Thanks to visit codestin.com
Credit goes to llvm.org

LLVM 22.0.0git
Instructions.h
Go to the documentation of this file.
1//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file exposes the class definitions of all of the subclasses of the
10// Instruction class. This is meant to be an easy way to get access to all
11// instruction subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTIONS_H
16#define LLVM_IR_INSTRUCTIONS_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/Bitfields.h"
20#include "llvm/ADT/MapVector.h"
21#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/Twine.h"
24#include "llvm/ADT/iterator.h"
26#include "llvm/IR/CFG.h"
28#include "llvm/IR/Constant.h"
31#include "llvm/IR/InstrTypes.h"
32#include "llvm/IR/Instruction.h"
33#include "llvm/IR/Intrinsics.h"
36#include "llvm/IR/Use.h"
37#include "llvm/IR/User.h"
41#include <cassert>
42#include <cstddef>
43#include <cstdint>
44#include <iterator>
45#include <optional>
46
47namespace llvm {
48
49class APFloat;
50class APInt;
51class BasicBlock;
52class ConstantInt;
53class DataLayout;
54struct KnownBits;
55class StringRef;
56class Type;
57class Value;
58class UnreachableInst;
59
60//===----------------------------------------------------------------------===//
61// AllocaInst Class
62//===----------------------------------------------------------------------===//
63
64/// an instruction to allocate memory on the stack
66 Type *AllocatedType;
67
68 using AlignmentField = AlignmentBitfieldElementT<0>;
69 using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>;
71 static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField,
72 SwiftErrorField>(),
73 "Bitfields must be contiguous");
74
75protected:
76 // Note: Instruction needs to be a friend here to call cloneImpl.
77 friend class Instruction;
78
80
81public:
82 LLVM_ABI explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
83 const Twine &Name, InsertPosition InsertBefore);
84
85 LLVM_ABI AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
86 InsertPosition InsertBefore);
87
88 LLVM_ABI AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
89 Align Align, const Twine &Name = "",
90 InsertPosition InsertBefore = nullptr);
91
92 /// Return true if there is an allocation size parameter to the allocation
93 /// instruction that is not 1.
94 LLVM_ABI bool isArrayAllocation() const;
95
96 /// Get the number of elements allocated. For a simple allocation of a single
97 /// element, this will return a constant 1 value.
98 const Value *getArraySize() const { return getOperand(0); }
99 Value *getArraySize() { return getOperand(0); }
100
101 /// Overload to return most specific pointer type.
105
106 /// Return the address space for the allocation.
107 unsigned getAddressSpace() const {
108 return getType()->getAddressSpace();
109 }
110
111 /// Get allocation size in bytes. Returns std::nullopt if size can't be
112 /// determined, e.g. in case of a VLA.
113 LLVM_ABI std::optional<TypeSize>
114 getAllocationSize(const DataLayout &DL) const;
115
116 /// Get allocation size in bits. Returns std::nullopt if size can't be
117 /// determined, e.g. in case of a VLA.
118 LLVM_ABI std::optional<TypeSize>
120
121 /// Return the type that is being allocated by the instruction.
122 Type *getAllocatedType() const { return AllocatedType; }
123 /// for use only in special circumstances that need to generically
124 /// transform a whole instruction (eg: IR linking and vectorization).
125 void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
126
127 /// Return the alignment of the memory that is being allocated by the
128 /// instruction.
129 Align getAlign() const {
130 return Align(1ULL << getSubclassData<AlignmentField>());
131 }
132
134 setSubclassData<AlignmentField>(Log2(Align));
135 }
136
137 /// Return true if this alloca is in the entry block of the function and is a
138 /// constant size. If so, the code generator will fold it into the
139 /// prolog/epilog code, so it is basically free.
140 LLVM_ABI bool isStaticAlloca() const;
141
142 /// Return true if this alloca is used as an inalloca argument to a call. Such
143 /// allocas are never considered static even if they are in the entry block.
147
148 /// Specify whether this alloca is used to represent the arguments to a call.
149 void setUsedWithInAlloca(bool V) {
150 setSubclassData<UsedWithInAllocaField>(V);
151 }
152
153 /// Return true if this alloca is used as a swifterror argument to a call.
155 /// Specify whether this alloca is used to represent a swifterror.
156 void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); }
157
158 // Methods for support type inquiry through isa, cast, and dyn_cast:
159 static bool classof(const Instruction *I) {
160 return (I->getOpcode() == Instruction::Alloca);
161 }
162 static bool classof(const Value *V) {
164 }
165
166private:
167 // Shadow Instruction::setInstructionSubclassData with a private forwarding
168 // method so that subclasses cannot accidentally use it.
169 template <typename Bitfield>
170 void setSubclassData(typename Bitfield::Type Value) {
172 }
173};
174
175//===----------------------------------------------------------------------===//
176// LoadInst Class
177//===----------------------------------------------------------------------===//
178
179/// An instruction for reading from memory. This uses the SubclassData field in
180/// Value to store whether or not the load is volatile.
182 using VolatileField = BoolBitfieldElementT<0>;
185 static_assert(
187 "Bitfields must be contiguous");
188
189 void AssertOK();
190
191protected:
192 // Note: Instruction needs to be a friend here to call cloneImpl.
193 friend class Instruction;
194
195 LLVM_ABI LoadInst *cloneImpl() const;
196
197public:
198 LLVM_ABI LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr,
199 InsertPosition InsertBefore);
200 LLVM_ABI LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
201 InsertPosition InsertBefore);
202 LLVM_ABI LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
203 Align Align, InsertPosition InsertBefore = nullptr);
204 LLVM_ABI LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
207 InsertPosition InsertBefore = nullptr);
208
209 /// Return true if this is a load from a volatile memory location.
211
212 /// Specify whether this is a volatile load or not.
213 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
214
215 /// Return the alignment of the access that is being performed.
216 Align getAlign() const {
217 return Align(1ULL << (getSubclassData<AlignmentField>()));
218 }
219
221 setSubclassData<AlignmentField>(Log2(Align));
222 }
223
224 /// Returns the ordering constraint of this load instruction.
228 /// Sets the ordering constraint of this load instruction. May not be Release
229 /// or AcquireRelease.
231 setSubclassData<OrderingField>(Ordering);
232 }
233
234 /// Returns the synchronization scope ID of this load instruction.
236 return SSID;
237 }
238
239 /// Sets the synchronization scope ID of this load instruction.
241 this->SSID = SSID;
242 }
243
244 /// Sets the ordering constraint and the synchronization scope ID of this load
245 /// instruction.
248 setOrdering(Ordering);
249 setSyncScopeID(SSID);
250 }
251
252 bool isSimple() const { return !isAtomic() && !isVolatile(); }
253
254 bool isUnordered() const {
257 !isVolatile();
258 }
259
261 const Value *getPointerOperand() const { return getOperand(0); }
262 static unsigned getPointerOperandIndex() { return 0U; }
264
265 /// Returns the address space of the pointer operand.
266 unsigned getPointerAddressSpace() const {
268 }
269
270 // Methods for support type inquiry through isa, cast, and dyn_cast:
271 static bool classof(const Instruction *I) {
272 return I->getOpcode() == Instruction::Load;
273 }
274 static bool classof(const Value *V) {
276 }
277
278private:
279 // Shadow Instruction::setInstructionSubclassData with a private forwarding
280 // method so that subclasses cannot accidentally use it.
281 template <typename Bitfield>
282 void setSubclassData(typename Bitfield::Type Value) {
284 }
285
286 /// The synchronization scope ID of this load instruction. Not quite enough
287 /// room in SubClassData for everything, so synchronization scope ID gets its
288 /// own field.
289 SyncScope::ID SSID;
290};
291
292//===----------------------------------------------------------------------===//
293// StoreInst Class
294//===----------------------------------------------------------------------===//
295
296/// An instruction for storing to memory.
297class StoreInst : public Instruction {
298 using VolatileField = BoolBitfieldElementT<0>;
301 static_assert(
303 "Bitfields must be contiguous");
304
305 void AssertOK();
306
307 constexpr static IntrusiveOperandsAllocMarker AllocMarker{2};
308
309protected:
310 // Note: Instruction needs to be a friend here to call cloneImpl.
311 friend class Instruction;
312
314
315public:
316 LLVM_ABI StoreInst(Value *Val, Value *Ptr, InsertPosition InsertBefore);
318 InsertPosition InsertBefore);
320 InsertPosition InsertBefore = nullptr);
322 AtomicOrdering Order,
324 InsertPosition InsertBefore = nullptr);
325
326 // allocate space for exactly two operands
327 void *operator new(size_t S) { return User::operator new(S, AllocMarker); }
328 void operator delete(void *Ptr) { User::operator delete(Ptr); }
329
330 /// Return true if this is a store to a volatile memory location.
332
333 /// Specify whether this is a volatile store or not.
334 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
335
336 /// Transparently provide more efficient getOperand methods.
338
339 Align getAlign() const {
340 return Align(1ULL << (getSubclassData<AlignmentField>()));
341 }
342
344 setSubclassData<AlignmentField>(Log2(Align));
345 }
346
347 /// Returns the ordering constraint of this store instruction.
351
352 /// Sets the ordering constraint of this store instruction. May not be
353 /// Acquire or AcquireRelease.
355 setSubclassData<OrderingField>(Ordering);
356 }
357
358 /// Returns the synchronization scope ID of this store instruction.
360 return SSID;
361 }
362
363 /// Sets the synchronization scope ID of this store instruction.
365 this->SSID = SSID;
366 }
367
368 /// Sets the ordering constraint and the synchronization scope ID of this
369 /// store instruction.
372 setOrdering(Ordering);
373 setSyncScopeID(SSID);
374 }
375
376 bool isSimple() const { return !isAtomic() && !isVolatile(); }
377
378 bool isUnordered() const {
381 !isVolatile();
382 }
383
385 const Value *getValueOperand() const { return getOperand(0); }
386
388 const Value *getPointerOperand() const { return getOperand(1); }
389 static unsigned getPointerOperandIndex() { return 1U; }
391
392 /// Returns the address space of the pointer operand.
393 unsigned getPointerAddressSpace() const {
395 }
396
397 // Methods for support type inquiry through isa, cast, and dyn_cast:
398 static bool classof(const Instruction *I) {
399 return I->getOpcode() == Instruction::Store;
400 }
401 static bool classof(const Value *V) {
403 }
404
405private:
406 // Shadow Instruction::setInstructionSubclassData with a private forwarding
407 // method so that subclasses cannot accidentally use it.
408 template <typename Bitfield>
409 void setSubclassData(typename Bitfield::Type Value) {
411 }
412
413 /// The synchronization scope ID of this store instruction. Not quite enough
414 /// room in SubClassData for everything, so synchronization scope ID gets its
415 /// own field.
416 SyncScope::ID SSID;
417};
418
419template <>
420struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
421};
422
424
425//===----------------------------------------------------------------------===//
426// FenceInst Class
427//===----------------------------------------------------------------------===//
428
429/// An instruction for ordering other memory operations.
430class FenceInst : public Instruction {
431 using OrderingField = AtomicOrderingBitfieldElementT<0>;
432
433 constexpr static IntrusiveOperandsAllocMarker AllocMarker{0};
434
435 void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
436
437protected:
438 // Note: Instruction needs to be a friend here to call cloneImpl.
439 friend class Instruction;
440
442
443public:
444 // Ordering may only be Acquire, Release, AcquireRelease, or
445 // SequentiallyConsistent.
448 InsertPosition InsertBefore = nullptr);
449
450 // allocate space for exactly zero operands
451 void *operator new(size_t S) { return User::operator new(S, AllocMarker); }
452 void operator delete(void *Ptr) { User::operator delete(Ptr); }
453
454 /// Returns the ordering constraint of this fence instruction.
458
459 /// Sets the ordering constraint of this fence instruction. May only be
460 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
462 setSubclassData<OrderingField>(Ordering);
463 }
464
465 /// Returns the synchronization scope ID of this fence instruction.
467 return SSID;
468 }
469
470 /// Sets the synchronization scope ID of this fence instruction.
472 this->SSID = SSID;
473 }
474
475 // Methods for support type inquiry through isa, cast, and dyn_cast:
476 static bool classof(const Instruction *I) {
477 return I->getOpcode() == Instruction::Fence;
478 }
479 static bool classof(const Value *V) {
481 }
482
483private:
484 // Shadow Instruction::setInstructionSubclassData with a private forwarding
485 // method so that subclasses cannot accidentally use it.
486 template <typename Bitfield>
487 void setSubclassData(typename Bitfield::Type Value) {
489 }
490
491 /// The synchronization scope ID of this fence instruction. Not quite enough
492 /// room in SubClassData for everything, so synchronization scope ID gets its
493 /// own field.
494 SyncScope::ID SSID;
495};
496
497//===----------------------------------------------------------------------===//
498// AtomicCmpXchgInst Class
499//===----------------------------------------------------------------------===//
500
501/// An instruction that atomically checks whether a
502/// specified value is in a memory location, and, if it is, stores a new value
503/// there. The value returned by this instruction is a pair containing the
504/// original value as first element, and an i1 indicating success (true) or
505/// failure (false) as second element.
506///
508 void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align,
509 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
510 SyncScope::ID SSID);
511
512 template <unsigned Offset>
513 using AtomicOrderingBitfieldElement =
516
517 constexpr static IntrusiveOperandsAllocMarker AllocMarker{3};
518
519protected:
520 // Note: Instruction needs to be a friend here to call cloneImpl.
521 friend class Instruction;
522
524
525public:
527 Align Alignment, AtomicOrdering SuccessOrdering,
528 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
529 InsertPosition InsertBefore = nullptr);
530
531 // allocate space for exactly three operands
532 void *operator new(size_t S) { return User::operator new(S, AllocMarker); }
533 void operator delete(void *Ptr) { User::operator delete(Ptr); }
534
543 static_assert(
546 "Bitfields must be contiguous");
547
548 /// Return the alignment of the memory that is being allocated by the
549 /// instruction.
550 Align getAlign() const {
551 return Align(1ULL << getSubclassData<AlignmentField>());
552 }
553
555 setSubclassData<AlignmentField>(Log2(Align));
556 }
557
558 /// Return true if this is a cmpxchg from a volatile memory
559 /// location.
560 ///
562
563 /// Specify whether this is a volatile cmpxchg.
564 ///
565 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
566
567 /// Return true if this cmpxchg may spuriously fail.
568 bool isWeak() const { return getSubclassData<WeakField>(); }
569
570 void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
571
572 /// Transparently provide more efficient getOperand methods.
574
576 return Ordering != AtomicOrdering::NotAtomic &&
577 Ordering != AtomicOrdering::Unordered;
578 }
579
581 return Ordering != AtomicOrdering::NotAtomic &&
582 Ordering != AtomicOrdering::Unordered &&
583 Ordering != AtomicOrdering::AcquireRelease &&
584 Ordering != AtomicOrdering::Release;
585 }
586
587 /// Returns the success ordering constraint of this cmpxchg instruction.
591
592 /// Sets the success ordering constraint of this cmpxchg instruction.
594 assert(isValidSuccessOrdering(Ordering) &&
595 "invalid CmpXchg success ordering");
596 setSubclassData<SuccessOrderingField>(Ordering);
597 }
598
599 /// Returns the failure ordering constraint of this cmpxchg instruction.
603
604 /// Sets the failure ordering constraint of this cmpxchg instruction.
606 assert(isValidFailureOrdering(Ordering) &&
607 "invalid CmpXchg failure ordering");
608 setSubclassData<FailureOrderingField>(Ordering);
609 }
610
611 /// Returns a single ordering which is at least as strong as both the
612 /// success and failure orderings for this cmpxchg.
624
625 /// Returns the synchronization scope ID of this cmpxchg instruction.
627 return SSID;
628 }
629
630 /// Sets the synchronization scope ID of this cmpxchg instruction.
632 this->SSID = SSID;
633 }
634
636 const Value *getPointerOperand() const { return getOperand(0); }
637 static unsigned getPointerOperandIndex() { return 0U; }
638
640 const Value *getCompareOperand() const { return getOperand(1); }
641
643 const Value *getNewValOperand() const { return getOperand(2); }
644
645 /// Returns the address space of the pointer operand.
646 unsigned getPointerAddressSpace() const {
648 }
649
650 /// Returns the strongest permitted ordering on failure, given the
651 /// desired ordering on success.
652 ///
653 /// If the comparison in a cmpxchg operation fails, there is no atomic store
654 /// so release semantics cannot be provided. So this function drops explicit
655 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
656 /// operation would remain SequentiallyConsistent.
657 static AtomicOrdering
659 switch (SuccessOrdering) {
660 default:
661 llvm_unreachable("invalid cmpxchg success ordering");
670 }
671 }
672
673 // Methods for support type inquiry through isa, cast, and dyn_cast:
674 static bool classof(const Instruction *I) {
675 return I->getOpcode() == Instruction::AtomicCmpXchg;
676 }
677 static bool classof(const Value *V) {
679 }
680
681private:
682 // Shadow Instruction::setInstructionSubclassData with a private forwarding
683 // method so that subclasses cannot accidentally use it.
684 template <typename Bitfield>
685 void setSubclassData(typename Bitfield::Type Value) {
687 }
688
689 /// The synchronization scope ID of this cmpxchg instruction. Not quite
690 /// enough room in SubClassData for everything, so synchronization scope ID
691 /// gets its own field.
692 SyncScope::ID SSID;
693};
694
695template <>
697 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
698};
699
701
702//===----------------------------------------------------------------------===//
703// AtomicRMWInst Class
704//===----------------------------------------------------------------------===//
705
706/// an instruction that atomically reads a memory location,
707/// combines it with another value, and then stores the result back. Returns
708/// the old value.
709///
711protected:
712 // Note: Instruction needs to be a friend here to call cloneImpl.
713 friend class Instruction;
714
716
717public:
718 /// This enumeration lists the possible modifications atomicrmw can make. In
719 /// the descriptions, 'p' is the pointer to the instruction's memory location,
720 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
721 /// instruction. These instructions always return 'old'.
722 enum BinOp : unsigned {
723 /// *p = v
725 /// *p = old + v
727 /// *p = old - v
729 /// *p = old & v
731 /// *p = ~(old & v)
733 /// *p = old | v
735 /// *p = old ^ v
737 /// *p = old >signed v ? old : v
739 /// *p = old <signed v ? old : v
741 /// *p = old >unsigned v ? old : v
743 /// *p = old <unsigned v ? old : v
745
746 /// *p = old + v
748
749 /// *p = old - v
751
752 /// *p = maxnum(old, v)
753 /// \p maxnum matches the behavior of \p llvm.maxnum.*.
755
756 /// *p = minnum(old, v)
757 /// \p minnum matches the behavior of \p llvm.minnum.*.
759
760 /// *p = maximum(old, v)
761 /// \p maximum matches the behavior of \p llvm.maximum.*.
763
764 /// *p = minimum(old, v)
765 /// \p minimum matches the behavior of \p llvm.minimum.*.
767
768 /// Increment one up to a maximum value.
769 /// *p = (old u>= v) ? 0 : (old + 1)
771
772 /// Decrement one until a minimum value or zero.
773 /// *p = ((old == 0) || (old u> v)) ? v : (old - 1)
775
776 /// Subtract only if no unsigned overflow.
777 /// *p = (old u>= v) ? old - v : old
779
780 /// *p = usub.sat(old, v)
781 /// \p usub.sat matches the behavior of \p llvm.usub.sat.*.
783
787 };
788
789private:
790 template <unsigned Offset>
791 using AtomicOrderingBitfieldElement =
794
795 template <unsigned Offset>
796 using BinOpBitfieldElement =
798
799 constexpr static IntrusiveOperandsAllocMarker AllocMarker{2};
800
801public:
802 LLVM_ABI AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
803 Align Alignment, AtomicOrdering Ordering,
804 SyncScope::ID SSID,
805 InsertPosition InsertBefore = nullptr);
806
807 // allocate space for exactly two operands
808 void *operator new(size_t S) { return User::operator new(S, AllocMarker); }
809 void operator delete(void *Ptr) { User::operator delete(Ptr); }
810
814 using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>;
818 "Bitfields must be contiguous");
819
821
822 LLVM_ABI static StringRef getOperationName(BinOp Op);
823
824 static bool isFPOperation(BinOp Op) {
825 switch (Op) {
832 return true;
833 default:
834 return false;
835 }
836 }
837
839 setSubclassData<OperationField>(Operation);
840 }
841
842 /// Return the alignment of the memory that is being allocated by the
843 /// instruction.
844 Align getAlign() const {
845 return Align(1ULL << getSubclassData<AlignmentField>());
846 }
847
849 setSubclassData<AlignmentField>(Log2(Align));
850 }
851
852 /// Return true if this is a RMW on a volatile memory location.
853 ///
855
856 /// Specify whether this is a volatile RMW or not.
857 ///
858 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
859
860 /// Transparently provide more efficient getOperand methods.
862
863 /// Returns the ordering constraint of this rmw instruction.
867
868 /// Sets the ordering constraint of this rmw instruction.
870 assert(Ordering != AtomicOrdering::NotAtomic &&
871 "atomicrmw instructions can only be atomic.");
872 assert(Ordering != AtomicOrdering::Unordered &&
873 "atomicrmw instructions cannot be unordered.");
874 setSubclassData<AtomicOrderingField>(Ordering);
875 }
876
877 /// Returns the synchronization scope ID of this rmw instruction.
879 return SSID;
880 }
881
882 /// Sets the synchronization scope ID of this rmw instruction.
884 this->SSID = SSID;
885 }
886
888 const Value *getPointerOperand() const { return getOperand(0); }
889 static unsigned getPointerOperandIndex() { return 0U; }
890
892 const Value *getValOperand() const { return getOperand(1); }
893
894 /// Returns the address space of the pointer operand.
895 unsigned getPointerAddressSpace() const {
897 }
898
900 return isFPOperation(getOperation());
901 }
902
903 // Methods for support type inquiry through isa, cast, and dyn_cast:
904 static bool classof(const Instruction *I) {
905 return I->getOpcode() == Instruction::AtomicRMW;
906 }
907 static bool classof(const Value *V) {
909 }
910
911private:
912 void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align,
913 AtomicOrdering Ordering, SyncScope::ID SSID);
914
915 // Shadow Instruction::setInstructionSubclassData with a private forwarding
916 // method so that subclasses cannot accidentally use it.
