.
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:202
size_type size() const
Definition DenseSet.h:87
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition DenseSet.h:175
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:201
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:166
An efficient, type-erasing, non-owning reference to a callable.
base_list_type::iterator iterator
Definition ilist.h:121
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
bool match(Val *V, const Pattern &P)
cstfp_pred_ty< is_non_zero_not_denormal_fp > m_NonZeroNotDenormalFP()
Match a floating-point non-zero that is not a denormal.
initializer< Ty > init(const Ty &Val)
@ Switch
The "resume-switch" lowering, where there are separate resume and destroy functions that are shared b...
Definition CoroShape.h:31
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
Definition Metadata.h:667
NodeAddr< UseNode * > Use
Definition RDFGraph.h:385
Context & getContext() const
Definition BasicBlock.h:99
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:318
@ Offset
Definition DWP.cpp:477
auto seq_inclusive(T Begin, T End)
Iterate over an integral type from Begin to End inclusive.
Definition Sequence.h:325
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1705
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1657
unsigned getPointerAddressSpace(const Type *T)
Definition SPIRVUtils.h:342
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:644
FunctionAddr VTableAddr uintptr_t uintptr_t Int32Ty
Definition InstrProf.h:296
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI MDNode * getBranchWeightMDNode(const Instruction &I)
Get the branch weights metadata node.
MemoryEffectsBase< IRMemLocation > MemoryEffects
Summary of how a function affects memory in the program.
Definition ModRef.h:296
std::enable_if_t< std::is_unsigned_v< T >, std::optional< T > > checkedMulUnsigned(T LHS, T RHS)
Multiply two unsigned integers LHS and RHS.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:754
auto reverse(ContainerTy &&C)
Definition STLExtras.h:408
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:288
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool isPointerTy(const Type *T)
Definition SPIRVUtils.h:336
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
constexpr int PoisonMaskElem
LLVM_ABI unsigned getNumBranchWeights(const MDNode &ProfileData)
AtomicOrdering
Atomic ordering for LLVM's memory model.
auto remove_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::remove_if which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1750
OperandBundleDefT< Value * > OperandBundleDef
Definition AutoUpgrade.h:34
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ FMul
Product of floats.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ FAdd
Sum of floats.
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
OutputIt copy(R &&Range, OutputIt Out)
Definition STLExtras.h:1815
constexpr unsigned BitWidth
LLVM_ABI bool extractBranchWeights(const MDNode *ProfileData, SmallVectorImpl< uint32_t > &Weights)
Extract branch weights from MD_prof metadata.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:560
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1877
bool capturesAnything(CaptureComponents CC)
Definition ModRef.h:319
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
Definition STLExtras.h:2088
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
Definition Sequence.h:305
@ Default
The result values are uniform if and only if all operands are uniform.
Definition Uniformity.h:20
LLVM_ABI void scaleProfData(Instruction &I, uint64_t S, uint64_t T)
Scaling the profile data attached to 'I' using the ratio of S/T.
cmpResult
IEEE-754R 5.11: Floating Point Comparison Relations.
Definition APFloat.h:294
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Summary of memprof metadata on allocations.
Used to keep track of an operand bundle.
uint32_t End
The index in the Use& vector where operands for this operand bundle ends.
uint32_t Begin
The index in the Use& vector where operands for this operand bundle starts.
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
static LLVM_ABI std::optional< bool > eq(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_EQ result.
static LLVM_ABI std::optional< bool > ne(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_NE result.
static LLVM_ABI std::optional< bool > sge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGE result.
static LLVM_ABI std::optional< bool > ugt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGT result.
static LLVM_ABI std::optional< bool > slt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLT result.
static LLVM_ABI std::optional< bool > ult(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULT result.
static LLVM_ABI std::optional< bool > ule(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULE result.
static LLVM_ABI std::optional< bool > sle(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLE result.
static LLVM_ABI std::optional< bool > sgt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGT result.
static LLVM_ABI std::optional< bool > uge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGE result.
Matching combinators.
A MapVector that performs no allocations if smaller than a certain size.
Definition MapVector.h:257
Indicates this User has operands co-allocated.
Definition User.h:60
Indicates this User has operands and a descriptor co-allocated .
Definition User.h:66