917 template <typename Bitfield>
918 void setSubclassData(typename Bitfield::Type Value) {
920 }
921
922 /// The synchronization scope ID of this rmw instruction. Not quite enough
923 /// room in SubClassData for everything, so synchronization scope ID gets its
924 /// own field.
925 SyncScope::ID SSID;
926};
927
928template <>
930 : public FixedNumOperandTraits<AtomicRMWInst,2> {
931};
932
934
935//===----------------------------------------------------------------------===//
936// GetElementPtrInst Class
937//===----------------------------------------------------------------------===//
938
939// checkGEPType - Simple wrapper function to give a better assertion failure
940// message on bad indexes for a gep instruction.
941//
943 assert(Ty && "Invalid GetElementPtrInst indices for type!");
944 return Ty;
945}
946
947/// an instruction for type-safe pointer arithmetic to
948/// access elements of arrays and structs
949///
950class GetElementPtrInst : public Instruction {
951 Type *SourceElementType;
952 Type *ResultElementType;
953
954 GetElementPtrInst(const GetElementPtrInst &GEPI, AllocInfo AllocInfo);
955
956 /// Constructors - Create a getelementptr instruction with a base pointer an
957 /// list of indices. The first and second ctor can optionally insert before an
958 /// existing instruction, the third appends the new instruction to the
959 /// specified BasicBlock.
960 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
962 const Twine &NameStr, InsertPosition InsertBefore);
963
964 LLVM_ABI void init(Value *Ptr, ArrayRef<Value *> IdxList,
965 const Twine &NameStr);
966
967protected:
968 // Note: Instruction needs to be a friend here to call cloneImpl.
969 friend class Instruction;
970
971 LLVM_ABI GetElementPtrInst *cloneImpl() const;
972
973public:
974 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
975 ArrayRef<Value *> IdxList,
976 const Twine &NameStr = "",
977 InsertPosition InsertBefore = nullptr) {
978 unsigned Values = 1 + unsigned(IdxList.size());
979 assert(PointeeType && "Must specify element type");
980 IntrusiveOperandsAllocMarker AllocMarker{Values};
981 return new (AllocMarker) GetElementPtrInst(
982 PointeeType, Ptr, IdxList, AllocMarker, NameStr, InsertBefore);
983 }
984
985 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
987 const Twine &NameStr = "",
988 InsertPosition InsertBefore = nullptr) {
989 GetElementPtrInst *GEP =
990 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
991 GEP->setNoWrapFlags(NW);
992 return GEP;
993 }
994
995 /// Create an "inbounds" getelementptr. See the documentation for the
996 /// "inbounds" flag in LangRef.html for details.
997 static GetElementPtrInst *
999 const Twine &NameStr = "",
1000 InsertPosition InsertBefore = nullptr) {
1001 return Create(PointeeType, Ptr, IdxList, GEPNoWrapFlags::inBounds(),
1002 NameStr, InsertBefore);
1003 }
1004
1005 /// Transparently provide more efficient getOperand methods.
1007
1008 Type *getSourceElementType() const { return SourceElementType; }
1009
1010 void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
1011 void setResultElementType(Type *Ty) { ResultElementType = Ty; }
1012
1014 return ResultElementType;
1015 }
1016
1017 /// Returns the address space of this instruction's pointer type.
1018 unsigned getAddressSpace() const {
1019 // Note that this is always the same as the pointer operand's address space
1020 // and that is cheaper to compute, so cheat here.
1021 return getPointerAddressSpace();
1022 }
1023
1024 /// Returns the result type of a getelementptr with the given source
1025 /// element type and indexes.
1026 ///
1027 /// Null is returned if the indices are invalid for the specified
1028 /// source element type.
1029 LLVM_ABI static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1031 LLVM_ABI static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1032
1033 /// Return the type of the element at the given index of an indexable
1034 /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})".
1035 ///
1036 /// Returns null if the type can't be indexed, or the given index is not
1037 /// legal for the given type.
1038 LLVM_ABI static Type *getTypeAtIndex(Type *Ty, Value *Idx);
1039 LLVM_ABI static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
1040
1041 inline op_iterator idx_begin() { return op_begin()+1; }
1042 inline const_op_iterator idx_begin() const { return op_begin()+1; }
1043 inline op_iterator idx_end() { return op_end(); }
1044 inline const_op_iterator idx_end() const { return op_end(); }
1045
1049
1051 return make_range(idx_begin(), idx_end());
1052 }
1053
1055 return getOperand(0);
1056 }
1057 const Value *getPointerOperand() const {
1058 return getOperand(0);
1059 }
1060 static unsigned getPointerOperandIndex() {
1061 return 0U; // get index for modifying correct operand.
1062 }
1063
1064 /// Method to return the pointer operand as a
1065 /// PointerType.
1067 return getPointerOperand()->getType();
1068 }
1069
1070 /// Returns the address space of the pointer operand.
1071 unsigned getPointerAddressSpace() const {
1073 }
1074
1075 /// Returns the pointer type returned by the GEP
1076 /// instruction, which may be a vector of pointers.
1078 // Vector GEP
1079 Type *Ty = Ptr->getType();
1080 if (Ty->isVectorTy())
1081 return Ty;
1082
1083 for (Value *Index : IdxList)
1084 if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) {
1085 ElementCount EltCount = IndexVTy->getElementCount();
1086 return VectorType::get(Ty, EltCount);
1087 }
1088 // Scalar GEP
1089 return Ty;
1090 }
1091
1092 unsigned getNumIndices() const { // Note: always non-negative
1093 return getNumOperands() - 1;
1094 }
1095
1096 bool hasIndices() const {
1097 return getNumOperands() > 1;
1098 }
1099
1100 /// Return true if all of the indices of this GEP are
1101 /// zeros. If so, the result pointer and the first operand have the same
1102 /// value, just potentially different types.
1103 LLVM_ABI bool hasAllZeroIndices() const;
1104
1105 /// Return true if all of the indices of this GEP are
1106 /// constant integers. If so, the result pointer and the first operand have
1107 /// a constant offset between them.
1108 LLVM_ABI bool hasAllConstantIndices() const;
1109
1110 /// Set nowrap flags for GEP instruction.
1112
1113 /// Set or clear the inbounds flag on this GEP instruction.
1114 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1115 /// TODO: Remove this method in favor of setNoWrapFlags().
1116 LLVM_ABI void setIsInBounds(bool b = true);
1117
1118 /// Get the nowrap flags for the GEP instruction.
1120
1121 /// Determine whether the GEP has the inbounds flag.
1122 LLVM_ABI bool isInBounds() const;
1123
1124 /// Determine whether the GEP has the nusw flag.
1125 LLVM_ABI bool hasNoUnsignedSignedWrap() const;
1126
1127 /// Determine whether the GEP has the nuw flag.
1128 LLVM_ABI bool hasNoUnsignedWrap() const;
1129
1130 /// Accumulate the constant address offset of this GEP if possible.
1131 ///
1132 /// This routine accepts an APInt into which it will accumulate the constant
1133 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1134 /// all-constant, it returns false and the value of the offset APInt is
1135 /// undefined (it is *not* preserved!). The APInt passed into this routine
1136 /// must be at least as wide as the IntPtr type for the address space of
1137 /// the base GEP pointer.
1139 APInt &Offset) const;
1140 LLVM_ABI bool
1141 collectOffset(const DataLayout &DL, unsigned BitWidth,
1142 SmallMapVector<Value *, APInt, 4> &VariableOffsets,
1143 APInt &ConstantOffset) const;
1144 // Methods for support type inquiry through isa, cast, and dyn_cast:
1145 static bool classof(const Instruction *I) {
1146 return (I->getOpcode() == Instruction::GetElementPtr);
1147 }
1148 static bool classof(const Value *V) {
1150 }
1151};
1152
1153template <>
1155 : public VariadicOperandTraits<GetElementPtrInst> {};
1156
1157GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1158 ArrayRef<Value *> IdxList,
1159 AllocInfo AllocInfo, const Twine &NameStr,
1160 InsertPosition InsertBefore)
1161 : Instruction(getGEPReturnType(Ptr, IdxList), GetElementPtr, AllocInfo,
1162 InsertBefore),
1163 SourceElementType(PointeeType),
1164 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1165 init(Ptr, IdxList, NameStr);
1166}
1167
1168DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)
1169
1170//===----------------------------------------------------------------------===//
1171// ICmpInst Class
1172//===----------------------------------------------------------------------===//
1173
1174/// This instruction compares its operands according to the predicate given
1175/// to the constructor. It only operates on integers or pointers. The operands
1176/// must be identical types.
1177/// Represent an integer comparison operator.
1178class ICmpInst: public CmpInst {
1179 void AssertOK() {
1181 "Invalid ICmp predicate value");
1182 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1183 "Both operands to ICmp instruction are not of the same type!");
1184 // Check that the operands are the right type
1185 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
1186 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
1187 "Invalid operand types for ICmp instruction");
1188 }
1189
1190 enum { SameSign = (1 << 0) };
1191
1192protected:
1193 // Note: Instruction needs to be a friend here to call cloneImpl.
1194 friend class Instruction;
1195
1196 /// Clone an identical ICmpInst
1197 LLVM_ABI ICmpInst *cloneImpl() const;
1198
1199public:
1200 /// Constructor with insertion semantics.
1201 ICmpInst(InsertPosition InsertBefore, ///< Where to insert
1202 Predicate pred, ///< The predicate to use for the comparison
1203 Value *LHS, ///< The left-hand-side of the expression
1204 Value *RHS, ///< The right-hand-side of the expression
1205 const Twine &NameStr = "" ///< Name of the instruction
1206 )
1207 : CmpInst(makeCmpResultType(LHS->getType()), Instruction::ICmp, pred, LHS,
1208 RHS, NameStr, InsertBefore) {
1209#ifndef NDEBUG
1210 AssertOK();
1211#endif
1212 }
1213
1214 /// Constructor with no-insertion semantics
1216 Predicate pred, ///< The predicate to use for the comparison
1217 Value *LHS, ///< The left-hand-side of the expression
1218 Value *RHS, ///< The right-hand-side of the expression
1219 const Twine &NameStr = "" ///< Name of the instruction
1221 Instruction::ICmp, pred, LHS, RHS, NameStr) {
1222#ifndef NDEBUG
1223 AssertOK();
1224#endif
1225 }
1226
1227 /// @returns the predicate along with samesign information.
1229 return {getPredicate(), hasSameSign()};
1230 }
1231
1232 /// @returns the inverse predicate along with samesign information: static
1233 /// variant.
1235 return {getInversePredicate(Pred), Pred.hasSameSign()};
1236 }
1237
1238 /// @returns the inverse predicate along with samesign information.
1242
1243 /// @returns the swapped predicate along with samesign information: static
1244 /// variant.
1246 return {getSwappedPredicate(Pred), Pred.hasSameSign()};
1247 }
1248
1249 /// @returns the swapped predicate along with samesign information.
1253
1254 /// @returns the non-strict predicate along with samesign information: static
1255 /// variant.
1257 return {getNonStrictPredicate(Pred), Pred.hasSameSign()};
1258 }
1259
1260 /// For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
1261 /// @returns the non-strict predicate along with samesign information.
1265
1266 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1267 /// @returns the predicate that would be the result if the operand were
1268 /// regarded as signed.
1269 /// Return the signed version of the predicate.
1273
1274 /// Return the signed version of the predicate: static variant.
1275 LLVM_ABI static Predicate getSignedPredicate(Predicate Pred);
1276
1277 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1278 /// @returns the predicate that would be the result if the operand were
1279 /// regarded as unsigned.
1280 /// Return the unsigned version of the predicate.
1284
1285 /// Return the unsigned version of the predicate: static variant.
1286 LLVM_ABI static Predicate getUnsignedPredicate(Predicate Pred);
1287
1288 /// For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ
1289 /// @returns the unsigned version of the signed predicate pred or
1290 /// the signed version of the signed predicate pred.
1291 /// Static variant.
1292 LLVM_ABI static Predicate getFlippedSignednessPredicate(Predicate Pred);
1293
1294 /// For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ
1295 /// @returns the unsigned version of the signed predicate pred or
1296 /// the signed version of the signed predicate pred.
1300
1301 /// Determine if Pred1 implies Pred2 is true, false, or if nothing can be
1302 /// inferred about the implication, when two compares have matching operands.
1303 LLVM_ABI static std::optional<bool>
1304 isImpliedByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2);
1305
1306 void setSameSign(bool B = true) {
1307 SubclassOptionalData = (SubclassOptionalData & ~SameSign) | (B * SameSign);
1308 }
1309
1310 /// An icmp instruction, which can be marked as "samesign", indicating that
1311 /// the two operands have the same sign. This means that we can convert
1312 /// "slt" to "ult" and vice versa, which enables more optimizations.
1313 bool hasSameSign() const { return SubclassOptionalData & SameSign; }
1314
1315 /// Return true if this predicate is either EQ or NE. This also
1316 /// tests for commutativity.
1317 static bool isEquality(Predicate P) {
1318 return P == ICMP_EQ || P == ICMP_NE;
1319 }
1320
1321 /// Return true if this predicate is either EQ or NE. This also
1322 /// tests for commutativity.
1323 bool isEquality() const {
1324 return isEquality(getPredicate());
1325 }
1326
1327 /// @returns true if the predicate is commutative
1328 /// Determine if this relation is commutative.
1329 static bool isCommutative(Predicate P) { return isEquality(P); }
1330
1331 /// @returns true if the predicate of this ICmpInst is commutative
1332 /// Determine if this relation is commutative.
1333 bool isCommutative() const { return isCommutative(getPredicate()); }
1334
1335 /// Return true if the predicate is relational (not EQ or NE).
1336 ///
1337 bool isRelational() const {
1338 return !isEquality();
1339 }
1340
1341 /// Return true if the predicate is relational (not EQ or NE).
1342 ///
1343 static bool isRelational(Predicate P) {
1344 return !isEquality(P);
1345 }
1346
1347 /// Return true if the predicate is SGT or UGT.
1348 ///
1349 static bool isGT(Predicate P) {
1350 return P == ICMP_SGT || P == ICMP_UGT;
1351 }
1352
1353 /// Return true if the predicate is SLT or ULT.
1354 ///
1355 static bool isLT(Predicate P) {
1356 return P == ICMP_SLT || P == ICMP_ULT;
1357 }
1358
1359 /// Return true if the predicate is SGE or UGE.
1360 ///
1361 static bool isGE(Predicate P) {
1362 return P == ICMP_SGE || P == ICMP_UGE;
1363 }
1364
1365 /// Return true if the predicate is SLE or ULE.
1366 ///
1367 static bool isLE(Predicate P) {
1368 return P == ICMP_SLE || P == ICMP_ULE;
1369 }
1370
1371 /// Returns the sequence of all ICmp predicates.
1372 ///
1373 static auto predicates() { return ICmpPredicates(); }
1374
1375 /// Exchange the two operands to this instruction in such a way that it does
1376 /// not modify the semantics of the instruction. The predicate value may be
1377 /// changed to retain the same result if the predicate is order dependent
1378 /// (e.g. ult).
1379 /// Swap operands and adjust predicate.
1382 Op<0>().swap(Op<1>());
1383 }
1384
1385 /// Return result of `LHS Pred RHS` comparison.
1386 LLVM_ABI static bool compare(const APInt &LHS, const APInt &RHS,
1387 ICmpInst::Predicate Pred);
1388
1389 /// Return result of `LHS Pred RHS`, if it can be determined from the
1390 /// KnownBits. Otherwise return nullopt.
1391 LLVM_ABI static std::optional<bool>
1392 compare(const KnownBits &LHS, const KnownBits &RHS, ICmpInst::Predicate Pred);
1393
1394 // Methods for support type inquiry through isa, cast, and dyn_cast:
1395 static bool classof(const Instruction *I) {
1396 return I->getOpcode() == Instruction::ICmp;
1397 }
1398 static bool classof(const Value *V) {
1400 }
1401};
1402
1403//===----------------------------------------------------------------------===//
1404// FCmpInst Class
1405//===----------------------------------------------------------------------===//
1406
1407/// This instruction compares its operands according to the predicate given
1408/// to the constructor. It only operates on floating point values or packed
1409/// vectors of floating point values. The operands must be identical types.
1410/// Represents a floating point comparison operator.
1411class FCmpInst: public CmpInst {
1412 void AssertOK() {
1413 assert(isFPPredicate() && "Invalid FCmp predicate value");
1414 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1415 "Both operands to FCmp instruction are not of the same type!");
1416 // Check that the operands are the right type
1417 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
1418 "Invalid operand types for FCmp instruction");
1419 }
1420
1421protected:
1422 // Note: Instruction needs to be a friend here to call cloneImpl.
1423 friend class Instruction;
1424
1425 /// Clone an identical FCmpInst
1426 LLVM_ABI FCmpInst *cloneImpl() const;
1427
1428public:
1429 /// Constructor with insertion semantics.
1430 FCmpInst(InsertPosition InsertBefore, ///< Where to insert
1431 Predicate pred, ///< The predicate to use for the comparison
1432 Value *LHS, ///< The left-hand-side of the expression
1433 Value *RHS, ///< The right-hand-side of the expression
1434 const Twine &NameStr = "" ///< Name of the instruction
1435 )
1436 : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, pred, LHS,
1437 RHS, NameStr, InsertBefore) {
1438 AssertOK();
1439 }
1440
1441 /// Constructor with no-insertion semantics
1442 FCmpInst(Predicate Pred, ///< The predicate to use for the comparison
1443 Value *LHS, ///< The left-hand-side of the expression
1444 Value *RHS, ///< The right-hand-side of the expression
1445 const Twine &NameStr = "", ///< Name of the instruction
1446 Instruction *FlagsSource = nullptr)
1447 : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1448 RHS, NameStr, nullptr, FlagsSource) {
1449 AssertOK();
1450 }
1451
1452 /// @returns true if the predicate is EQ or NE.
1453 /// Determine if this is an equality predicate.
1454 static bool isEquality(Predicate Pred) {
1455 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1456 Pred == FCMP_UNE;
1457 }
1458
1459 /// @returns true if the predicate of this instruction is EQ or NE.
1460 /// Determine if this is an equality predicate.
1461 bool isEquality() const { return isEquality(getPredicate()); }
1462
1463 /// @returns true if the predicate is commutative.
1464 /// Determine if this is a commutative predicate.
1465 static bool isCommutative(Predicate Pred) {
1466 return isEquality(Pred) || Pred == FCMP_FALSE || Pred == FCMP_TRUE ||
1467 Pred == FCMP_ORD || Pred == FCMP_UNO;
1468 }
1469
1470 /// @returns true if the predicate of this instruction is commutative.
1471 /// Determine if this is a commutative predicate.
1472 bool isCommutative() const { return isCommutative(getPredicate()); }
1473
1474 /// @returns true if the predicate is relational (not EQ or NE).
1475 /// Determine if this a relational predicate.
1476 bool isRelational() const { return !isEquality(); }
1477
1478 /// Exchange the two operands to this instruction in such a way that it does
1479 /// not modify the semantics of the instruction. The predicate value may be
1480 /// changed to retain the same result if the predicate is order dependent
1481 /// (e.g. ult).
1482 /// Swap operands and adjust predicate.
1485 Op<0>().swap(Op<1>());
1486 }
1487
1488 /// Returns the sequence of all FCmp predicates.
1489 ///
1490 static auto predicates() { return FCmpPredicates(); }
1491
1492 /// Return result of `LHS Pred RHS` comparison.
1493 LLVM_ABI static bool compare(const APFloat &LHS, const APFloat &RHS,
1494 FCmpInst::Predicate Pred);
1495
1496 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1497 static bool classof(const Instruction *I) {
1498 return I->getOpcode() == Instruction::FCmp;
1499 }
1500 static bool classof(const Value *V) {
1502 }
1503};
1504
1505//===----------------------------------------------------------------------===//
1506/// This class represents a function call, abstracting a target
1507/// machine's calling convention. This class uses low bit of the SubClassData
1508/// field to indicate whether or not this is a tail call. The rest of the bits
1509/// hold the calling convention of the call.
1510///
1511class CallInst : public CallBase {
1512 CallInst(const CallInst &CI, AllocInfo AllocInfo);
1513
1514 /// Construct a CallInst from a range of arguments
1515 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1516 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1517 AllocInfo AllocInfo, InsertPosition InsertBefore);
1518
1519 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1520 const Twine &NameStr, AllocInfo AllocInfo,
1521 InsertPosition InsertBefore)
1522 : CallInst(Ty, Func, Args, {}, NameStr, AllocInfo, InsertBefore) {}
1523
1524 LLVM_ABI explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1525 AllocInfo AllocInfo, InsertPosition InsertBefore);
1526
1527 LLVM_ABI void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1528 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1529 void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1530
1531 /// Compute the number of operands to allocate.
1532 static unsigned ComputeNumOperands(unsigned NumArgs,
1533 unsigned NumBundleInputs = 0) {
1534 // We need one operand for the called function, plus the input operand
1535 // counts provided.
1536 return 1 + NumArgs + NumBundleInputs;
1537 }
1538
1539protected:
1540 // Note: Instruction needs to be a friend here to call cloneImpl.
1541 friend class Instruction;
1542
1543 LLVM_ABI CallInst *cloneImpl() const;
1544
1545public:
1546 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1547 InsertPosition InsertBefore = nullptr) {
1548 IntrusiveOperandsAllocMarker AllocMarker{ComputeNumOperands(0)};
1549 return new (AllocMarker)
1550 CallInst(Ty, F, NameStr, AllocMarker, InsertBefore);
1551 }
1552
1553 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1554 const Twine &NameStr,
1555 InsertPosition InsertBefore = nullptr) {
1556 IntrusiveOperandsAllocMarker AllocMarker{ComputeNumOperands(Args.size())};
1557 return new (AllocMarker)
1558 CallInst(Ty, Func, Args, {}, NameStr, AllocMarker, InsertBefore);
1559 }
1560
1561 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1562 ArrayRef<OperandBundleDef> Bundles = {},
1563 const Twine &NameStr = "",
1564 InsertPosition InsertBefore = nullptr) {
1565 IntrusiveOperandsAndDescriptorAllocMarker AllocMarker{
1566 ComputeNumOperands(unsigned(Args.size()), CountBundleInputs(Bundles)),
1567 unsigned(Bundles.size() * sizeof(BundleOpInfo))};
1568
1569 return new (AllocMarker)
1570 CallInst(Ty, Func, Args, Bundles, NameStr, AllocMarker, InsertBefore);
1571 }
1572
1573 static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1574 InsertPosition InsertBefore = nullptr) {
1575 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1576 InsertBefore);
1577 }
1578
1579 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1580 ArrayRef<OperandBundleDef> Bundles = {},
1581 const Twine &NameStr = "",
1582 InsertPosition InsertBefore = nullptr) {
1583 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1584 NameStr, InsertBefore);
1585 }
1586
1587 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1588 const Twine &NameStr,
1589 InsertPosition InsertBefore = nullptr) {
1590 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1591 InsertBefore);
1592 }
1593
1594 /// Create a clone of \p CI with a different set of operand bundles and
1595 /// insert it before \p InsertBefore.
1596 ///
1597 /// The returned call instruction is identical \p CI in every way except that
1598 /// the operand bundles for the new instruction are set to the operand bundles
1599 /// in \p Bundles.
1600 LLVM_ABI static CallInst *Create(CallInst *CI,
1602 InsertPosition InsertPt = nullptr);
1603
1604 // Note that 'musttail' implies 'tail'.
1612
1614 static_assert(
1616 "Bitfields must be contiguous");
1617
1621
1622 bool isTailCall() const {
1624 return Kind == TCK_Tail || Kind == TCK_MustTail;
1625 }
1626
1627 bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; }
1628
1629 bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; }
1630
1632 setSubclassData<TailCallKindField>(TCK);
1633 }
1634
1635 void setTailCall(bool IsTc = true) {
1637 }
1638
1639 /// Return true if the call can return twice
1640 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1641 void setCanReturnTwice() { addFnAttr(Attribute::ReturnsTwice); }
1642
1643 /// Return true if the call is for a noreturn trap intrinsic.
1645 switch (getIntrinsicID()) {
1646 case Intrinsic::trap:
1647 case Intrinsic::ubsantrap:
1648 return !hasFnAttr("trap-func-name");
1649 default:
1650 return false;
1651 }
1652 }
1653
1654 // Methods for support type inquiry through isa, cast, and dyn_cast:
1655 static bool classof(const Instruction *I) {
1656 return I->getOpcode() == Instruction::Call;
1657 }
1658 static bool classof(const Value *V) {
1660 }
1661
1662 /// Updates profile metadata by scaling it by \p S / \p T.
1664
1665private:
1666 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1667 // method so that subclasses cannot accidentally use it.
1668 template <typename Bitfield>
1669 void setSubclassData(typename Bitfield::Type Value) {
1671 }
1672};
1673
1674CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1675 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1676 AllocInfo AllocInfo, InsertPosition InsertBefore)
1677 : CallBase(Ty->getReturnType(), Instruction::Call, AllocInfo,
1678 InsertBefore) {
1680 unsigned(Args.size() + CountBundleInputs(Bundles) + 1));
1681 init(Ty, Func, Args, Bundles, NameStr);
1682}
1683
1684//===----------------------------------------------------------------------===//
1685// SelectInst Class
1686//===----------------------------------------------------------------------===//
1687
1688/// This class represents the LLVM 'select' instruction.
1689///
1690class SelectInst : public Instruction {
1691 constexpr static IntrusiveOperandsAllocMarker AllocMarker{3};
1692
1693 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1694 InsertPosition InsertBefore)
1695 : Instruction(S1->getType(), Instruction::Select, AllocMarker,
1696 InsertBefore) {
1697 init(C, S1, S2);
1698 setName(NameStr);
1699 }
1700
1701 void init(Value *C, Value *S1, Value *S2) {
1702 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select");
1703 Op<0>() = C;
1704 Op<1>() = S1;
1705 Op<2>() = S2;
1706 }
1707
1708protected:
1709 // Note: Instruction needs to be a friend here to call cloneImpl.
1710 friend class Instruction;
1711
1712 LLVM_ABI SelectInst *cloneImpl() const;
1713
1714public:
1715 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1716 const Twine &NameStr = "",
1717 InsertPosition InsertBefore = nullptr,
1718 Instruction *MDFrom = nullptr) {
1719 SelectInst *Sel =
1720 new (AllocMarker) SelectInst(C, S1, S2, NameStr, InsertBefore);
1721 if (MDFrom)
1722 Sel->copyMetadata(*MDFrom);
1723 return Sel;
1724 }
1725
1726 const Value *getCondition() const { return Op<0>(); }
1727 const Value *getTrueValue() const { return Op<1>(); }
1728 const Value *getFalseValue() const { return Op<2>(); }
1729 Value *getCondition() { return Op<0>(); }
1730 Value *getTrueValue() { return Op<1>(); }
1731 Value *getFalseValue() { return Op<2>(); }
1732
1733 void setCondition(Value *V) { Op<0>() = V; }
1734 void setTrueValue(Value *V) { Op<1>() = V; }
1735 void setFalseValue(Value *V) { Op<2>() = V; }
1736
1737 /// Swap the true and false values of the select instruction.
1738 /// This doesn't swap prof metadata.
1739 void swapValues() { Op<1>().swap(Op<2>()); }
1740
1741 /// Return a string if the specified operands are invalid
1742 /// for a select operation, otherwise return null.
1743 LLVM_ABI static const char *areInvalidOperands(Value *Cond, Value *True,
1744 Value *False);
1745
1746 /// Transparently provide more efficient getOperand methods.
1748
1750 return static_cast<OtherOps>(Instruction::getOpcode());
1751 }
1752
1753 // Methods for support type inquiry through isa, cast, and dyn_cast:
1754 static bool classof(const Instruction *I) {
1755 return I->getOpcode() == Instruction::Select;
1756 }
1757 static bool classof(const Value *V) {
1759 }
1760};
1761
1762template <>
1763struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1764};
1765
1767
1768//===----------------------------------------------------------------------===//
1769// VAArgInst Class
1770//===----------------------------------------------------------------------===//
1771
1772/// This class represents the va_arg llvm instruction, which returns
1773/// an argument of the specified type given a va_list and increments that list
1774///
1776protected:
1777 // Note: Instruction needs to be a friend here to call cloneImpl.
1778 friend class Instruction;
1779
1780 LLVM_ABI VAArgInst *cloneImpl() const;
1781
1782public:
1783 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1784 InsertPosition InsertBefore = nullptr)
1785 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1786 setName(NameStr);
1787 }
1788
1790 const Value *getPointerOperand() const { return getOperand(0); }
1791 static unsigned getPointerOperandIndex() { return 0U; }
1792
1793 // Methods for support type inquiry through isa, cast, and dyn_cast:
1794 static bool classof(const Instruction *I) {
1795 return I->getOpcode() == VAArg;
1796 }
1797 static bool classof(const Value *V) {
1799 }
1800};
1801
1802//===----------------------------------------------------------------------===//
1803// ExtractElementInst Class
1804//===----------------------------------------------------------------------===//
1805
1806/// This instruction extracts a single (scalar)
1807/// element from a VectorType value
1808///
1809class ExtractElementInst : public Instruction {
1810 constexpr static IntrusiveOperandsAllocMarker AllocMarker{2};
1811
1812 LLVM_ABI ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1813 InsertPosition InsertBefore = nullptr);
1814
1815protected:
1816 // Note: Instruction needs to be a friend here to call cloneImpl.
1817 friend class Instruction;
1818
1819 LLVM_ABI ExtractElementInst *cloneImpl() const;
1820
1821public:
1822 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1823 const Twine &NameStr = "",
1824 InsertPosition InsertBefore = nullptr) {
1825 return new (AllocMarker)
1826 ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1827 }
1828
1829 /// Return true if an extractelement instruction can be
1830 /// formed with the specified operands.
1831 LLVM_ABI static bool isValidOperands(const Value *Vec, const Value *Idx);
1832
1834 Value *getIndexOperand() { return Op<1>(); }
1835 const Value *getVectorOperand() const { return Op<0>(); }
1836 const Value *getIndexOperand() const { return Op<1>(); }
1837
1841
1842 /// Transparently provide more efficient getOperand methods.
1844
1845 // Methods for support type inquiry through isa, cast, and dyn_cast:
1846 static bool classof(const Instruction *I) {
1847 return I->getOpcode() == Instruction::ExtractElement;
1848 }
1849 static bool classof(const Value *V) {
1851 }
1852};
1853
1854template <>
1856 public FixedNumOperandTraits<ExtractElementInst, 2> {
1857};
1858
1860
1861//===----------------------------------------------------------------------===//
1862// InsertElementInst Class
1863//===----------------------------------------------------------------------===//
1864
1865/// This instruction inserts a single (scalar)
1866/// element into a VectorType value
1867///
1868class InsertElementInst : public Instruction {
1869 constexpr static IntrusiveOperandsAllocMarker AllocMarker{3};
1870
1871 LLVM_ABI InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1872 const Twine &NameStr = "",
1873 InsertPosition InsertBefore = nullptr);
1874
1875protected:
1876 // Note: Instruction needs to be a friend here to call cloneImpl.
1877 friend class Instruction;
1878
1879 LLVM_ABI InsertElementInst *cloneImpl() const;
1880
1881public:
1882 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1883 const Twine &NameStr = "",
1884 InsertPosition InsertBefore = nullptr) {
1885 return new (AllocMarker)
1886 InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1887 }
1888
1889 /// Return true if an insertelement instruction can be
1890 /// formed with the specified operands.
1891 LLVM_ABI static bool isValidOperands(const Value *Vec, const Value *NewElt,
1892 const Value *Idx);
1893
1894 /// Overload to return most specific vector type.
1895 ///
1898 }
1899
1900 /// Transparently provide more efficient getOperand methods.
1902
1903 // Methods for support type inquiry through isa, cast, and dyn_cast:
1904 static bool classof(const Instruction *I) {
1905 return I->getOpcode() == Instruction::InsertElement;
1906 }
1907 static bool classof(const Value *V) {
1909 }
1910};
1911
1912template <>
1914 public FixedNumOperandTraits<InsertElementInst, 3> {
1915};
1916
1918
1919//===----------------------------------------------------------------------===//
1920// ShuffleVectorInst Class
1921//===----------------------------------------------------------------------===//
1922
1923constexpr int PoisonMaskElem = -1;
1924
1925/// This instruction constructs a fixed permutation of two
1926/// input vectors.
1927///
1928/// For each element of the result vector, the shuffle mask selects an element
1929/// from one of the input vectors to copy to the result. Non-negative elements
1930/// in the mask represent an index into the concatenated pair of input vectors.
1931/// PoisonMaskElem (-1) specifies that the result element is poison.
1932///
1933/// For scalable vectors, all the elements of the mask must be 0 or -1. This
1934/// requirement may be relaxed in the future.
1936 constexpr static IntrusiveOperandsAllocMarker AllocMarker{2};
1937
1938 SmallVector<int, 4> ShuffleMask;
1939 Constant *ShuffleMaskForBitcode;
1940
1941protected:
1942 // Note: Instruction needs to be a friend here to call cloneImpl.
1943 friend class Instruction;
1944
1946
1947public:
1948 LLVM_ABI ShuffleVectorInst(Value *V1, Value *Mask, const Twine &NameStr = "",
1949 InsertPosition InsertBefore = nullptr);
1951 const Twine &NameStr = "",
1952 InsertPosition InsertBefore = nullptr);
1953 LLVM_ABI ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1954 const Twine &NameStr = "",
1955 InsertPosition InsertBefore = nullptr);
1957 const Twine &NameStr = "",
1958 InsertPosition InsertBefore = nullptr);
1959
1960 void *operator new(size_t S) { return User::operator new(S, AllocMarker); }
1961 void operator delete(void *Ptr) { return User::operator delete(Ptr); }
1962
1963 /// Swap the operands and adjust the mask to preserve the semantics
1964 /// of the instruction.
1965 LLVM_ABI void commute();
1966
1967 /// Return true if a shufflevector instruction can be
1968 /// formed with the specified operands.
1969 LLVM_ABI static bool isValidOperands(const Value *V1, const Value *V2,
1970 const Value *Mask);
1971 LLVM_ABI static bool isValidOperands(const Value *V1, const Value *V2,
1972 ArrayRef<int> Mask);
1973
1974 /// Overload to return most specific vector type.
1975 ///
1978 }
1979
1980 /// Transparently provide more efficient getOperand methods.
1982
1983 /// Return the shuffle mask value of this instruction for the given element
1984 /// index. Return PoisonMaskElem if the element is undef.
1985 int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; }
1986
1987 /// Convert the input shuffle mask operand to a vector of integers. Undefined
1988 /// elements of the mask are returned as PoisonMaskElem.
1989 LLVM_ABI static void getShuffleMask(const Constant *Mask,
1990 SmallVectorImpl<int> &Result);
1991
1992 /// Return the mask for this instruction as a vector of integers. Undefined
1993 /// elements of the mask are returned as PoisonMaskElem.
1995 Result.assign(ShuffleMask.begin(), ShuffleMask.end());
1996 }
1997
1998 /// Return the mask for this instruction, for use in bitcode.
1999 ///
2000 /// TODO: This is temporary until we decide a new bitcode encoding for
2001 /// shufflevector.
2002 Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; }
2003
2004 LLVM_ABI static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2005 Type *ResultTy);
2006
2007 LLVM_ABI void setShuffleMask(ArrayRef<int> Mask);
2008
2009 ArrayRef<int> getShuffleMask() const { return ShuffleMask; }
2010
2011 /// Return true if this shuffle returns a vector with a different number of
2012 /// elements than its source vectors.
2013 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2014 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2015 bool changesLength() const {
2016 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2017 ->getElementCount()
2018 .getKnownMinValue();
2019 unsigned NumMaskElts = ShuffleMask.size();
2020 return NumSourceElts != NumMaskElts;
2021 }
2022
2023 /// Return true if this shuffle returns a vector with a greater number of
2024 /// elements than its source vectors.
2025 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2026 bool increasesLength() const {
2027 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2028 ->getElementCount()
2029 .getKnownMinValue();
2030 unsigned NumMaskElts = ShuffleMask.size();
2031 return NumSourceElts < NumMaskElts;
2032 }
2033
2034 /// Return true if this shuffle mask chooses elements from exactly one source
2035 /// vector.
2036 /// Example: <7,5,undef,7>
2037 /// This assumes that vector operands (of length \p NumSrcElts) are the same
2038 /// length as the mask.
2039 LLVM_ABI static bool isSingleSourceMask(ArrayRef<int> Mask, int NumSrcElts);
2040 static bool isSingleSourceMask(const Constant *Mask, int NumSrcElts) {
2041 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2042 SmallVector<int, 16> MaskAsInts;
2043 getShuffleMask(Mask, MaskAsInts);
2044 return isSingleSourceMask(MaskAsInts, NumSrcElts);
2045 }
2046
2047 /// Return true if this shuffle chooses elements from exactly one source
2048 /// vector without changing the length of that vector.
2049 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2050 /// TODO: Optionally allow length-changing shuffles.
2051 bool isSingleSource() const {
2052 return !changesLength() &&
2053 isSingleSourceMask(ShuffleMask, ShuffleMask.size());
2054 }
2055
2056 /// Return true if this shuffle mask chooses elements from exactly one source
2057 /// vector without lane crossings. A shuffle using this mask is not
2058 /// necessarily a no-op because it may change the number of elements from its
2059 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2060 /// Example: <undef,undef,2,3>
2061 LLVM_ABI static bool isIdentityMask(ArrayRef<int> Mask, int NumSrcElts);
2062 static bool isIdentityMask(const Constant *Mask, int NumSrcElts) {
2063 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2064
2065 // Not possible to express a shuffle mask for a scalable vector for this
2066 // case.
2067 if (isa<ScalableVectorType>(Mask->getType()))
2068 return false;
2069
2070 SmallVector<int, 16> MaskAsInts;
2071 getShuffleMask(Mask, MaskAsInts);
2072 return isIdentityMask(MaskAsInts, NumSrcElts);
2073 }
2074
2075 /// Return true if this shuffle chooses elements from exactly one source
2076 /// vector without lane crossings and does not change the number of elements
2077 /// from its input vectors.
2078 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2079 bool isIdentity() const {
2080 // Not possible to express a shuffle mask for a scalable vector for this
2081 // case.
2083 return false;
2084
2085 return !changesLength() && isIdentityMask(ShuffleMask, ShuffleMask.size());
2086 }
2087
2088 /// Return true if this shuffle lengthens exactly one source vector with
2089 /// undefs in the high elements.
2090 LLVM_ABI bool isIdentityWithPadding() const;
2091
2092 /// Return true if this shuffle extracts the first N elements of exactly one
2093 /// source vector.
2094 LLVM_ABI bool isIdentityWithExtract() const;
2095
2096 /// Return true if this shuffle concatenates its 2 source vectors. This
2097 /// returns false if either input is undefined. In that case, the shuffle is
2098 /// is better classified as an identity with padding operation.
2099 LLVM_ABI bool isConcat() const;
2100
2101 /// Return true if this shuffle mask chooses elements from its source vectors
2102 /// without lane crossings. A shuffle using this mask would be
2103 /// equivalent to a vector select with a constant condition operand.
2104 /// Example: <4,1,6,undef>
2105 /// This returns false if the mask does not choose from both input vectors.
2106 /// In that case, the shuffle is better classified as an identity shuffle.
2107 /// This assumes that vector operands are the same length as the mask
2108 /// (a length-changing shuffle can never be equivalent to a vector select).
2109 LLVM_ABI static bool isSelectMask(ArrayRef<int> Mask, int NumSrcElts);
2110 static bool isSelectMask(const Constant *Mask, int NumSrcElts) {
2111 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2112 SmallVector<int, 16> MaskAsInts;
2113 getShuffleMask(Mask, MaskAsInts);
2114 return isSelectMask(MaskAsInts, NumSrcElts);
2115 }
2116
2117 /// Return true if this shuffle chooses elements from its source vectors
2118 /// without lane crossings and all operands have the same number of elements.
2119 /// In other words, this shuffle is equivalent to a vector select with a
2120 /// constant condition operand.
2121 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2122 /// This returns false if the mask does not choose from both input vectors.
2123 /// In that case, the shuffle is better classified as an identity shuffle.
2124 /// TODO: Optionally allow length-changing shuffles.
2125 bool isSelect() const {
2126 return !changesLength() && isSelectMask(ShuffleMask, ShuffleMask.size());
2127 }
2128
2129 /// Return true if this shuffle mask swaps the order of elements from exactly
2130 /// one source vector.
2131 /// Example: <7,6,undef,4>
2132 /// This assumes that vector operands (of length \p NumSrcElts) are the same
2133 /// length as the mask.
2134 LLVM_ABI static bool isReverseMask(ArrayRef<int> Mask, int NumSrcElts);
2135 static bool isReverseMask(const Constant *Mask, int NumSrcElts) {
2136 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2137 SmallVector<int, 16> MaskAsInts;
2138 getShuffleMask(Mask, MaskAsInts);
2139 return isReverseMask(MaskAsInts, NumSrcElts);
2140 }
2141
2142 /// Return true if this shuffle swaps the order of elements from exactly
2143 /// one source vector.
2144 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2145 /// TODO: Optionally allow length-changing shuffles.
2146 bool isReverse() const {
2147 return !changesLength() && isReverseMask(ShuffleMask, ShuffleMask.size());
2148 }
2149
2150 /// Return true if this shuffle mask chooses all elements with the same value
2151 /// as the first element of exactly one source vector.
2152 /// Example: <4,undef,undef,4>
2153 /// This assumes that vector operands (of length \p NumSrcElts) are the same
2154 /// length as the mask.
2155 LLVM_ABI static bool isZeroEltSplatMask(ArrayRef<int> Mask, int NumSrcElts);
2156 static bool isZeroEltSplatMask(const Constant *Mask, int NumSrcElts) {
2157 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2158 SmallVector<int, 16> MaskAsInts;
2159 getShuffleMask(Mask, MaskAsInts);
2160 return isZeroEltSplatMask(MaskAsInts, NumSrcElts);
2161 }
2162
2163 /// Return true if all elements of this shuffle are the same value as the
2164 /// first element of exactly one source vector without changing the length
2165 /// of that vector.
2166 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2167 /// TODO: Optionally allow length-changing shuffles.
2168 /// TODO: Optionally allow splats from other elements.
2169 bool isZeroEltSplat() const {
2170 return !changesLength() &&
2171 isZeroEltSplatMask(ShuffleMask, ShuffleMask.size());
2172 }
2173
2174 /// Return true if this shuffle mask is a transpose mask.
2175 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2176 /// even- or odd-numbered vector elements from two n-dimensional source
2177 /// vectors and write each result into consecutive elements of an
2178 /// n-dimensional destination vector. Two shuffles are necessary to complete
2179 /// the transpose, one for the even elements and another for the odd elements.
2180 /// This description closely follows how the TRN1 and TRN2 AArch64
2181 /// instructions operate.
2182 ///
2183 /// For example, a simple 2x2 matrix can be transposed with:
2184 ///
2185 /// ; Original matrix
2186 /// m0 = < a, b >
2187 /// m1 = < c, d >
2188 ///
2189 /// ; Transposed matrix
2190 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2191 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2192 ///
2193 /// For matrices having greater than n columns, the resulting nx2 transposed
2194 /// matrix is stored in two result vectors such that one vector contains
2195 /// interleaved elements from all the even-numbered rows and the other vector
2196 /// contains interleaved elements from all the odd-numbered rows. For example,
2197 /// a 2x4 matrix can be transposed with:
2198 ///
2199 /// ; Original matrix
2200 /// m0 = < a, b, c, d >
2201 /// m1 = < e, f, g, h >
2202 ///
2203 /// ; Transposed matrix
2204 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2205 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2206 LLVM_ABI static bool isTransposeMask(ArrayRef<int> Mask, int NumSrcElts);
2207 static bool isTransposeMask(const Constant *Mask, int NumSrcElts) {
2208 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2209 SmallVector<int, 16> MaskAsInts;
2210 getShuffleMask(Mask, MaskAsInts);
2211 return isTransposeMask(MaskAsInts, NumSrcElts);
2212 }
2213
2214 /// Return true if this shuffle transposes the elements of its inputs without
2215 /// changing the length of the vectors. This operation may also be known as a
2216 /// merge or interleave. See the description for isTransposeMask() for the
2217 /// exact specification.
2218 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2219 bool isTranspose() const {
2220 return !changesLength() && isTransposeMask(ShuffleMask, ShuffleMask.size());
2221 }
2222
2223 /// Return true if this shuffle mask is a splice mask, concatenating the two
2224 /// inputs together and then extracts an original width vector starting from
2225 /// the splice index.
2226 /// Example: shufflevector <4 x n> A, <4 x n> B, <1,2,3,4>
2227 /// This assumes that vector operands (of length \p NumSrcElts) are the same
2228 /// length as the mask.
2229 LLVM_ABI static bool isSpliceMask(ArrayRef<int> Mask, int NumSrcElts,
2230 int &Index);
2231 static bool isSpliceMask(const Constant *Mask, int NumSrcElts, int &Index) {
2232 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2233 SmallVector<int, 16> MaskAsInts;
2234 getShuffleMask(Mask, MaskAsInts);
2235 return isSpliceMask(MaskAsInts, NumSrcElts, Index);
2236 }
2237
2238 /// Return true if this shuffle splices two inputs without changing the length
2239 /// of the vectors. This operation concatenates the two inputs together and
2240 /// then extracts an original width vector starting from the splice index.
2241 /// Example: shufflevector <4 x n> A, <4 x n> B, <1,2,3,4>
2242 bool isSplice(int &Index) const {
2243 return !changesLength() &&
2244 isSpliceMask(ShuffleMask, ShuffleMask.size(), Index);
2245 }
2246
2247 /// Return true if this shuffle mask is an extract subvector mask.
2248 /// A valid extract subvector mask returns a smaller vector from a single
2249 /// source operand. The base extraction index is returned as well.
2250 LLVM_ABI static bool isExtractSubvectorMask(ArrayRef<int> Mask,
2251 int NumSrcElts, int &Index);
2252 static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2253 int &Index) {
2254 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2255 // Not possible to express a shuffle mask for a scalable vector for this
2256 // case.
2257 if (isa<ScalableVectorType>(Mask->getType()))
2258 return false;
2259 SmallVector<int, 16> MaskAsInts;
2260 getShuffleMask(Mask, MaskAsInts);
2261 return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2262 }
2263
2264 /// Return true if this shuffle mask is an extract subvector mask.
2265 bool isExtractSubvectorMask(int &Index) const {
2266 // Not possible to express a shuffle mask for a scalable vector for this
2267 // case.
2269 return false;
2270
2271 int NumSrcElts =
2272 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2273 return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index);
2274 }
2275
2276 /// Return true if this shuffle mask is an insert subvector mask.
2277 /// A valid insert subvector mask inserts the lowest elements of a second
2278 /// source operand into an in-place first source operand.
2279 /// Both the sub vector width and the insertion index is returned.
2280 LLVM_ABI static bool isInsertSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2281 int &NumSubElts, int &Index);
2282 static bool isInsertSubvectorMask(const Constant *Mask, int NumSrcElts,
2283 int &NumSubElts, int &Index) {
2284 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2285 // Not possible to express a shuffle mask for a scalable vector for this
2286 // case.
2287 if (isa<ScalableVectorType>(Mask->getType()))
2288 return false;
2289 SmallVector<int, 16> MaskAsInts;
2290 getShuffleMask(Mask, MaskAsInts);
2291 return isInsertSubvectorMask(MaskAsInts, NumSrcElts, NumSubElts, Index);
2292 }
2293
2294 /// Return true if this shuffle mask is an insert subvector mask.
2295 bool isInsertSubvectorMask(int &NumSubElts, int &Index) const {
2296 // Not possible to express a shuffle mask for a scalable vector for this
2297 // case.
2299 return false;
2300
2301 int NumSrcElts =
2302 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2303 return isInsertSubvectorMask(ShuffleMask, NumSrcElts, NumSubElts, Index);
2304 }
2305
2306 /// Return true if this shuffle mask replicates each of the \p VF elements
2307 /// in a vector \p ReplicationFactor times.
2308 /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is:
2309 /// <0,0,0,1,1,1,2,2,2,3,3,3>
2310 LLVM_ABI static bool isReplicationMask(ArrayRef<int> Mask,
2311 int &ReplicationFactor, int &VF);
2312 static bool isReplicationMask(const Constant *Mask, int &ReplicationFactor,
2313 int &VF) {
2314 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2315 // Not possible to express a shuffle mask for a scalable vector for this
2316 // case.
2317 if (isa<ScalableVectorType>(Mask->getType()))
2318 return false;
2319 SmallVector<int, 16> MaskAsInts;
2320 getShuffleMask(Mask, MaskAsInts);
2321 return isReplicationMask(MaskAsInts, ReplicationFactor, VF);
2322 }
2323
2324 /// Return true if this shuffle mask is a replication mask.
2325 LLVM_ABI bool isReplicationMask(int &ReplicationFactor, int &VF) const;
2326
2327 /// Return true if this shuffle mask represents "clustered" mask of size VF,
2328 /// i.e. each index between [0..VF) is used exactly once in each submask of
2329 /// size VF.
2330 /// For example, the mask for \p VF=4 is:
2331 /// 0, 1, 2, 3, 3, 2, 0, 1 - "clustered", because each submask of size 4
2332 /// (0,1,2,3 and 3,2,0,1) uses indices [0..VF) exactly one time.
2333 /// 0, 1, 2, 3, 3, 3, 1, 0 - not "clustered", because
2334 /// element 3 is used twice in the second submask
2335 /// (3,3,1,0) and index 2 is not used at all.
2336 LLVM_ABI static bool isOneUseSingleSourceMask(ArrayRef<int> Mask, int VF);
2337
2338 /// Return true if this shuffle mask is a one-use-single-source("clustered")
2339 /// mask.
2340 LLVM_ABI bool isOneUseSingleSourceMask(int VF) const;
2341
2342 /// Change values in a shuffle permute mask assuming the two vector operands
2343 /// of length InVecNumElts have swapped position.
2345 unsigned InVecNumElts) {
2346 for (int &Idx : Mask) {
2347 if (Idx == -1)
2348 continue;
2349 Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2350 assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
2351 "shufflevector mask index out of range");
2352 }
2353 }
2354
2355 /// Return if this shuffle interleaves its two input vectors together.
2356 LLVM_ABI bool isInterleave(unsigned Factor);
2357
2358 /// Return true if the mask interleaves one or more input vectors together.
2359 ///
2360 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
2361 /// E.g. For a Factor of 2 (LaneLen=4):
2362 /// <0, 4, 1, 5, 2, 6, 3, 7>
2363 /// E.g. For a Factor of 3 (LaneLen=4):
2364 /// <4, 0, 9, 5, 1, 10, 6, 2, 11, 7, 3, 12>
2365 /// E.g. For a Factor of 4 (LaneLen=2):
2366 /// <0, 2, 6, 4, 1, 3, 7, 5>
2367 ///
2368 /// NumInputElts is the total number of elements in the input vectors.
2369 ///
2370 /// StartIndexes are the first indexes of each vector being interleaved,
2371 /// substituting any indexes that were undef
2372 /// E.g. <4, -1, 2, 5, 1, 3> (Factor=3): StartIndexes=<4, 0, 2>
2373 ///
2374 /// Note that this does not check if the input vectors are consecutive:
2375 /// It will return true for masks such as
2376 /// <0, 4, 6, 1, 5, 7> (Factor=3, LaneLen=2)
2377 LLVM_ABI static bool
2378 isInterleaveMask(ArrayRef<int> Mask, unsigned Factor, unsigned NumInputElts,
2379 SmallVectorImpl<unsigned> &StartIndexes);
2380 static bool isInterleaveMask(ArrayRef<int> Mask, unsigned Factor,
2381 unsigned NumInputElts) {
2382 SmallVector<unsigned, 8> StartIndexes;
2383 return isInterleaveMask(Mask, Factor, NumInputElts, StartIndexes);
2384 }
2385
2386 /// Check if the mask is a DE-interleave mask of the given factor
2387 /// \p Factor like:
2388 /// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
2389 LLVM_ABI static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask,
2390 unsigned Factor,
2391 unsigned &Index);
2392 static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor) {
2393 unsigned Unused;
2394 return isDeInterleaveMaskOfFactor(Mask, Factor, Unused);
2395 }
2396
2397 /// Checks if the shuffle is a bit rotation of the first operand across
2398 /// multiple subelements, e.g:
2399 ///
2400 /// shuffle <8 x i8> %a, <8 x i8> poison, <8 x i32> <1, 0, 3, 2, 5, 4, 7, 6>
2401 ///
2402 /// could be expressed as
2403 ///
2404 /// rotl <4 x i16> %a, 8
2405 ///
2406 /// If it can be expressed as a rotation, returns the number of subelements to
2407 /// group by in NumSubElts and the number of bits to rotate left in RotateAmt.
2408 LLVM_ABI static bool isBitRotateMask(ArrayRef<int> Mask,
2409 unsigned EltSizeInBits,
2410 unsigned MinSubElts, unsigned MaxSubElts,
2411 unsigned &NumSubElts,
2412 unsigned &RotateAmt);
2413
2414 // Methods for support type inquiry through isa, cast, and dyn_cast:
2415 static bool classof(const Instruction *I) {
2416 return I->getOpcode() == Instruction::ShuffleVector;
2417 }
2418 static bool classof(const Value *V) {
2420 }
2421};
2422
2423template <>
2425 : public FixedNumOperandTraits<ShuffleVectorInst, 2> {};
2426
2428
2429//===----------------------------------------------------------------------===//
2430// ExtractValueInst Class
2431//===----------------------------------------------------------------------===//
2432
2433/// This instruction extracts a struct member or array
2434/// element value from an aggregate value.
2435///
2436class ExtractValueInst : public UnaryInstruction {
2438
2439 ExtractValueInst(const ExtractValueInst &EVI);
2440
2441 /// Constructors - Create a extractvalue instruction with a base aggregate
2442 /// value and a list of indices. The first and second ctor can optionally
2443 /// insert before an existing instruction, the third appends the new
2444 /// instruction to the specified BasicBlock.
2445 inline ExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
2446 const Twine &NameStr, InsertPosition InsertBefore);
2447
2448 LLVM_ABI void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2449
2450protected:
2451 // Note: Instruction needs to be a friend here to call cloneImpl.
2452 friend class Instruction;
2453
2454 LLVM_ABI ExtractValueInst *cloneImpl() const;
2455
2456public:
2457 static ExtractValueInst *Create(Value *Agg, ArrayRef<unsigned> Idxs,
2458 const Twine &NameStr = "",
2459 InsertPosition InsertBefore = nullptr) {
2460 return new
2461 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2462 }
2463
2464 /// Returns the type of the element that would be extracted
2465 /// with an extractvalue instruction with the specified parameters.
2466 ///
2467 /// Null is returned if the indices are invalid for the specified type.
2468 LLVM_ABI static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2469
2470 using idx_iterator = const unsigned*;
2471
2472 inline idx_iterator idx_begin() const { return Indices.begin(); }
2473 inline idx_iterator idx_end() const { return Indices.end(); }
2475 return make_range(idx_begin(), idx_end());
2476 }
2477
2479 return getOperand(0);
2480 }
2482 return getOperand(0);
2483 }
2484 static unsigned getAggregateOperandIndex() {
2485 return 0U; // get index for modifying correct operand
2486 }
2487
2489 return Indices;
2490 }
2491
2492 unsigned getNumIndices() const {
2493 return (unsigned)Indices.size();
2494 }
2495
2496 bool hasIndices() const {
2497 return true;
2498 }
2499
2500 // Methods for support type inquiry through isa, cast, and dyn_cast:
2501 static bool classof(const Instruction *I) {
2502 return I->getOpcode() == Instruction::ExtractValue;
2503 }
2504 static bool classof(const Value *V) {
2506 }
2507};
2508
2509ExtractValueInst::ExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
2510 const Twine &NameStr,
2511 InsertPosition InsertBefore)
2512 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2513 ExtractValue, Agg, InsertBefore) {
2514 init(Idxs, NameStr);
2515}
2516
2517//===----------------------------------------------------------------------===//
2518// InsertValueInst Class
2519//===----------------------------------------------------------------------===//
2520
2521/// This instruction inserts a struct field of array element
2522/// value into an aggregate value.
2523///
2524class InsertValueInst : public Instruction {
2525 constexpr static IntrusiveOperandsAllocMarker AllocMarker{2};
2526
2528
2529 InsertValueInst(const InsertValueInst &IVI);
2530
2531 /// Constructors - Create a insertvalue instruction with a base aggregate
2532 /// value, a value to insert, and a list of indices. The first and second ctor
2533 /// can optionally insert before an existing instruction, the third appends
2534 /// the new instruction to the specified BasicBlock.
2535 inline InsertValueInst(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2536 const Twine &NameStr, InsertPosition InsertBefore);
2537
2538 /// Constructors - These three constructors are convenience methods because
2539 /// one and two index insertvalue instructions are so common.
2540 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2541 const Twine &NameStr = "",
2542 InsertPosition InsertBefore = nullptr);
2543
2544 LLVM_ABI void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2545 const Twine &NameStr);
2546
2547protected:
2548 // Note: Instruction needs to be a friend here to call cloneImpl.
2549 friend class Instruction;
2550
2551 LLVM_ABI InsertValueInst *cloneImpl() const;
2552
2553public:
2554 // allocate space for exactly two operands
2555 void *operator new(size_t S) { return User::operator new(S, AllocMarker); }
2556 void operator delete(void *Ptr) { User::operator delete(Ptr); }
2557
2558 static InsertValueInst *Create(Value *Agg, Value *Val,
2559 ArrayRef<unsigned> Idxs,
2560 const Twine &NameStr = "",
2561 InsertPosition InsertBefore = nullptr) {
2562 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2563 }
2564
2565 /// Transparently provide more efficient getOperand methods.
2567
2568 using idx_iterator = const unsigned*;
2569
2570 inline idx_iterator idx_begin() const { return Indices.begin(); }
2571 inline idx_iterator idx_end() const { return Indices.end(); }
2573 return make_range(idx_begin(), idx_end());
2574 }
2575
2577 return getOperand(0);
2578 }
2580 return getOperand(0);
2581 }
2582 static unsigned getAggregateOperandIndex() {
2583 return 0U; // get index for modifying correct operand
2584 }
2585
2587 return getOperand(1);
2588 }
2590 return getOperand(1);
2591 }
2593 return 1U; // get index for modifying correct operand
2594 }
2595
2597 return Indices;
2598 }
2599
2600 unsigned getNumIndices() const {
2601 return (unsigned)Indices.size();
2602 }
2603
2604 bool hasIndices() const {
2605 return true;
2606 }
2607
2608 // Methods for support type inquiry through isa, cast, and dyn_cast:
2609 static bool classof(const Instruction *I) {
2610 return I->getOpcode() == Instruction::InsertValue;
2611 }
2612 static bool classof(const Value *V) {
2614 }
2615};
2616
2617template <>
2619 public FixedNumOperandTraits<InsertValueInst, 2> {
2620};
2621
2622InsertValueInst::InsertValueInst(Value *Agg, Value *Val,
2623 ArrayRef<unsigned> Idxs, const Twine &NameStr,
2624 InsertPosition InsertBefore)
2625 : Instruction(Agg->getType(), InsertValue, AllocMarker, InsertBefore) {
2626 init(Agg, Val, Idxs, NameStr);
2627}
2628
2629DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)
2630
2631//===----------------------------------------------------------------------===//
2632// PHINode Class
2633//===----------------------------------------------------------------------===//
2634
2635// PHINode - The PHINode class is used to represent the magical mystical PHI
2636// node, that can not exist in nature, but can be synthesized in a computer
2637// scientist's overactive imagination.
2638//
2639class PHINode : public Instruction {
2640 constexpr static HungOffOperandsAllocMarker AllocMarker{};
2641
2642 /// The number of operands actually allocated. NumOperands is
2643 /// the number actually in use.
2644 unsigned ReservedSpace;
2645
2646 PHINode(const PHINode &PN);
2647
2648 explicit PHINode(Type *Ty, unsigned NumReservedValues,
2649 const Twine &NameStr = "",
2650 InsertPosition InsertBefore = nullptr)
2651 : Instruction(Ty, Instruction::PHI, AllocMarker, InsertBefore),
2652 ReservedSpace(NumReservedValues) {
2653 assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!");
2654 setName(NameStr);
2655 allocHungoffUses(ReservedSpace);
2656 }
2657
2658protected:
2659 // Note: Instruction needs to be a friend here to call cloneImpl.
2660 friend class Instruction;
2661
2662 LLVM_ABI PHINode *cloneImpl() const;
2663
2664 // allocHungoffUses - this is more complicated than the generic
2665 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2666 // values and pointers to the incoming blocks, all in one allocation.
2667 void allocHungoffUses(unsigned N) {
2668 User::allocHungoffUses(N, /* IsPhi */ true);
2669 }
2670
2671public:
2672 /// Constructors - NumReservedValues is a hint for the number of incoming
2673 /// edges that this phi node will have (use 0 if you really have no idea).
2674 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2675 const Twine &NameStr = "",
2676 InsertPosition InsertBefore = nullptr) {
2677 return new (AllocMarker)
2678 PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2679 }
2680
2681 /// Provide fast operand accessors
2683
2684 // Block iterator interface. This provides access to the list of incoming
2685 // basic blocks, which parallels the list of incoming values.
2686 // Please note that we are not providing non-const iterators for blocks to
2687 // force all updates go through an interface function.
2688
2691
2693 return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
2694 }
2695
2697 return block_begin() + getNumOperands();
2698 }
2699
2703
2705
2707
2708 /// Return the number of incoming edges
2709 ///
2710 unsigned getNumIncomingValues() const { return getNumOperands(); }
2711
2712 /// Return incoming value number x
2713 ///
2714 Value *getIncomingValue(unsigned i) const {
2715 return getOperand(i);
2716 }
2717 void setIncomingValue(unsigned i, Value *V) {
2718 assert(V && "PHI node got a null value!");
2719 assert(getType() == V->getType() &&
2720 "All operands to PHI node must be the same type as the PHI node!");
2721 setOperand(i, V);
2722 }
2723
2724 static unsigned getOperandNumForIncomingValue(unsigned i) {
2725 return i;
2726 }
2727
2728 static unsigned getIncomingValueNumForOperand(unsigned i) {
2729 return i;
2730 }
2731
2732 /// Return incoming basic block number @p i.
2733 ///
2734 BasicBlock *getIncomingBlock(unsigned i) const {
2735 return block_begin()[i];
2736 }
2737
2738 /// Return incoming basic block corresponding
2739 /// to an operand of the PHI.
2740 ///
2742 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
2743 return getIncomingBlock(unsigned(&U - op_begin()));
2744 }
2745
2746 /// Return incoming basic block corresponding
2747 /// to value use iterator.
2748 ///
2752
2753 void setIncomingBlock(unsigned i, BasicBlock *BB) {
2754 const_cast<block_iterator>(block_begin())[i] = BB;
2755 }
2756
2757 /// Copies the basic blocks from \p BBRange to the incoming basic block list
2758 /// of this PHINode, starting at \p ToIdx.
2760 uint32_t ToIdx = 0) {
2761 copy(BBRange, const_cast<block_iterator>(block_begin()) + ToIdx);
2762 }
2763
2764 /// Replace every incoming basic block \p Old to basic block \p New.
2766 assert(New && Old && "PHI node got a null basic block!");
2767 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2768 if (getIncomingBlock(Op) == Old)
2769 setIncomingBlock(Op, New);
2770 }
2771
2772 /// Add an incoming value to the end of the PHI list
2773 ///
2775 if (getNumOperands() == ReservedSpace)
2776 growOperands(); // Get more space!
2777 // Initialize some new operands.
2781 }
2782
2783 /// Remove an incoming value. This is useful if a
2784 /// predecessor basic block is deleted. The value removed is returned.
2785 ///
2786 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2787 /// is true), the PHI node is destroyed and any uses of it are replaced with
2788 /// dummy values. The only time there should be zero incoming values to a PHI
2789 /// node is when the block is dead, so this strategy is sound.
2790 ///
2791 LLVM_ABI Value *removeIncomingValue(unsigned Idx,
2792 bool DeletePHIIfEmpty = true);
2793
2794 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2795 int Idx = getBasicBlockIndex(BB);
2796 assert(Idx >= 0 && "Invalid basic block argument to remove!");
2797 return removeIncomingValue(Idx, DeletePHIIfEmpty);
2798 }
2799
2800 /// Remove all incoming values for which the predicate returns true.
2801 /// The predicate accepts the incoming value index.
2802 LLVM_ABI void removeIncomingValueIf(function_ref<bool(unsigned)> Predicate,
2803 bool DeletePHIIfEmpty = true);
2804
2805 /// Return the first index of the specified basic
2806 /// block in the value list for this PHI. Returns -1 if no instance.
2807 ///
2808 int getBasicBlockIndex(const BasicBlock *BB) const {
2809 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2810 if (block_begin()[i] == BB)
2811 return i;
2812 return -1;
2813 }
2814
2816 int Idx = getBasicBlockIndex(BB);
2817 assert(Idx >= 0 && "Invalid basic block argument!");
2818 return getIncomingValue(Idx);
2819 }
2820
2821 /// Set every incoming value(s) for block \p BB to \p V.
2823 assert(BB && "PHI node got a null basic block!");
2824 bool Found = false;
2825 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2826 if (getIncomingBlock(Op) == BB) {
2827 Found = true;
2828 setIncomingValue(Op, V);
2829 }
2830 (void)Found;
2831 assert(Found && "Invalid basic block argument to set!");
2832 }
2833
2834 /// If the specified PHI node always merges together the
2835 /// same value, return the value, otherwise return null.
2836 LLVM_ABI Value *hasConstantValue() const;
2837
2838 /// Whether the specified PHI node always merges
2839 /// together the same value, assuming undefs are equal to a unique
2840 /// non-undef value.
2841 LLVM_ABI bool hasConstantOrUndefValue() const;
2842
2843 /// If the PHI node is complete which means all of its parent's predecessors
2844 /// have incoming value in this PHI, return true, otherwise return false.
2845 bool isComplete() const {
2847 [this](const BasicBlock *Pred) {
2848 return getBasicBlockIndex(Pred) >= 0;
2849 });
2850 }
2851
2852 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2853 static bool classof(const Instruction *I) {
2854 return I->getOpcode() == Instruction::PHI;
2855 }
2856 static bool classof(const Value *V) {
2858 }
2859
2860private:
2861 LLVM_ABI void growOperands();
2862};
2863
2864template <> struct OperandTraits<PHINode> : public HungoffOperandTraits {};
2865
2867
2868//===----------------------------------------------------------------------===//
2869// LandingPadInst Class
2870//===----------------------------------------------------------------------===//
2871
2872//===---------------------------------------------------------------------------
2873/// The landingpad instruction holds all of the information
2874/// necessary to generate correct exception handling. The landingpad instruction
2875/// cannot be moved from the top of a landing pad block, which itself is
2876/// accessible only from the 'unwind' edge of an invoke. This uses the
2877/// SubclassData field in Value to store whether or not the landingpad is a
2878/// cleanup.
2879///
2880class LandingPadInst : public Instruction {
2881 using CleanupField = BoolBitfieldElementT<0>;
2882
2883 constexpr static HungOffOperandsAllocMarker AllocMarker{};
2884
2885 /// The number of operands actually allocated. NumOperands is
2886 /// the number actually in use.
2887 unsigned ReservedSpace;
2888
2889 LandingPadInst(const LandingPadInst &LP);
2890
2891public:
2893
2894private:
2895 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2896 const Twine &NameStr, InsertPosition InsertBefore);
2897
2898 // Allocate space for exactly zero operands.
2899 void *operator new(size_t S) { return User::operator new(S, AllocMarker); }
2900
2901 LLVM_ABI void growOperands(unsigned Size);
2902 void init(unsigned NumReservedValues, const Twine &NameStr);
2903
2904protected:
2905 // Note: Instruction needs to be a friend here to call cloneImpl.
2906 friend class Instruction;
2907
2908 LLVM_ABI LandingPadInst *cloneImpl() const;
2909
2910public:
2911 void operator delete(void *Ptr) { User::operator delete(Ptr); }
2912
2913 /// Constructors - NumReservedClauses is a hint for the number of incoming
2914 /// clauses that this landingpad will have (use 0 if you really have no idea).
2915 LLVM_ABI static LandingPadInst *Create(Type *RetTy,
2916 unsigned NumReservedClauses,
2917 const Twine &NameStr = "",
2918 InsertPosition InsertBefore = nullptr);
2919
2920 /// Provide fast operand accessors
2922
2923 /// Return 'true' if this landingpad instruction is a
2924 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2925 /// doesn't catch the exception.
2926 bool isCleanup() const { return getSubclassData<CleanupField>(); }
2927
2928 /// Indicate that this landingpad instruction is a cleanup.
2930
2931 /// Add a catch or filter clause to the landing pad.
2932 LLVM_ABI void addClause(Constant *ClauseVal);
2933
2934 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2935 /// determine what type of clause this is.
2936 Constant *getClause(unsigned Idx) const {
2937 return cast<Constant>(getOperandList()[Idx]);
2938 }
2939
2940 /// Return 'true' if the clause and index Idx is a catch clause.
2941 bool isCatch(unsigned Idx) const {
2942 return !isa<ArrayType>(getOperandList()[Idx]->getType());
2943 }
2944
2945 /// Return 'true' if the clause and index Idx is a filter clause.
2946 bool isFilter(unsigned Idx) const {
2947 return isa<ArrayType>(getOperandList()[Idx]->getType());
2948 }
2949
2950 /// Get the number of clauses for this landing pad.
2951 unsigned getNumClauses() const { return getNumOperands(); }
2952
2953 /// Grow the size of the operand list to accommodate the new
2954 /// number of clauses.
2955 void reserveClauses(unsigned Size) { growOperands(Size); }
2956
2957 // Methods for support type inquiry through isa, cast, and dyn_cast:
2958 static bool classof(const Instruction *I) {
2959 return I->getOpcode() == Instruction::LandingPad;
2960 }
2961 static bool classof(const Value *V) {
2963 }
2964};
2965
2966template <>
2968
2970
2971//===----------------------------------------------------------------------===//
2972// ReturnInst Class
2973//===----------------------------------------------------------------------===//
2974
2975//===---------------------------------------------------------------------------
2976/// Return a value (possibly void), from a function. Execution
2977/// does not continue in this function any longer.
2978///
2979class ReturnInst : public Instruction {
2980 ReturnInst(const ReturnInst &RI, AllocInfo AllocInfo);
2981
2982private:
2983 // ReturnInst constructors:
2984 // ReturnInst() - 'ret void' instruction
2985 // ReturnInst( null) - 'ret void' instruction
2986 // ReturnInst(Value* X) - 'ret X' instruction
2987 // ReturnInst(null, Iterator It) - 'ret void' instruction, insert before I
2988 // ReturnInst(Value* X, Iterator It) - 'ret X' instruction, insert before I
2989 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2990 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2991 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2992 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2993 //
2994 // NOTE: If the Value* passed is of type void then the constructor behaves as
2995 // if it was passed NULL.
2996 LLVM_ABI explicit ReturnInst(LLVMContext &C, Value *retVal,
2998 InsertPosition InsertBefore);
2999
3000protected:
3001 // Note: Instruction needs to be a friend here to call cloneImpl.
3002 friend class Instruction;
3003
3004 LLVM_ABI ReturnInst *cloneImpl() const;
3005
3006public:
3007 static ReturnInst *Create(LLVMContext &C, Value *retVal = nullptr,
3008 InsertPosition InsertBefore = nullptr) {
3009 IntrusiveOperandsAllocMarker AllocMarker{retVal ? 1U : 0U};
3010 return new (AllocMarker) ReturnInst(C, retVal, AllocMarker, InsertBefore);
3011 }
3012
3013 static ReturnInst *Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
3014 IntrusiveOperandsAllocMarker AllocMarker{0};
3015 return new (AllocMarker) ReturnInst(C, nullptr, AllocMarker, InsertAtEnd);
3016 }
3017
3018 /// Provide fast operand accessors
3020
3021 /// Convenience accessor. Returns null if there is no return value.
3023 return getNumOperands() != 0 ? getOperand(0) : nullptr;
3024 }
3025
3026 unsigned getNumSuccessors() const { return 0; }
3027
3028 // Methods for support type inquiry through isa, cast, and dyn_cast:
3029 static bool classof(const Instruction *I) {
3030 return (I->getOpcode() == Instruction::Ret);
3031 }
3032 static bool classof(const Value *V) {
3034 }
3035
3036private:
3037 BasicBlock *getSuccessor(unsigned idx) const {
3038 llvm_unreachable("ReturnInst has no successors!");
3039 }
3040
3041 void setSuccessor(unsigned idx, BasicBlock *B) {
3042 llvm_unreachable("ReturnInst has no successors!");
3043 }
3044};
3045
3046template <>
3047struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {};
3048
3050
3051//===----------------------------------------------------------------------===//
3052// BranchInst Class
3053//===----------------------------------------------------------------------===//
3054
3055//===---------------------------------------------------------------------------
3056/// Conditional or Unconditional Branch instruction.
3057///
3058class BranchInst : public Instruction {
3059 /// Ops list - Branches are strange. The operands are ordered:
3060 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
3061 /// they don't have to check for cond/uncond branchness. These are mostly
3062 /// accessed relative from op_end().
3063 BranchInst(const BranchInst &BI, AllocInfo AllocInfo);
3064 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
3065 // BranchInst(BB *B) - 'br B'
3066 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
3067 // BranchInst(BB* B, Iter It) - 'br B' insert before I
3068 // BranchInst(BB* T, BB *F, Value *C, Iter It) - 'br C, T, F', insert before I
3069 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
3070 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
3071 // BranchInst(BB* B, BB *I) - 'br B' insert at end
3072 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
3073 LLVM_ABI explicit BranchInst(BasicBlock *IfTrue, AllocInfo AllocInfo,
3074 InsertPosition InsertBefore);
3075 LLVM_ABI BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3076 AllocInfo AllocInfo, InsertPosition InsertBefore);
3077
3078 void AssertOK();
3079
3080protected:
3081 // Note: Instruction needs to be a friend here to call cloneImpl.
3082 friend class Instruction;
3083
3084 LLVM_ABI BranchInst *cloneImpl() const;
3085
3086public:
3087 /// Iterator type that casts an operand to a basic block.
3088 ///
3089 /// This only makes sense because the successors are stored as adjacent
3090 /// operands for branch instructions.
3092 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3093 std::random_access_iterator_tag, BasicBlock *,
3094 ptrdiff_t, BasicBlock *, BasicBlock *> {
3096
3098 BasicBlock *operator->() const { return operator*(); }
3099 };
3100
3101 /// The const version of `succ_op_iterator`.
3103 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3104 std::random_access_iterator_tag,
3105 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3106 const BasicBlock *> {
3109
3110 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3111 const BasicBlock *operator->() const { return operator*(); }
3112 };
3113
3114 static BranchInst *Create(BasicBlock *IfTrue,
3115 InsertPosition InsertBefore = nullptr) {
3116 IntrusiveOperandsAllocMarker AllocMarker{1};
3117 return new (AllocMarker) BranchInst(IfTrue, AllocMarker, InsertBefore);
3118 }
3119
3120 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3121 Value *Cond,
3122 InsertPosition InsertBefore = nullptr) {
3123 IntrusiveOperandsAllocMarker AllocMarker{3};
3124 return new (AllocMarker)
3125 BranchInst(IfTrue, IfFalse, Cond, AllocMarker, InsertBefore);
3126 }
3127
3128 /// Transparently provide more efficient getOperand methods.
3130
3131 bool isUnconditional() const { return getNumOperands() == 1; }
3132 bool isConditional() const { return getNumOperands() == 3; }
3133
3135 assert(isConditional() && "Cannot get condition of an uncond branch!");
3136 return Op<-3>();
3137 }
3138
3140 assert(isConditional() && "Cannot set condition of unconditional branch!");
3141 Op<-3>() = V;
3142 }
3143
3144 unsigned getNumSuccessors() const { return 1+isConditional(); }
3145
3146 BasicBlock *getSuccessor(unsigned i) const {
3147 assert(i < getNumSuccessors() && "Successor # out of range for Branch!");
3148 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3149 }
3150
3151 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3152 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!");
3153 *(&Op<-1>() - idx) = NewSucc;
3154 }
3155
3156 /// Swap the successors of this branch instruction.
3157 ///
3158 /// Swaps the successors of the branch instruction. This also swaps any
3159 /// branch weight metadata associated with the instruction so that it
3160 /// continues to map correctly to each operand.
3161 LLVM_ABI void swapSuccessors();
3162
3168
3174
3175 // Methods for support type inquiry through isa, cast, and dyn_cast:
3176 static bool classof(const Instruction *I) {
3177 return (I->getOpcode() == Instruction::Br);
3178 }
3179 static bool classof(const Value *V) {
3181 }
3182};
3183
3184template <>
3185struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst> {};
3186
3188
3189//===----------------------------------------------------------------------===//
3190// SwitchInst Class
3191//===----------------------------------------------------------------------===//
3192
3193//===---------------------------------------------------------------------------
3194/// Multiway switch
3195///
3196class SwitchInst : public Instruction {
3197 constexpr static HungOffOperandsAllocMarker AllocMarker{};
3198
3199 unsigned ReservedSpace;
3200
3201 // Operand[0] = Value to switch on
3202 // Operand[1] = Default basic block destination
3203 // Operand[2n ] = Value to match
3204 // Operand[2n+1] = BasicBlock to go to on match
3205 SwitchInst(const SwitchInst &SI);
3206
3207 /// Create a new switch instruction, specifying a value to switch on and a
3208 /// default destination. The number of additional cases can be specified here
3209 /// to make memory allocation more efficient. This constructor can also
3210 /// auto-insert before another instruction.
3211 LLVM_ABI SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3212 InsertPosition InsertBefore);
3213
3214 // allocate space for exactly zero operands
3215 void *operator new(size_t S) { return User::operator new(S, AllocMarker); }
3216
3217 void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3218 void growOperands();
3219
3220protected:
3221 // Note: Instruction needs to be a friend here to call cloneImpl.
3222 friend class Instruction;
3223
3224 LLVM_ABI SwitchInst *cloneImpl() const;
3225
3226public:
3227 void operator delete(void *Ptr) { User::operator delete(Ptr); }
3228
3229 // -2
3230 static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3231
3232 template <typename CaseHandleT> class CaseIteratorImpl;
3233
3234 /// A handle to a particular switch case. It exposes a convenient interface
3235 /// to both the case value and the successor block.
3236 ///
3237 /// We define this as a template and instantiate it to form both a const and
3238 /// non-const handle.
3239 template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3241 // Directly befriend both const and non-const iterators.
3242 friend class SwitchInst::CaseIteratorImpl<
3243 CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3244
3245 protected:
3246 // Expose the switch type we're parameterized with to the iterator.
3247 using SwitchInstType = SwitchInstT;
3248
3249 SwitchInstT *SI;
3251
3252 CaseHandleImpl() = default;
3254
3255 public:
3256 /// Resolves case value for current case.
3257 ConstantIntT *getCaseValue() const {
3258 assert((unsigned)Index < SI->getNumCases() &&
3259 "Index out the number of cases.");
3260 return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3261 }
3262
3263 /// Resolves successor for current case.
3264 BasicBlockT *getCaseSuccessor() const {
3265 assert(((unsigned)Index < SI->getNumCases() ||
3266 (unsigned)Index == DefaultPseudoIndex) &&
3267 "Index out the number of cases.");
3268 return SI->getSuccessor(getSuccessorIndex());
3269 }
3270
3271 /// Returns number of current case.
3272 unsigned getCaseIndex() const { return Index; }
3273
3274 /// Returns successor index for current case successor.
3275 unsigned getSuccessorIndex() const {
3276 assert(((unsigned)Index == DefaultPseudoIndex ||
3277 (unsigned)Index < SI->getNumCases()) &&
3278 "Index out the number of cases.");
3279 return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3280 }
3281
3282 bool operator==(const CaseHandleImpl &RHS) const {
3283 assert(SI == RHS.SI && "Incompatible operators.");
3284 return Index == RHS.Index;
3285 }
3286 };
3287
3290
3292 : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3294
3295 public:
3297
3298 /// Sets the new value for current case.
3299 void setValue(ConstantInt *V) const {
3300 assert((unsigned)Index < SI->getNumCases() &&
3301 "Index out the number of cases.");
3302 SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3303 }
3304
3305 /// Sets the new successor for current case.
3306 void setSuccessor(BasicBlock *S) const {
3307 SI->setSuccessor(getSuccessorIndex(), S);
3308 }
3309 };
3310
3311 template <typename CaseHandleT>
3313 : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3314 std::random_access_iterator_tag,
3315 const CaseHandleT> {
3316 using SwitchInstT = typename CaseHandleT::SwitchInstType;
3317
3318 CaseHandleT Case;
3319
3320 public:
3321 /// Default constructed iterator is in an invalid state until assigned to
3322 /// a case for a particular switch.
3323 CaseIteratorImpl() = default;
3324
3325 /// Initializes case iterator for given SwitchInst and for given
3326 /// case number.
3327 CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3328
3329 /// Initializes case iterator for given SwitchInst and for given
3330 /// successor index.
3332 unsigned SuccessorIndex) {
3333 assert(SuccessorIndex < SI->getNumSuccessors() &&
3334 "Successor index # out of range!");
3335 return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3337 }
3338
3339 /// Support converting to the const variant. This will be a no-op for const
3340 /// variant.
3342 return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3343 }
3344
3346 // Check index correctness after addition.
3347 // Note: Index == getNumCases() means end().
3348 assert(Case.Index + N >= 0 &&
3349 (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
3350 "Case.Index out the number of cases.");
3351 Case.Index += N;
3352 return *this;
3353 }
3355 // Check index correctness after subtraction.
3356 // Note: Case.Index == getNumCases() means end().
3357 assert(Case.Index - N >= 0 &&
3358 (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
3359 "Case.Index out the number of cases.");
3360 Case.Index -= N;
3361 return *this;
3362 }
3364 assert(Case.SI == RHS.Case.SI && "Incompatible operators.");
3365 return Case.Index - RHS.Case.Index;
3366 }
3367 bool operator==(const CaseIteratorImpl &RHS) const {
3368 return Case == RHS.Case;
3369 }
3370 bool operator<(const CaseIteratorImpl &RHS) const {
3371 assert(Case.SI == RHS.Case.SI && "Incompatible operators.");
3372 return Case.Index < RHS.Case.Index;
3373 }
3374 const CaseHandleT &operator*() const { return Case; }
3375 };
3376
3379
3380 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3381 unsigned NumCases,
3382 InsertPosition InsertBefore = nullptr) {
3383 return new SwitchInst(Value, Default, NumCases, InsertBefore);
3384 }
3385
3386 /// Provide fast operand accessors
3388
3389 // Accessor Methods for Switch stmt
3390 Value *getCondition() const { return getOperand(0); }
3391 void setCondition(Value *V) { setOperand(0, V); }
3392
3394 return cast<BasicBlock>(getOperand(1));
3395 }
3396
3397 /// Returns true if the default branch must result in immediate undefined
3398 /// behavior, false otherwise.
3400 return isa<UnreachableInst>(getDefaultDest()->getFirstNonPHIOrDbg());
3401 }
3402
3403 void setDefaultDest(BasicBlock *DefaultCase) {
3404 setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3405 }
3406
3407 /// Return the number of 'cases' in this switch instruction, excluding the
3408 /// default case.
3409 unsigned getNumCases() const {
3410 return getNumOperands()/2 - 1;
3411 }
3412
3413 /// Returns a read/write iterator that points to the first case in the
3414 /// SwitchInst.
3416 return CaseIt(this, 0);
3417 }
3418
3419 /// Returns a read-only iterator that points to the first case in the
3420 /// SwitchInst.
3422 return ConstCaseIt(this, 0);
3423 }
3424
3425 /// Returns a read/write iterator that points one past the last in the
3426 /// SwitchInst.
3428 return CaseIt(this, getNumCases());
3429 }
3430
3431 /// Returns a read-only iterator that points one past the last in the
3432 /// SwitchInst.
3434 return ConstCaseIt(this, getNumCases());
3435 }
3436
3437 /// Iteration adapter for range-for loops.
3441
3442 /// Constant iteration adapter for range-for loops.
3446
3447 /// Returns an iterator that points to the default case.
3448 /// Note: this iterator allows to resolve successor only. Attempt
3449 /// to resolve case value causes an assertion.
3450 /// Also note, that increment and decrement also causes an assertion and
3451 /// makes iterator invalid.
3453 return CaseIt(this, DefaultPseudoIndex);
3454 }
3456 return ConstCaseIt(this, DefaultPseudoIndex);
3457 }
3458
3459 /// Search all of the case values for the specified constant. If it is
3460 /// explicitly handled, return the case iterator of it, otherwise return
3461 /// default case iterator to indicate that it is handled by the default
3462 /// handler.
3464 return CaseIt(
3465 this,
3466 const_cast<const SwitchInst *>(this)->findCaseValue(C)->getCaseIndex());
3467 }
3469 ConstCaseIt I = llvm::find_if(cases(), [C](const ConstCaseHandle &Case) {
3470 return Case.getCaseValue() == C;
3471 });
3472 if (I != case_end())
3473 return I;
3474
3475 return case_default();
3476 }
3477
3478 /// Finds the unique case value for a given successor. Returns null if the
3479 /// successor is not found, not unique, or is the default case.
3481 if (BB == getDefaultDest())
3482 return nullptr;
3483
3484 ConstantInt *CI = nullptr;
3485 for (auto Case : cases()) {
3486 if (Case.getCaseSuccessor() != BB)
3487 continue;
3488
3489 if (CI)
3490 return nullptr; // Multiple cases lead to BB.
3491
3492 CI = Case.getCaseValue();
3493 }
3494
3495 return CI;
3496 }
3497
3498 /// Add an entry to the switch instruction.
3499 /// Note:
3500 /// This action invalidates case_end(). Old case_end() iterator will
3501 /// point to the added case.
3502 LLVM_ABI void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3503
3504 /// This method removes the specified case and its successor from the switch
3505 /// instruction. Note that this operation may reorder the remaining cases at
3506 /// index idx and above.
3507 /// Note:
3508 /// This action invalidates iterators for all cases following the one removed,
3509 /// including the case_end() iterator. It returns an iterator for the next
3510 /// case.
3511 LLVM_ABI CaseIt removeCase(CaseIt I);
3512
3513 unsigned getNumSuccessors() const { return getNumOperands()/2; }
3514 BasicBlock *getSuccessor(unsigned idx) const {
3515 assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!");
3516 return cast<BasicBlock>(getOperand(idx*2+1));
3517 }
3518 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3519 assert(idx < getNumSuccessors() && "Successor # out of range for switch!");
3520 setOperand(idx * 2 + 1, NewSucc);
3521 }
3522
3523 // Methods for support type inquiry through isa, cast, and dyn_cast:
3524 static bool classof(const Instruction *I) {
3525 return I->getOpcode() == Instruction::Switch;
3526 }
3527 static bool classof(const Value *V) {
3529 }
3530};
3531
3532/// A wrapper class to simplify modification of SwitchInst cases along with
3533/// their prof branch_weights metadata.
3535 SwitchInst &SI;
3536 std::optional<SmallVector<uint32_t, 8>> Weights;
3537 bool Changed = false;
3538
3539protected:
3540 LLVM_ABI void init();
3541
3542public:
3543 using CaseWeightOpt = std::optional<uint32_t>;
3544 SwitchInst *operator->() { return &SI; }
3545 SwitchInst &operator*() { return SI; }
3546 operator SwitchInst *() { return &SI; }
3547
3549
3551 if (Changed && Weights.has_value() && Weights->size() >= 2)
3552 setBranchWeights(SI, Weights.value(), /*IsExpected=*/false);
3553 }
3554
3555 /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3556 /// correspondent branch weight.
3558
3559 /// Delegate the call to the underlying SwitchInst::addCase() and set the
3560 /// specified branch weight for the added case.
3561 LLVM_ABI void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
3562
3563 /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3564 /// this object to not touch the underlying SwitchInst in destructor.
3566
3567 LLVM_ABI void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
3569
3571 unsigned idx);
3572};
3573
3574template <> struct OperandTraits<SwitchInst> : public HungoffOperandTraits {};
3575
3577
3578//===----------------------------------------------------------------------===//
3579// IndirectBrInst Class
3580//===----------------------------------------------------------------------===//
3581
3582//===---------------------------------------------------------------------------
3583/// Indirect Branch Instruction.
3584///
3585class IndirectBrInst : public Instruction {
3586 constexpr static HungOffOperandsAllocMarker AllocMarker{};
3587
3588 unsigned ReservedSpace;
3589
3590 // Operand[0] = Address to jump to
3591 // Operand[n+1] = n-th destination
3592 IndirectBrInst(const IndirectBrInst &IBI);
3593
3594 /// Create a new indirectbr instruction, specifying an
3595 /// Address to jump to. The number of expected destinations can be specified
3596 /// here to make memory allocation more efficient. This constructor can also
3597 /// autoinsert before another instruction.
3598 LLVM_ABI IndirectBrInst(Value *Address, unsigned NumDests,
3599 InsertPosition InsertBefore);
3600
3601 // allocate space for exactly zero operands
3602 void *operator new(size_t S) { return User::operator new(S, AllocMarker); }
3603
3604 void init(Value *Address, unsigned NumDests);
3605 void growOperands();
3606
3607protected:
3608 // Note: Instruction needs to be a friend here to call cloneImpl.
3609 friend class Instruction;
3610
3611 LLVM_ABI IndirectBrInst *cloneImpl() const;
3612
3613public:
3614 void operator delete(void *Ptr) { User::operator delete(Ptr); }
3615
3616 /// Iterator type that casts an operand to a basic block.
3617 ///
3618 /// This only makes sense because the successors are stored as adjacent
3619 /// operands for indirectbr instructions.
3621 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3622 std::random_access_iterator_tag, BasicBlock *,
3623 ptrdiff_t, BasicBlock *, BasicBlock *> {
3625
3627 BasicBlock *operator->() const { return operator*(); }
3628 };
3629
3630 /// The const version of `succ_op_iterator`.
3632 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3633 std::random_access_iterator_tag,
3634 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3635 const BasicBlock *> {
3638
3639 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3640 const BasicBlock *operator->() const { return operator*(); }
3641 };
3642
3643 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3644 InsertPosition InsertBefore = nullptr) {
3645 return new IndirectBrInst(Address, NumDests, InsertBefore);
3646 }
3647
3648 /// Provide fast operand accessors.
3650
3651 // Accessor Methods for IndirectBrInst instruction.
3652 Value *getAddress() { return getOperand(0); }
3653 const Value *getAddress() const { return getOperand(0); }
3654 void setAddress(Value *V) { setOperand(0, V); }
3655
3656 /// return the number of possible destinations in this
3657 /// indirectbr instruction.
3658 unsigned getNumDestinations() const { return getNumOperands()-1; }
3659
3660 /// Return the specified destination.
3661 BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3662 const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3663
3664 /// Add a destination.
3665 ///
3666 LLVM_ABI void addDestination(BasicBlock *Dest);
3667
3668 /// This method removes the specified successor from the
3669 /// indirectbr instruction.
3670 LLVM_ABI void removeDestination(unsigned i);
3671
3672 unsigned getNumSuccessors() const { return getNumOperands()-1; }
3673 BasicBlock *getSuccessor(unsigned i) const {
3674 return cast<BasicBlock>(getOperand(i+1));
3675 }
3676 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3677 setOperand(i + 1, NewSucc);
3678 }
3679
3684
3689
3690 // Methods for support type inquiry through isa, cast, and dyn_cast:
3691 static bool classof(const Instruction *I) {
3692 return I->getOpcode() == Instruction::IndirectBr;
3693 }
3694 static bool classof(const Value *V) {
3696 }
3697};
3698
3699template <>
3701
3703
3704//===----------------------------------------------------------------------===//
3705// InvokeInst Class
3706//===----------------------------------------------------------------------===//
3707
3708/// Invoke instruction. The SubclassData field is used to hold the
3709/// calling convention of the call.
3710///
3711class InvokeInst : public CallBase {
3712 /// The number of operands for this call beyond the called function,
3713 /// arguments, and operand bundles.
3714 static constexpr int NumExtraOperands = 2;
3715
3716 /// The index from the end of the operand array to the normal destination.
3717 static constexpr int NormalDestOpEndIdx = -3;
3718
3719 /// The index from the end of the operand array to the unwind destination.
3720 static constexpr int UnwindDestOpEndIdx = -2;
3721
3722 InvokeInst(const InvokeInst &BI, AllocInfo AllocInfo);
3723
3724 /// Construct an InvokeInst given a range of arguments.
3725 ///
3726 /// Construct an InvokeInst from a range of arguments
3727 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3728 BasicBlock *IfException, ArrayRef<Value *> Args,
3730 const Twine &NameStr, InsertPosition InsertBefore);
3731
3732 LLVM_ABI void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3733 BasicBlock *IfException, ArrayRef<Value *> Args,
3734 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3735
3736 /// Compute the number of operands to allocate.
3737 static unsigned ComputeNumOperands(unsigned NumArgs,
3738 size_t NumBundleInputs = 0) {
3739 // We need one operand for the called function, plus our extra operands and
3740 // the input operand counts provided.
3741 return 1 + NumExtraOperands + NumArgs + unsigned(NumBundleInputs);
3742 }
3743
3744protected:
3745 // Note: Instruction needs to be a friend here to call cloneImpl.
3746 friend class Instruction;
3747
3748 LLVM_ABI InvokeInst *cloneImpl() const;
3749
3750public:
3751 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3752 BasicBlock *IfException, ArrayRef<Value *> Args,
3753 const Twine &NameStr,
3754 InsertPosition InsertBefore = nullptr) {
3755 IntrusiveOperandsAllocMarker AllocMarker{
3756 ComputeNumOperands(unsigned(Args.size()))};
3757 return new (AllocMarker) InvokeInst(Ty, Func, IfNormal, IfException, Args,
3758 {}, AllocMarker, NameStr, InsertBefore);
3759 }
3760
3761 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3762 BasicBlock *IfException, ArrayRef<Value *> Args,
3763 ArrayRef<OperandBundleDef> Bundles = {},
3764 const Twine &NameStr = "",
3765 InsertPosition InsertBefore = nullptr) {
3766 IntrusiveOperandsAndDescriptorAllocMarker AllocMarker{
3767 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)),
3768 unsigned(Bundles.size() * sizeof(BundleOpInfo))};
3769
3770 return new (AllocMarker)
3771 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, AllocMarker,
3772 NameStr, InsertBefore);
3773 }
3774
3775 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3776 BasicBlock *IfException, ArrayRef<Value *> Args,
3777 const Twine &NameStr,
3778 InsertPosition InsertBefore = nullptr) {
3779 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3780 IfException, Args, {}, NameStr, InsertBefore);
3781 }
3782
3783 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3784 BasicBlock *IfException, ArrayRef<Value *> Args,
3785 ArrayRef<OperandBundleDef> Bundles = {},
3786 const Twine &NameStr = "",
3787 InsertPosition InsertBefore = nullptr) {
3788 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3789 IfException, Args, Bundles, NameStr, InsertBefore);
3790 }
3791
3792 /// Create a clone of \p II with a different set of operand bundles and
3793 /// insert it before \p InsertBefore.
3794 ///
3795 /// The returned invoke instruction is identical to \p II in every way except
3796 /// that the operand bundles for the new instruction are set to the operand
3797 /// bundles in \p Bundles.
3798 LLVM_ABI static InvokeInst *Create(InvokeInst *II,
3800 InsertPosition InsertPt = nullptr);
3801
3802 // get*Dest - Return the destination basic blocks...
3810 Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3811 }
3813 Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3814 }
3815
3816 /// Get the landingpad instruction from the landing pad
3817 /// block (the unwind destination).
3818 LLVM_ABI LandingPadInst *getLandingPadInst() const;
3819
3820 BasicBlock *getSuccessor(unsigned i) const {
3821 assert(i < 2 && "Successor # out of range for invoke!");
3822 return i == 0 ? getNormalDest() : getUnwindDest();
3823 }
3824
3825 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3826 assert(i < 2 && "Successor # out of range for invoke!");
3827 if (i == 0)
3828 setNormalDest(NewSucc);
3829 else
3830 setUnwindDest(NewSucc);
3831 }
3832
3833 unsigned getNumSuccessors() const { return 2; }
3834
3835 /// Updates profile metadata by scaling it by \p S / \p T.
3836 LLVM_ABI void updateProfWeight(uint64_t S, uint64_t T);
3837
3838 // Methods for support type inquiry through isa, cast, and dyn_cast:
3839 static bool classof(const Instruction *I) {
3840 return (I->getOpcode() == Instruction::Invoke);
3841 }
3842 static bool classof(const Value *V) {
3844 }
3845
3846private:
3847 // Shadow Instruction::setInstructionSubclassData with a private forwarding
3848 // method so that subclasses cannot accidentally use it.
3849 template <typename Bitfield>
3850 void setSubclassData(typename Bitfield::Type Value) {
3852 }
3853};
3854
3855InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3856 BasicBlock *IfException, ArrayRef<Value *> Args,
3858 const Twine &NameStr, InsertPosition InsertBefore)
3859 : CallBase(Ty->getReturnType(), Instruction::Invoke, AllocInfo,
3860 InsertBefore) {
3861 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3862}
3863
3864//===----------------------------------------------------------------------===//
3865// CallBrInst Class
3866//===----------------------------------------------------------------------===//
3867
3868/// CallBr instruction, tracking function calls that may not return control but
3869/// instead transfer it to a third location. The SubclassData field is used to
3870/// hold the calling convention of the call.
3871///
3872class CallBrInst : public CallBase {
3873
3874 unsigned NumIndirectDests;
3875
3876 CallBrInst(const CallBrInst &BI, AllocInfo AllocInfo);
3877
3878 /// Construct a CallBrInst given a range of arguments.
3879 ///
3880 /// Construct a CallBrInst from a range of arguments
3881 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3882 ArrayRef<BasicBlock *> IndirectDests,
3884 AllocInfo AllocInfo, const Twine &NameStr,
3885 InsertPosition InsertBefore);
3886
3887 LLVM_ABI void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
3888 ArrayRef<BasicBlock *> IndirectDests,
3890 const Twine &NameStr);
3891
3892 /// Compute the number of operands to allocate.
3893 static unsigned ComputeNumOperands(int NumArgs, int NumIndirectDests,
3894 int NumBundleInputs = 0) {
3895 // We need one operand for the called function, plus our extra operands and
3896 // the input operand counts provided.
3897 return unsigned(2 + NumIndirectDests + NumArgs + NumBundleInputs);
3898 }
3899
3900protected:
3901 // Note: Instruction needs to be a friend here to call cloneImpl.
3902 friend class Instruction;
3903
3904 LLVM_ABI CallBrInst *cloneImpl() const;
3905
3906public:
3907 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3908 BasicBlock *DefaultDest,
3909 ArrayRef<BasicBlock *> IndirectDests,
3910 ArrayRef<Value *> Args, const Twine &NameStr,
3911 InsertPosition InsertBefore = nullptr) {
3912 IntrusiveOperandsAllocMarker AllocMarker{
3913 ComputeNumOperands(Args.size(), IndirectDests.size())};
3914 return new (AllocMarker)
3915 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, {}, AllocMarker,
3916 NameStr, InsertBefore);
3917 }
3918
3919 static CallBrInst *
3920 Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3921 ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
3922 ArrayRef<OperandBundleDef> Bundles = {}, const Twine &NameStr = "",
3923 InsertPosition InsertBefore = nullptr) {
3924 IntrusiveOperandsAndDescriptorAllocMarker AllocMarker{
3925 ComputeNumOperands(Args.size(), IndirectDests.size(),
3926 CountBundleInputs(Bundles)),
3927 unsigned(Bundles.size() * sizeof(BundleOpInfo))};
3928
3929 return new (AllocMarker)
3930 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
3931 AllocMarker, NameStr, InsertBefore);
3932 }
3933
3934 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
3935 ArrayRef<BasicBlock *> IndirectDests,
3936 ArrayRef<Value *> Args, const Twine &NameStr,
3937 InsertPosition InsertBefore = nullptr) {
3938 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
3939 IndirectDests, Args, NameStr, InsertBefore);
3940 }
3941
3942 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
3943 ArrayRef<BasicBlock *> IndirectDests,
3944 ArrayRef<Value *> Args,
3945 ArrayRef<OperandBundleDef> Bundles = {},
3946 const Twine &NameStr = "",
3947 InsertPosition InsertBefore = nullptr) {
3948 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
3949 IndirectDests, Args, Bundles, NameStr, InsertBefore);
3950 }
3951
3952 /// Create a clone of \p CBI with a different set of operand bundles and
3953 /// insert it before \p InsertBefore.
3954 ///
3955 /// The returned callbr instruction is identical to \p CBI in every way
3956 /// except that the operand bundles for the new instruction are set to the
3957 /// operand bundles in \p Bundles.
3958 LLVM_ABI static CallBrInst *Create(CallBrInst *CBI,
3960 InsertPosition InsertBefore = nullptr);
3961
3962 /// Return the number of callbr indirect dest labels.
3963 ///
3964 unsigned getNumIndirectDests() const { return NumIndirectDests; }
3965
3966 /// getIndirectDestLabel - Return the i-th indirect dest label.
3967 ///
3968 Value *getIndirectDestLabel(unsigned i) const {
3969 assert(i < getNumIndirectDests() && "Out of bounds!");
3970 return getOperand(i + arg_size() + getNumTotalBundleOperands() + 1);
3971 }
3972
3973 Value *getIndirectDestLabelUse(unsigned i) const {
3974 assert(i < getNumIndirectDests() && "Out of bounds!");
3975 return getOperandUse(i + arg_size() + getNumTotalBundleOperands() + 1);
3976 }
3977
3978 // Return the destination basic blocks...
3980 return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
3981 }
3982 BasicBlock *getIndirectDest(unsigned i) const {
3984 }
3986 SmallVector<BasicBlock *, 16> IndirectDests;
3987 for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
3988 IndirectDests.push_back(getIndirectDest(i));
3989 return IndirectDests;
3990 }
3992 *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
3993 }
3994 void setIndirectDest(unsigned i, BasicBlock *B) {
3995 *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
3996 }
3997
3998 BasicBlock *getSuccessor(unsigned i) const {
3999 assert(i < getNumSuccessors() + 1 &&
4000 "Successor # out of range for callbr!");
4001 return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
4002 }
4003
4004 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
4005 assert(i < getNumIndirectDests() + 1 &&
4006 "Successor # out of range for callbr!");
4007 return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc);
4008 }
4009
4010 unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4011
4012 // Methods for support type inquiry through isa, cast, and dyn_cast:
4013 static bool classof(const Instruction *I) {
4014 return (I->getOpcode() == Instruction::CallBr);
4015 }
4016 static bool classof(const Value *V) {
4018 }
4019
4020private:
4021 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4022 // method so that subclasses cannot accidentally use it.
4023 template <typename Bitfield>
4024 void setSubclassData(typename Bitfield::Type Value) {
4026 }
4027};
4028
4029CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4030 ArrayRef<BasicBlock *> IndirectDests,
4031 ArrayRef<Value *> Args,
4033 const Twine &NameStr, InsertPosition InsertBefore)
4034 : CallBase(Ty->getReturnType(), Instruction::CallBr, AllocInfo,
4035 InsertBefore) {
4036 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4037}
4038
4039//===----------------------------------------------------------------------===//
4040// ResumeInst Class
4041//===----------------------------------------------------------------------===//
4042
4043//===---------------------------------------------------------------------------
4044/// Resume the propagation of an exception.
4045///
4046class ResumeInst : public Instruction {
4047 constexpr static IntrusiveOperandsAllocMarker AllocMarker{1};
4048
4049 ResumeInst(const ResumeInst &RI);
4050
4051 LLVM_ABI explicit ResumeInst(Value *Exn,
4052 InsertPosition InsertBefore = nullptr);
4053
4054protected:
4055 // Note: Instruction needs to be a friend here to call cloneImpl.
4056 friend class Instruction;
4057
4058 LLVM_ABI ResumeInst *cloneImpl() const;
4059
4060public:
4061 static ResumeInst *Create(Value *Exn, InsertPosition InsertBefore = nullptr) {
4062 return new (AllocMarker) ResumeInst(Exn, InsertBefore);
4063 }
4064
4065 /// Provide fast operand accessors
4067
4068 /// Convenience accessor.
4069 Value *getValue() const { return Op<0>(); }
4070
4071 unsigned getNumSuccessors() const { return 0; }
4072
4073 // Methods for support type inquiry through isa, cast, and dyn_cast:
4074 static bool classof(const Instruction *I) {
4075 return I->getOpcode() == Instruction::Resume;
4076 }
4077 static bool classof(const Value *V) {
4079 }
4080
4081private:
4082 BasicBlock *getSuccessor(unsigned idx) const {
4083 llvm_unreachable("ResumeInst has no successors!");
4084 }
4085
4086 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4087 llvm_unreachable("ResumeInst has no successors!");
4088 }
4089};
4090
4091template <>
4093 public FixedNumOperandTraits<ResumeInst, 1> {
4094};
4095
4097
4098//===----------------------------------------------------------------------===//
4099// CatchSwitchInst Class
4100//===----------------------------------------------------------------------===//
4101class CatchSwitchInst : public Instruction {
4102 using UnwindDestField = BoolBitfieldElementT<0>;
4103
4104 constexpr static HungOffOperandsAllocMarker AllocMarker{};
4105
4106 /// The number of operands actually allocated. NumOperands is
4107 /// the number actually in use.
4108 unsigned ReservedSpace;
4109
4110 // Operand[0] = Outer scope
4111 // Operand[1] = Unwind block destination
4112 // Operand[n] = BasicBlock to go to on match
4113 CatchSwitchInst(const CatchSwitchInst &CSI);
4114
4115 /// Create a new switch instruction, specifying a
4116 /// default destination. The number of additional handlers can be specified
4117 /// here to make memory allocation more efficient.
4118 /// This constructor can also autoinsert before another instruction.
4119 LLVM_ABI CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4120 unsigned NumHandlers, const Twine &NameStr,
4121 InsertPosition InsertBefore);
4122
4123 // allocate space for exactly zero operands
4124 void *operator new(size_t S) { return User::operator new(S, AllocMarker); }
4125
4126 void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
4127 void growOperands(unsigned Size);
4128
4129protected:
4130 // Note: Instruction needs to be a friend here to call cloneImpl.
4131 friend class Instruction;
4132
4133 LLVM_ABI CatchSwitchInst *cloneImpl() const;
4134
4135public:
4136 void operator delete(void *Ptr) { return User::operator delete(Ptr); }
4137
4138 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4139 unsigned NumHandlers,
4140 const Twine &NameStr = "",
4141 InsertPosition InsertBefore = nullptr) {
4142 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4143 InsertBefore);
4144 }
4145
4146 /// Provide fast operand accessors
4148
4149 // Accessor Methods for CatchSwitch stmt
4150 Value *getParentPad() const { return getOperand(0); }
4151 void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
4152
4153 // Accessor Methods for CatchSwitch stmt
4155 bool unwindsToCaller() const { return !hasUnwindDest(); }
4157 if (hasUnwindDest())
4158 return cast<BasicBlock>(getOperand(1));
4159 return nullptr;
4160 }
4161 void setUnwindDest(BasicBlock *UnwindDest) {
4162 assert(UnwindDest);
4164 setOperand(1, UnwindDest);
4165 }
4166
4167 /// return the number of 'handlers' in this catchswitch
4168 /// instruction, except the default handler
4169 unsigned getNumHandlers() const {
4170 if (hasUnwindDest())
4171 return getNumOperands() - 2;
4172 return getNumOperands() - 1;
4173 }
4174
4175private:
4176 static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
4177 static const BasicBlock *handler_helper(const Value *V) {
4178 return cast<BasicBlock>(V);
4179 }
4180
4181public:
4182 using DerefFnTy = BasicBlock *(*)(Value *);
4185 using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
4189
4190 /// Returns an iterator that points to the first handler in CatchSwitchInst.
4192 op_iterator It = op_begin() + 1;
4193 if (hasUnwindDest())
4194 ++It;
4195 return handler_iterator(It, DerefFnTy(handler_helper));
4196 }
4197
4198 /// Returns an iterator that points to the first handler in the
4199 /// CatchSwitchInst.
4201 const_op_iterator It = op_begin() + 1;
4202 if (hasUnwindDest())
4203 ++It;
4204 return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
4205 }
4206
4207 /// Returns a read-only iterator that points one past the last
4208 /// handler in the CatchSwitchInst.
4210 return handler_iterator(op_end(), DerefFnTy(handler_helper));
4211 }
4212
4213 /// Returns an iterator that points one past the last handler in the
4214 /// CatchSwitchInst.
4216 return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
4217 }
4218
4219 /// iteration adapter for range-for loops.
4223
4224 /// iteration adapter for range-for loops.
4228
4229 /// Add an entry to the switch instruction...
4230 /// Note:
4231 /// This action invalidates handler_end(). Old handler_end() iterator will
4232 /// point to the added handler.
4233 LLVM_ABI void addHandler(BasicBlock *Dest);
4234
4235 LLVM_ABI void removeHandler(handler_iterator HI);
4236
4237 unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4238 BasicBlock *getSuccessor(unsigned Idx) const {
4239 assert(Idx < getNumSuccessors() &&
4240 "Successor # out of range for catchswitch!");
4241 return cast<BasicBlock>(getOperand(Idx + 1));
4242 }
4243 void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
4244 assert(Idx < getNumSuccessors() &&
4245 "Successor # out of range for catchswitch!");
4246 setOperand(Idx + 1, NewSucc);
4247 }
4248
4249 // Methods for support type inquiry through isa, cast, and dyn_cast:
4250 static bool classof(const Instruction *I) {
4251 return I->getOpcode() == Instruction::CatchSwitch;
4252 }
4253 static bool classof(const Value *V) {
4255 }
4256};
4257
4258template <>
4260
4262
4263//===----------------------------------------------------------------------===//
4264// CleanupPadInst Class
4265//===----------------------------------------------------------------------===//
4266class CleanupPadInst : public FuncletPadInst {
4267private:
4268 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4269 AllocInfo AllocInfo, const Twine &NameStr,
4270 InsertPosition InsertBefore)
4271 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, AllocInfo,
4272 NameStr, InsertBefore) {}
4273
4274public:
4275 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = {},
4276 const Twine &NameStr = "",
4277 InsertPosition InsertBefore = nullptr) {
4278 IntrusiveOperandsAllocMarker AllocMarker{unsigned(1 + Args.size())};
4279 return new (AllocMarker)
4280 CleanupPadInst(ParentPad, Args, AllocMarker, NameStr, InsertBefore);
4281 }
4282
4283 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4284 static bool classof(const Instruction *I) {
4285 return I->getOpcode() == Instruction::CleanupPad;
4286 }
4287 static bool classof(const Value *V) {
4289 }
4290};
4291
4292//===----------------------------------------------------------------------===//
4293// CatchPadInst Class
4294//===----------------------------------------------------------------------===//
4295class CatchPadInst : public FuncletPadInst {
4296private:
4297 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4298 AllocInfo AllocInfo, const Twine &NameStr,
4299 InsertPosition InsertBefore)
4300 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, AllocInfo,
4301 NameStr, InsertBefore) {}
4302
4303public:
4304 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4305 const Twine &NameStr = "",
4306 InsertPosition InsertBefore = nullptr) {
4307 IntrusiveOperandsAllocMarker AllocMarker{unsigned(1 + Args.size())};
4308 return new (AllocMarker)
4309 CatchPadInst(CatchSwitch, Args, AllocMarker, NameStr, InsertBefore);
4310 }
4311
4312 /// Convenience accessors
4316 void setCatchSwitch(Value *CatchSwitch) {
4317 assert(CatchSwitch);
4318 Op<-1>() = CatchSwitch;
4319 }
4320
4321 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4322 static bool classof(const Instruction *I) {
4323 return I->getOpcode() == Instruction::CatchPad;
4324 }
4325 static bool classof(const Value *V) {
4327 }
4328};
4329
4330//===----------------------------------------------------------------------===//
4331// CatchReturnInst Class
4332//===----------------------------------------------------------------------===//
4333
4334class CatchReturnInst : public Instruction {
4335 constexpr static IntrusiveOperandsAllocMarker AllocMarker{2};
4336
4337 CatchReturnInst(const CatchReturnInst &RI);
4338 LLVM_ABI CatchReturnInst(Value *CatchPad, BasicBlock *BB,
4339 InsertPosition InsertBefore);
4340
4341 void init(Value *CatchPad, BasicBlock *BB);
4342
4343protected:
4344 // Note: Instruction needs to be a friend here to call cloneImpl.
4345 friend class Instruction;
4346
4347 LLVM_ABI CatchReturnInst *cloneImpl() const;
4348
4349public:
4350 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4351 InsertPosition InsertBefore = nullptr) {
4352 assert(CatchPad);
4353 assert(BB);
4354 return new (AllocMarker) CatchReturnInst(CatchPad, BB, InsertBefore);
4355 }
4356
4357 /// Provide fast operand accessors
4359
4360 /// Convenience accessors.
4362 void setCatchPad(CatchPadInst *CatchPad) {
4363 assert(CatchPad);
4364 Op<0>() = CatchPad;
4365 }
4366
4368 void setSuccessor(BasicBlock *NewSucc) {
4369 assert(NewSucc);
4370 Op<1>() = NewSucc;
4371 }
4372 unsigned getNumSuccessors() const { return 1; }
4373
4374 /// Get the parentPad of this catchret's catchpad's catchswitch.
4375 /// The successor block is implicitly a member of this funclet.
4379
4380 // Methods for support type inquiry through isa, cast, and dyn_cast:
4381 static bool classof(const Instruction *I) {
4382 return (I->getOpcode() == Instruction::CatchRet);
4383 }
4384 static bool classof(const Value *V) {
4386 }
4387
4388private:
4389 BasicBlock *getSuccessor(unsigned Idx) const {
4390 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
4391 return getSuccessor();
4392 }
4393
4394 void setSuccessor(unsigned Idx, BasicBlock *B) {
4395 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
4396 setSuccessor(B);
4397 }
4398};
4399
4400template <>
4402 : public FixedNumOperandTraits<CatchReturnInst, 2> {};
4403
4405
4406//===----------------------------------------------------------------------===//
4407// CleanupReturnInst Class
4408//===----------------------------------------------------------------------===//
4409
4410class CleanupReturnInst : public Instruction {
4411 using UnwindDestField = BoolBitfieldElementT<0>;
4412
4413private:
4414 CleanupReturnInst(const CleanupReturnInst &RI, AllocInfo AllocInfo);
4415 LLVM_ABI CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
4417 InsertPosition InsertBefore = nullptr);
4418
4419 void init(Value *CleanupPad, BasicBlock *UnwindBB);
4420
4421protected:
4422 // Note: Instruction needs to be a friend here to call cloneImpl.
4423 friend class Instruction;
4424
4425 LLVM_ABI CleanupReturnInst *cloneImpl() const;
4426
4427public:
4428 static CleanupReturnInst *Create(Value *CleanupPad,
4429 BasicBlock *UnwindBB = nullptr,
4430 InsertPosition InsertBefore = nullptr) {
4431 assert(CleanupPad);
4432 unsigned Values = 1;
4433 if (UnwindBB)
4434 ++Values;
4435 IntrusiveOperandsAllocMarker AllocMarker{Values};
4436 return new (AllocMarker)
4437 CleanupReturnInst(CleanupPad, UnwindBB, AllocMarker, InsertBefore);
4438 }
4439
4440 /// Provide fast operand accessors
4442
4444 bool unwindsToCaller() const { return !hasUnwindDest(); }
4445
4446 /// Convenience accessor.
4448 return cast<CleanupPadInst>(Op<0>());
4449 }
4450 void setCleanupPad(CleanupPadInst *CleanupPad) {
4451 assert(CleanupPad);
4452 Op<0>() = CleanupPad;
4453 }
4454
4455 unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4456
4458 return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
4459 }
4460 void setUnwindDest(BasicBlock *NewDest) {
4461 assert(NewDest);
4463 Op<1>() = NewDest;
4464 }
4465
4466 // Methods for support type inquiry through isa, cast, and dyn_cast:
4467 static bool classof(const Instruction *I) {
4468 return (I->getOpcode() == Instruction::CleanupRet);
4469 }
4470 static bool classof(const Value *V) {
4472 }
4473
4474private:
4475 BasicBlock *getSuccessor(unsigned Idx) const {
4476 assert(Idx == 0);
4477 return getUnwindDest();
4478 }
4479
4480 void setSuccessor(unsigned Idx, BasicBlock *B) {
4481 assert(Idx == 0);
4482 setUnwindDest(B);
4483 }
4484
4485 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4486 // method so that subclasses cannot accidentally use it.
4487 template <typename Bitfield>
4488 void setSubclassData(typename Bitfield::Type Value) {
4490 }
4491};
4492
4493template <>
4495 : public VariadicOperandTraits<CleanupReturnInst> {};
4496
4498
4499//===----------------------------------------------------------------------===//
4500// UnreachableInst Class
4501//===----------------------------------------------------------------------===//
4502
4503//===---------------------------------------------------------------------------
4504/// This function has undefined behavior. In particular, the
4505/// presence of this instruction indicates some higher level knowledge that the
4506/// end of the block cannot be reached.
4507///
4509 constexpr static IntrusiveOperandsAllocMarker AllocMarker{0};
4510
4511protected:
4512 // Note: Instruction needs to be a friend here to call cloneImpl.
4513 friend class Instruction;
4514
4516
4517public:
4519 InsertPosition InsertBefore = nullptr);
4520
4521 // allocate space for exactly zero operands
4522 void *operator new(size_t S) { return User::operator new(S, AllocMarker); }
4523 void operator delete(void *Ptr) { User::operator delete(Ptr); }
4524
4525 unsigned getNumSuccessors() const { return 0; }
4526
4527 // Methods for support type inquiry through isa, cast, and dyn_cast:
4528 static bool classof(const Instruction *I) {
4529 return I->getOpcode() == Instruction::Unreachable;
4530 }
4531 static bool classof(const Value *V) {
4533 }
4534
4535 // Whether to do target lowering in SelectionDAG.
4536 LLVM_ABI bool shouldLowerToTrap(bool TrapUnreachable,
4537 bool NoTrapAfterNoreturn) const;
4538
4539private:
4540 BasicBlock *getSuccessor(unsigned idx) const {
4541 llvm_unreachable("UnreachableInst has no successors!");
4542 }
4543
4544 void setSuccessor(unsigned idx, BasicBlock *B) {
4545 llvm_unreachable("UnreachableInst has no successors!");
4546 }
4547};
4548
4549//===----------------------------------------------------------------------===//
4550// TruncInst Class
4551//===----------------------------------------------------------------------===//
4552
4553/// This class represents a truncation of integer types.
4554class TruncInst : public CastInst {
4555protected:
4556 // Note: Instruction needs to be a friend here to call cloneImpl.
4557 friend class Instruction;
4558
4559 /// Clone an identical TruncInst
4560 LLVM_ABI TruncInst *cloneImpl() const;
4561
4562public:
4563 enum { AnyWrap = 0, NoUnsignedWrap = (1 << 0), NoSignedWrap = (1 << 1) };
4564
4565 /// Constructor with insert-before-instruction semantics
4566 LLVM_ABI
4567 TruncInst(Value *S, ///< The value to be truncated
4568 Type *Ty, ///< The (smaller) type to truncate to
4569 const Twine &NameStr = "", ///< A name for the new instruction
4570 InsertPosition InsertBefore =
4571 nullptr ///< Where to insert the new instruction
4572 );
4573
4574 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4575 static bool classof(const Instruction *I) {
4576 return I->getOpcode() == Trunc;
4577 }
4578 static bool classof(const Value *V) {
4580 }
4581
4590
4591 /// Test whether this operation is known to never
4592 /// undergo unsigned overflow, aka the nuw property.
4593 bool hasNoUnsignedWrap() const {
4595 }
4596
4597 /// Test whether this operation is known to never
4598 /// undergo signed overflow, aka the nsw property.
4599 bool hasNoSignedWrap() const {
4600 return (SubclassOptionalData & NoSignedWrap) != 0;
4601 }
4602
4603 /// Returns the no-wrap kind of the operation.
4604 unsigned getNoWrapKind() const {
4605 unsigned NoWrapKind = 0;
4606 if (hasNoUnsignedWrap())
4607 NoWrapKind |= NoUnsignedWrap;
4608
4609 if (hasNoSignedWrap())
4610 NoWrapKind |= NoSignedWrap;
4611
4612 return NoWrapKind;
4613 }
4614};
4615
4616//===----------------------------------------------------------------------===//
4617// ZExtInst Class
4618//===----------------------------------------------------------------------===//
4619
4620/// This class represents zero extension of integer types.
4621class ZExtInst : public CastInst {
4622protected:
4623 // Note: Instruction needs to be a friend here to call cloneImpl.
4624 friend class Instruction;
4625
4626 /// Clone an identical ZExtInst
4627 LLVM_ABI ZExtInst *cloneImpl() const;
4628
4629public:
4630 /// Constructor with insert-before-instruction semantics
4631 LLVM_ABI
4632 ZExtInst(Value *S, ///< The value to be zero extended
4633 Type *Ty, ///< The type to zero extend to
4634 const Twine &NameStr = "", ///< A name for the new instruction
4635 InsertPosition InsertBefore =
4636 nullptr ///< Where to insert the new instruction
4637 );
4638
4639 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4640 static bool classof(const Instruction *I) {
4641 return I->getOpcode() == ZExt;
4642 }
4643 static bool classof(const Value *V) {
4645 }
4646};
4647
4648//===----------------------------------------------------------------------===//
4649// SExtInst Class
4650//===----------------------------------------------------------------------===//
4651
4652/// This class represents a sign extension of integer types.
4653class SExtInst : public CastInst {
4654protected:
4655 // Note: Instruction needs to be a friend here to call cloneImpl.
4656 friend class Instruction;
4657
4658 /// Clone an identical SExtInst
4659 LLVM_ABI SExtInst *cloneImpl() const;
4660
4661public:
4662 /// Constructor with insert-before-instruction semantics
4663 LLVM_ABI
4664 SExtInst(Value *S, ///< The value to be sign extended
4665 Type *Ty, ///< The type to sign extend to
4666 const Twine &NameStr = "", ///< A name for the new instruction
4667 InsertPosition InsertBefore =
4668 nullptr ///< Where to insert the new instruction
4669 );
4670
4671 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4672 static bool classof(const Instruction *I) {
4673 return I->getOpcode() == SExt;
4674 }
4675 static bool classof(const Value *V) {
4677 }
4678};
4679
4680//===----------------------------------------------------------------------===//
4681// FPTruncInst Class
4682//===----------------------------------------------------------------------===//
4683
4684/// This class represents a truncation of floating point types.
4685class FPTruncInst : public CastInst {
4686protected:
4687 // Note: Instruction needs to be a friend here to call cloneImpl.
4688 friend class Instruction;
4689
4690 /// Clone an identical FPTruncInst
4692
4693public: /// Constructor with insert-before-instruction semantics
4694 LLVM_ABI
4695 FPTruncInst(Value *S, ///< The value to be truncated
4696 Type *Ty, ///< The type to truncate to
4697 const Twine &NameStr = "", ///< A name for the new instruction
4698 InsertPosition InsertBefore =
4699 nullptr ///< Where to insert the new instruction
4700 );
4701
4702 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4703 static bool classof(const Instruction *I) {
4704 return I->getOpcode() == FPTrunc;
4705 }
4706 static bool classof(const Value *V) {
4708 }
4709};
4710
4711//===----------------------------------------------------------------------===//
4712// FPExtInst Class
4713//===----------------------------------------------------------------------===//
4714
4715/// This class represents an extension of floating point types.
4716class FPExtInst : public CastInst {
4717protected:
4718 // Note: Instruction needs to be a friend here to call cloneImpl.
4719 friend class Instruction;
4720
4721 /// Clone an identical FPExtInst
4722 LLVM_ABI FPExtInst *cloneImpl() const;
4723
4724public:
4725 /// Constructor with insert-before-instruction semantics
4726 LLVM_ABI
4727 FPExtInst(Value *S, ///< The value to be extended
4728 Type *Ty, ///< The type to extend to
4729 const Twine &NameStr = "", ///< A name for the new instruction
4730 InsertPosition InsertBefore =
4731 nullptr ///< Where to insert the new instruction
4732 );
4733
4734 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4735 static bool classof(const Instruction *I) {
4736 return I->getOpcode() == FPExt;
4737 }
4738 static bool classof(const Value *V) {
4740 }
4741};
4742
4743//===----------------------------------------------------------------------===//
4744// UIToFPInst Class
4745//===----------------------------------------------------------------------===//
4746
4747/// This class represents a cast unsigned integer to floating point.
4748class UIToFPInst : public CastInst {
4749protected:
4750 // Note: Instruction needs to be a friend here to call cloneImpl.
4751 friend class Instruction;
4752
4753 /// Clone an identical UIToFPInst
4754 LLVM_ABI UIToFPInst *cloneImpl() const;
4755
4756public:
4757 /// Constructor with insert-before-instruction semantics
4758 LLVM_ABI
4759 UIToFPInst(Value *S, ///< The value to be converted
4760 Type *Ty, ///< The type to convert to
4761 const Twine &NameStr = "", ///< A name for the new instruction
4762 InsertPosition InsertBefore =
4763 nullptr ///< Where to insert the new instruction
4764 );
4765
4766 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4767 static bool classof(const Instruction *I) {
4768 return I->getOpcode() == UIToFP;
4769 }
4770 static bool classof(const Value *V) {
4772 }
4773};
4774
4775//===----------------------------------------------------------------------===//
4776// SIToFPInst Class
4777//===----------------------------------------------------------------------===//
4778
4779/// This class represents a cast from signed integer to floating point.
4780class SIToFPInst : public CastInst {
4781protected:
4782 // Note: Instruction needs to be a friend here to call cloneImpl.
4783 friend class Instruction;
4784
4785 /// Clone an identical SIToFPInst
4786 LLVM_ABI SIToFPInst *cloneImpl() const;
4787
4788public:
4789 /// Constructor with insert-before-instruction semantics
4790 LLVM_ABI
4791 SIToFPInst(Value *S, ///< The value to be converted
4792 Type *Ty, ///< The type to convert to
4793 const Twine &NameStr = "", ///< A name for the new instruction
4794 InsertPosition InsertBefore =
4795 nullptr ///< Where to insert the new instruction
4796 );
4797
4798 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4799 static bool classof(const Instruction *I) {
4800 return I->getOpcode() == SIToFP;
4801 }
4802 static bool classof(const Value *V) {
4804 }
4805};
4806
4807//===----------------------------------------------------------------------===//
4808// FPToUIInst Class
4809//===----------------------------------------------------------------------===//
4810
4811/// This class represents a cast from floating point to unsigned integer
4812class FPToUIInst : public CastInst {
4813protected:
4814 // Note: Instruction needs to be a friend here to call cloneImpl.
4815 friend class Instruction;
4816
4817 /// Clone an identical FPToUIInst
4818 LLVM_ABI FPToUIInst *cloneImpl() const;
4819
4820public:
4821 /// Constructor with insert-before-instruction semantics
4822 LLVM_ABI
4823 FPToUIInst(Value *S, ///< The value to be converted
4824 Type *Ty, ///< The type to convert to
4825 const Twine &NameStr = "", ///< A name for the new instruction
4826 InsertPosition InsertBefore =
4827 nullptr ///< Where to insert the new instruction
4828 );
4829
4830 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4831 static bool classof(const Instruction *I) {
4832 return I->getOpcode() == FPToUI;
4833 }
4834 static bool classof(const Value *V) {
4836 }
4837};
4838
4839//===----------------------------------------------------------------------===//
4840// FPToSIInst Class
4841//===----------------------------------------------------------------------===//
4842
4843/// This class represents a cast from floating point to signed integer.
4844class FPToSIInst : public CastInst {
4845protected:
4846 // Note: Instruction needs to be a friend here to call cloneImpl.
4847 friend class Instruction;
4848
4849 /// Clone an identical FPToSIInst
4850 LLVM_ABI FPToSIInst *cloneImpl() const;
4851
4852public:
4853 /// Constructor with insert-before-instruction semantics
4854 LLVM_ABI
4855 FPToSIInst(Value *S, ///< The value to be converted
4856 Type *Ty, ///< The type to convert to
4857 const Twine &NameStr = "", ///< A name for the new instruction
4858 InsertPosition InsertBefore =
4859 nullptr ///< Where to insert the new instruction
4860 );
4861
4862 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4863 static bool classof(const Instruction *I) {
4864 return I->getOpcode() == FPToSI;
4865 }
4866 static bool classof(const Value *V) {
4868 }
4869};
4870
4871//===----------------------------------------------------------------------===//
4872// IntToPtrInst Class
4873//===----------------------------------------------------------------------===//
4874
4875/// This class represents a cast from an integer to a pointer.
4876class IntToPtrInst : public CastInst {
4877public:
4878 // Note: Instruction needs to be a friend here to call cloneImpl.
4879 friend class Instruction;
4880
4881 /// Constructor with insert-before-instruction semantics
4882 LLVM_ABI
4883 IntToPtrInst(Value *S, ///< The value to be converted
4884 Type *Ty, ///< The type to convert to
4885 const Twine &NameStr = "", ///< A name for the new instruction
4886 InsertPosition InsertBefore =
4887 nullptr ///< Where to insert the new instruction
4888 );
4889
4890 /// Clone an identical IntToPtrInst.
4892
4893 /// Returns the address space of this instruction's pointer type.
4894 unsigned getAddressSpace() const {
4895 return getType()->getPointerAddressSpace();
4896 }
4897
4898 // Methods for support type inquiry through isa, cast, and dyn_cast:
4899 static bool classof(const Instruction *I) {
4900 return I->getOpcode() == IntToPtr;
4901 }
4902 static bool classof(const Value *V) {
4904 }
4905};
4906
4907//===----------------------------------------------------------------------===//
4908// PtrToIntInst Class
4909//===----------------------------------------------------------------------===//
4910
4911/// This class represents a cast from a pointer to an integer.
4912class PtrToIntInst : public CastInst {
4913protected:
4914 // Note: Instruction needs to be a friend here to call cloneImpl.
4915 friend class Instruction;
4916
4917 /// Clone an identical PtrToIntInst.
4919
4920public:
4921 /// Constructor with insert-before-instruction semantics
4922 LLVM_ABI
4923 PtrToIntInst(Value *S, ///< The value to be converted
4924 Type *Ty, ///< The type to convert to
4925 const Twine &NameStr = "", ///< A name for the new instruction
4926 InsertPosition InsertBefore =
4927 nullptr ///< Where to insert the new instruction
4928 );
4929
4930 /// Gets the pointer operand.
4932 /// Gets the pointer operand.
4933 const Value *getPointerOperand() const { return getOperand(0); }
4934 /// Gets the operand index of the pointer operand.
4935 static unsigned getPointerOperandIndex() { return 0U; }
4936
4937 /// Returns the address space of the pointer operand.
4938 unsigned getPointerAddressSpace() const {
4940 }
4941
4942 // Methods for support type inquiry through isa, cast, and dyn_cast:
4943 static bool classof(const Instruction *I) {
4944 return I->getOpcode() == PtrToInt;
4945 }
4946 static bool classof(const Value *V) {
4948 }
4949};
4950
4951/// This class represents a cast from a pointer to an address (non-capturing
4952/// ptrtoint).
4953class PtrToAddrInst : public CastInst {
4954protected:
4955 // Note: Instruction needs to be a friend here to call cloneImpl.
4956 friend class Instruction;
4957
4958 /// Clone an identical PtrToAddrInst.
4959 PtrToAddrInst *cloneImpl() const;
4960
4961public:
4962 /// Constructor with insert-before-instruction semantics
4963 PtrToAddrInst(Value *S, ///< The value to be converted
4964 Type *Ty, ///< The type to convert to
4965 const Twine &NameStr = "", ///< A name for the new instruction
4966 InsertPosition InsertBefore =
4967 nullptr ///< Where to insert the new instruction
4968 );
4969
4970 /// Gets the pointer operand.
4972 /// Gets the pointer operand.
4973 const Value *getPointerOperand() const { return getOperand(0); }
4974 /// Gets the operand index of the pointer operand.
4975 static unsigned getPointerOperandIndex() { return 0U; }
4976
4977 /// Returns the address space of the pointer operand.
4978 unsigned getPointerAddressSpace() const {
4980 }
4981
4982 // Methods for support type inquiry through isa, cast, and dyn_cast:
4983 static bool classof(const Instruction *I) {
4984 return I->getOpcode() == PtrToAddr;
4985 }
4986 static bool classof(const Value *V) {
4988 }
4989};
4990
4991//===----------------------------------------------------------------------===//
4992// BitCastInst Class
4993//===----------------------------------------------------------------------===//
4994
4995/// This class represents a no-op cast from one type to another.
4996class BitCastInst : public CastInst {
4997protected:
4998 // Note: Instruction needs to be a friend here to call cloneImpl.
4999 friend class Instruction;
5000
5001 /// Clone an identical BitCastInst.
5003
5004public:
5005 /// Constructor with insert-before-instruction semantics
5006 LLVM_ABI
5007 BitCastInst(Value *S, ///< The value to be casted
5008 Type *Ty, ///< The type to casted to
5009 const Twine &NameStr = "", ///< A name for the new instruction
5010 InsertPosition InsertBefore =
5011 nullptr ///< Where to insert the new instruction
5012 );
5013
5014 // Methods for support type inquiry through isa, cast, and dyn_cast:
5015 static bool classof(const Instruction *I) {
5016 return I->getOpcode() == BitCast;
5017 }
5018 static bool classof(const Value *V) {
5020 }
5021};
5022
5023//===----------------------------------------------------------------------===//
5024// AddrSpaceCastInst Class
5025//===----------------------------------------------------------------------===//
5026
5027/// This class represents a conversion between pointers from one address space
5028/// to another.
5030protected:
5031 // Note: Instruction needs to be a friend here to call cloneImpl.
5032 friend class Instruction;
5033
5034 /// Clone an identical AddrSpaceCastInst.
5036
5037public:
5038 /// Constructor with insert-before-instruction semantics
5040 Value *S, ///< The value to be casted
5041 Type *Ty, ///< The type to casted to
5042 const Twine &NameStr = "", ///< A name for the new instruction
5043 InsertPosition InsertBefore =
5044 nullptr ///< Where to insert the new instruction
5045 );
5046
5047 // Methods for support type inquiry through isa, cast, and dyn_cast:
5048 static bool classof(const Instruction *I) {
5049 return I->getOpcode() == AddrSpaceCast;
5050 }
5051 static bool classof(const Value *V) {
5053 }
5054
5055 /// Gets the pointer operand.
5057 return getOperand(0);
5058 }
5059
5060 /// Gets the pointer operand.
5061 const Value *getPointerOperand() const {
5062 return getOperand(0);
5063 }
5064
5065 /// Gets the operand index of the pointer operand.
5066 static unsigned getPointerOperandIndex() {
5067 return 0U;
5068 }
5069
5070 /// Returns the address space of the pointer operand.
5071 unsigned getSrcAddressSpace() const {
5073 }
5074
5075 /// Returns the address space of the result.
5076 unsigned getDestAddressSpace() const {
5077 return getType()->getPointerAddressSpace();
5078 }
5079};
5080
5081//===----------------------------------------------------------------------===//
5082// Helper functions
5083//===----------------------------------------------------------------------===//
5084
5085/// A helper function that returns the pointer operand of a load or store
5086/// instruction. Returns nullptr if not load or store.
5087inline const Value *getLoadStorePointerOperand(const Value *V) {
5088 if (auto *Load = dyn_cast<LoadInst>(V))
5089 return Load->getPointerOperand();
5090 if (auto *Store = dyn_cast<StoreInst>(V))
5091 return Store->getPointerOperand();
5092 return nullptr;
5093}
5095 return const_cast<Value *>(
5096 getLoadStorePointerOperand(static_cast<const Value *>(V)));
5097}
5098
5099/// A helper function that returns the pointer operand of a load, store
5100/// or GEP instruction. Returns nullptr if not load, store, or GEP.
5101inline const Value *getPointerOperand(const Value *V) {
5102 if (auto *Ptr = getLoadStorePointerOperand(V))
5103 return Ptr;
5104 if (auto *Gep = dyn_cast<GetElementPtrInst>(V))
5105 return Gep->getPointerOperand();
5106 return nullptr;
5107}
5109 return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V)));
5110}
5111
5112/// A helper function that returns the alignment of load or store instruction.
5115 "Expected Load or Store instruction");
5116 if (auto *LI = dyn_cast<LoadInst>(I))
5117 return LI->getAlign();
5118 return cast<StoreInst>(I)->getAlign();
5119}
5120
5121/// A helper function that set the alignment of load or store instruction.
5122inline void setLoadStoreAlignment(Value *I, Align NewAlign) {
5124 "Expected Load or Store instruction");
5125 if (auto *LI = dyn_cast<LoadInst>(I))
5126 LI->setAlignment(NewAlign);
5127 else
5128 cast<StoreInst>(I)->setAlignment(NewAlign);
5129}
5130
5131/// A helper function that returns the address space of the pointer operand of
5132/// load or store instruction.
5133inline unsigned getLoadStoreAddressSpace(const Value *I) {
5135 "Expected Load or Store instruction");
5136 if (auto *LI = dyn_cast<LoadInst>(I))
5137 return LI->getPointerAddressSpace();
5138 return cast<StoreInst>(I)->getPointerAddressSpace();
5139}
5140
5141/// A helper function that returns the type of a load or store instruction.
5142inline Type *getLoadStoreType(const Value *I) {
5144 "Expected Load or Store instruction");
5145 if (auto *LI = dyn_cast<LoadInst>(I))
5146 return LI->getType();
5147 return cast<StoreInst>(I)->getValueOperand()->getType();
5148}
5149
5150/// A helper function that returns an atomic operation's sync scope; returns
5151/// std::nullopt if it is not an atomic operation.
5152inline std::optional<SyncScope::ID> getAtomicSyncScopeID(const Instruction *I) {
5153 if (!I->isAtomic())
5154 return std::nullopt;
5155 if (auto *AI = dyn_cast<LoadInst>(I))
5156 return AI->getSyncScopeID();
5157 if (auto *AI = dyn_cast<StoreInst>(I))
5158 return AI->getSyncScopeID();
5159 if (auto *AI = dyn_cast<FenceInst>(I))
5160 return AI->getSyncScopeID();
5161 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I))
5162 return AI->getSyncScopeID();
5163 if (auto *AI = dyn_cast<AtomicRMWInst>(I))
5164 return AI->getSyncScopeID();
5165 llvm_unreachable("unhandled atomic operation");
5166}
5167
5168/// A helper function that sets an atomic operation's sync scope.
5170 assert(I->isAtomic());
5171 if (auto *AI = dyn_cast<LoadInst>(I))
5172 AI->setSyncScopeID(SSID);
5173 else if (auto *AI = dyn_cast<StoreInst>(I))
5174 AI->setSyncScopeID(SSID);
5175 else if (auto *AI = dyn_cast<FenceInst>(I))
5176 AI->setSyncScopeID(SSID);
5177 else if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I))
5178 AI->setSyncScopeID(SSID);
5179 else if (auto *AI = dyn_cast<AtomicRMWInst>(I))
5180 AI->setSyncScopeID(SSID);
5181 else
5182 llvm_unreachable("unhandled atomic operation");
5183}
5184
5185//===----------------------------------------------------------------------===//
5186// FreezeInst Class
5187//===----------------------------------------------------------------------===//
5188
5189/// This class represents a freeze function that returns random concrete
5190/// value if an operand is either a poison value or an undef value
5192protected:
5193 // Note: Instruction needs to be a friend here to call cloneImpl.
5194 friend class Instruction;
5195
5196 /// Clone an identical FreezeInst
5197 LLVM_ABI FreezeInst *cloneImpl() const;
5198
5199public:
5200 LLVM_ABI explicit FreezeInst(Value *S, const Twine &NameStr = "",
5201 InsertPosition InsertBefore = nullptr);
5202
5203 // Methods for support type inquiry through isa, cast, and dyn_cast:
5204 static inline bool classof(const Instruction *I) {
5205 return I->getOpcode() == Freeze;
5206 }
5207 static inline bool classof(const Value *V) {
5209 }
5210};
5211
5212} // end namespace llvm
5213
5214#endif // LLVM_IR_INSTRUCTIONS_H
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
constexpr LLT S1
static bool isReverseMask(ArrayRef< int > M, EVT VT)
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
always inline
Atomic ordering constants.
static const Function * getParent(const Value *V)
This file implements methods to test, set and extract typed bits from packed unsigned integers.
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_ABI
Definition Compiler.h:213
Hexagon Common GEP
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
This defines the Use class.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
This file implements a map that provides insertion order iteration.
#define T
uint64_t IntrinsicInst * II
#define DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CLASS, VALUECLASS)
Macro for generating out-of-class operand accessor definitions.
#define P(N)
PowerPC Reduce CR logical Operation
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
Value * RHS
Value * LHS
Class for arbitrary precision integers.
Definition APInt.h:78
const Value * getPointerOperand() const
Gets the pointer operand.
LLVM_ABI AddrSpaceCastInst * cloneImpl() const
Clone an identical AddrSpaceCastInst.
Value * getPointerOperand()
Gets the pointer operand.
static bool classof(const Instruction *I)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Value *V)
unsigned getSrcAddressSpace() const
Returns the address space of the pointer operand.
LLVM_ABI AddrSpaceCastInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
unsigned getDestAddressSpace() const
Returns the address space of the result.
static unsigned getPointerOperandIndex()
Gets the operand index of the pointer operand.
LLVM_ABI std::optional< TypeSize > getAllocationSizeInBits(const DataLayout &DL) const
Get allocation size in bits.
static bool classof(const Value *V)
bool isSwiftError() const
Return true if this alloca is used as a swifterror argument to a call.
void setSwiftError(bool V)
Specify whether this alloca is used to represent a swifterror.
LLVM_ABI bool isStaticAlloca() const
Return true if this alloca is in the entry block of the function and is a constant size.
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
void setAllocatedType(Type *Ty)
for use only in special circumstances that need to generically transform a whole instruction (eg: IR ...
static bool classof(const Instruction *I)
PointerType * getType() const
Overload to return most specific pointer type.
void setUsedWithInAlloca(bool V)
Specify whether this alloca is used to represent the arguments to a call.
LLVM_ABI AllocaInst * cloneImpl() const
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
bool isUsedWithInAlloca() const
Return true if this alloca is used as an inalloca argument to a call.
Value * getArraySize()
unsigned getAddressSpace() const
Return the address space for the allocation.
LLVM_ABI std::optional< TypeSize > getAllocationSize(const DataLayout &DL) const
Get allocation size in bytes.
LLVM_ABI bool isArrayAllocation() const
Return true if there is an allocation size parameter to the allocation instruction that is not 1.
void setAlignment(Align Align)
const Value * getArraySize() const
Get the number of elements allocated.
LLVM_ABI AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, const Twine &Name, InsertPosition InsertBefore)
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition ArrayRef.h:147
An instruction that atomically checks whether a specified value is in a memory location,...
BoolBitfieldElementT< 0 > VolatileField
const Value * getCompareOperand() const
AlignmentBitfieldElementT< FailureOrderingField::NextBit > AlignmentField
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this cmpxchg instruction.
AtomicOrdering getMergedOrdering() const
Returns a single ordering which is at least as strong as both the success and failure orderings for t...
void setWeak(bool IsWeak)
bool isVolatile() const
Return true if this is a cmpxchg from a volatile memory location.
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
BoolBitfieldElementT< VolatileField::NextBit > WeakField
void setFailureOrdering(AtomicOrdering Ordering)
Sets the failure ordering constraint of this cmpxchg instruction.
AtomicOrderingBitfieldElementT< SuccessOrderingField::NextBit > FailureOrderingField
static bool isValidFailureOrdering(AtomicOrdering Ordering)
AtomicOrderingBitfieldElementT< WeakField::NextBit > SuccessOrderingField
AtomicOrdering getFailureOrdering() const
Returns the failure ordering constraint of this cmpxchg instruction.
void setSuccessOrdering(AtomicOrdering Ordering)
Sets the success ordering constraint of this cmpxchg instruction.
static AtomicOrdering getStrongestFailureOrdering(AtomicOrdering SuccessOrdering)
Returns the strongest permitted ordering on failure, given the desired ordering on success.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
LLVM_ABI AtomicCmpXchgInst * cloneImpl() const
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
const Value * getPointerOperand() const
static bool classof(const Value *V)
bool isWeak() const
Return true if this cmpxchg may spuriously fail.
void setAlignment(Align Align)
void setVolatile(bool V)
Specify whether this is a volatile cmpxchg.
static bool isValidSuccessOrdering(AtomicOrdering Ordering)
AtomicOrdering getSuccessOrdering() const
Returns the success ordering constraint of this cmpxchg instruction.
static unsigned getPointerOperandIndex()
const Value * getNewValOperand() const
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this cmpxchg instruction.
LLVM_ABI AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, SyncScope::ID SSID, InsertPosition InsertBefore=nullptr)
static bool classof(const Instruction *I)
an instruction that atomically reads a memory location, combines it with another value,...
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
static bool isFPOperation(BinOp Op)
LLVM_ABI AtomicRMWInst * cloneImpl() const
static unsigned getPointerOperandIndex()
bool isVolatile() const
Return true if this is a RMW on a volatile memory location.
void setVolatile(bool V)
Specify whether this is a volatile RMW or not.
BinOpBitfieldElement< AtomicOrderingField::NextBit > OperationField
BinOp
This enumeration lists the possible modifications atomicrmw can make.
@ Add
*p = old + v
@ FAdd
*p = old + v
@ USubCond
Subtract only if no unsigned overflow.
@ FMinimum
*p = minimum(old, v) minimum matches the behavior of llvm.minimum.
@ Min
*p = old <signed v ? old : v
@ Sub
*p = old - v
@ And
*p = old & v
@ Xor
*p = old ^ v
@ USubSat
*p = usub.sat(old, v) usub.sat matches the behavior of llvm.usub.sat.
@ FMaximum
*p = maximum(old, v) maximum matches the behavior of llvm.maximum.
@ FSub
*p = old - v
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ FMin
*p = minnum(old, v) minnum matches the behavior of llvm.minnum.
@ UMax
*p = old >unsigned v ? old : v
@ FMax
*p = maxnum(old, v) maxnum matches the behavior of llvm.maxnum.
@ UDecWrap
Decrement one until a minimum value or zero.
@ Nand
*p = ~(old & v)
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this rmw instruction.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
Value * getPointerOperand()
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this rmw instruction.
bool isFloatingPointOperation() const
static bool classof(const Instruction *I)
const Value * getPointerOperand() const
void setOperation(BinOp Operation)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Value *V)
BinOp getOperation() const
const Value * getValOperand() const
LLVM_ABI AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, AtomicOrdering Ordering, SyncScope::ID SSID, InsertPosition InsertBefore=nullptr)
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this rmw instruction.
void setAlignment(Align Align)
AtomicOrdering getOrdering() const
Returns the ordering constraint of this rmw instruction.
AlignmentBitfieldElementT< OperationField::NextBit > AlignmentField
BoolBitfieldElementT< 0 > VolatileField
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
AtomicOrderingBitfieldElementT< VolatileField::NextBit > AtomicOrderingField
LLVM Basic Block Representation.
Definition BasicBlock.h:62
static bool classof(const Instruction *I)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Value *V)
LLVM_ABI BitCastInst * cloneImpl() const
Clone an identical BitCastInst.
LLVM_ABI BitCastInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Conditional or Unconditional Branch instruction.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
iterator_range< succ_op_iterator > successors()
static BranchInst * Create(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, InsertPosition InsertBefore=nullptr)
void setCondition(Value *V)
static bool classof(const Instruction *I)
LLVM_ABI BranchInst * cloneImpl() const
bool isConditional() const
friend class Instruction
Iterator for Instructions in a `BasicBlock.
unsigned getNumSuccessors() const
static bool classof(const Value *V)
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
Value * getCondition() const
iterator_range< const_succ_op_iterator > successors() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
void addFnAttr(Attribute::AttrKind Kind)
Adds the attribute to the function.
bool hasFnAttr(Attribute::AttrKind Kind) const
Determine whether this call has the given attribute.
CallBase(AttributeList const &A, FunctionType *FT, ArgsTy &&... Args)
FunctionType * FTy
LLVM_ABI Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
static unsigned CountBundleInputs(ArrayRef< OperandBundleDef > Bundles)
Return the total number of values used in Bundles.
unsigned arg_size() const
unsigned getNumTotalBundleOperands() const
Return the total number operands (not operand bundles) used by every operand bundle in this OperandBu...
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
static bool classof(const Value *V)
static CallBrInst * Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef< BasicBlock * > IndirectDests, ArrayRef< Value * > Args, ArrayRef< OperandBundleDef > Bundles={}, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static bool classof(const Instruction *I)
static CallBrInst * Create(FunctionCallee Func, BasicBlock *DefaultDest, ArrayRef< BasicBlock * > IndirectDests, ArrayRef< Value * > Args, ArrayRef< OperandBundleDef > Bundles={}, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
SmallVector< BasicBlock *, 16 > getIndirectDests() const
static CallBrInst * Create(FunctionCallee Func, BasicBlock *DefaultDest, ArrayRef< BasicBlock * > IndirectDests, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
void setSuccessor(unsigned i, BasicBlock *NewSucc)
BasicBlock * getSuccessor(unsigned i) const
Value * getIndirectDestLabelUse(unsigned i) const
BasicBlock * getIndirectDest(unsigned i) const
friend class Instruction
Iterator for Instructions in a `BasicBlock.
void setDefaultDest(BasicBlock *B)
unsigned getNumSuccessors() const
void setIndirectDest(unsigned i, BasicBlock *B)
Value * getIndirectDestLabel(unsigned i) const
getIndirectDestLabel - Return the i-th indirect dest label.
BasicBlock * getDefaultDest() const
unsigned getNumIndirectDests() const
Return the number of callbr indirect dest labels.
static CallBrInst * Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef< BasicBlock * > IndirectDests, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
LLVM_ABI CallBrInst * cloneImpl() const
This class represents a function call, abstracting a target machine's calling convention.
bool isNoTailCall() const
LLVM_ABI void updateProfWeight(uint64_t S, uint64_t T)
Updates profile metadata by scaling it by S / T.
static bool classof(const Value *V)
bool isTailCall() const
void setCanReturnTwice()
void setTailCallKind(TailCallKind TCK)
Bitfield::Element< TailCallKind, 0, 2, TCK_LAST > TailCallKindField
static CallInst * Create(FunctionType *Ty, Value *Func, ArrayRef< Value * > Args, ArrayRef< OperandBundleDef > Bundles={}, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static CallInst * Create(FunctionType *Ty, Value *Func, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
bool canReturnTwice() const
Return true if the call can return twice.
TailCallKind getTailCallKind() const
LLVM_ABI CallInst * cloneImpl() const
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
void setTailCall(bool IsTc=true)
bool isMustTailCall() const
static CallInst * Create(FunctionCallee Func, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
static bool classof(const Instruction *I)
bool isNonContinuableTrap() const
Return true if the call is for a noreturn trap intrinsic.
static CallInst * Create(FunctionCallee Func, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static CallInst * Create(FunctionCallee Func, ArrayRef< Value * > Args, ArrayRef< OperandBundleDef > Bundles={}, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
CastInst(Type *Ty, unsigned iType, Value *S, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics for subclasses.
Definition InstrTypes.h:451
CatchSwitchInst * getCatchSwitch() const
Convenience accessors.
void setCatchSwitch(Value *CatchSwitch)
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
static CatchPadInst * Create(Value *CatchSwitch, ArrayRef< Value * > Args, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static bool classof(const Value *V)
static bool classof(const Instruction *I)
BasicBlock * getSuccessor() const
CatchPadInst * getCatchPad() const
Convenience accessors.
void setSuccessor(BasicBlock *NewSucc)
static bool classof(const Value *V)
static CatchReturnInst * Create(Value *CatchPad, BasicBlock *BB, InsertPosition InsertBefore=nullptr)
unsigned getNumSuccessors() const
friend class Instruction
Iterator for Instructions in a `BasicBlock.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Provide fast operand accessors.
void setCatchPad(CatchPadInst *CatchPad)
LLVM_ABI CatchReturnInst * cloneImpl() const
Value * getCatchSwitchParentPad() const
Get the parentPad of this catchret's catchpad's catchswitch.
void setUnwindDest(BasicBlock *UnwindDest)
static bool classof(const Instruction *I)
BasicBlock *(*)(Value *) DerefFnTy
const BasicBlock *(*)(const Value *) ConstDerefFnTy
unsigned getNumSuccessors() const
const_handler_iterator handler_begin() const
Returns an iterator that points to the first handler in the CatchSwitchInst.
mapped_iterator< const_op_iterator, ConstDerefFnTy > const_handler_iterator
LLVM_ABI CatchSwitchInst * cloneImpl() const
mapped_iterator< op_iterator, DerefFnTy > handler_iterator
unsigned getNumHandlers() const
return the number of 'handlers' in this catchswitch instruction, except the default handler
iterator_range< handler_iterator > handler_range
void setSuccessor(unsigned Idx, BasicBlock *NewSucc)
Value * getParentPad() const
iterator_range< const_handler_iterator > const_handler_range
friend class Instruction
Iterator for Instructions in a `BasicBlock.
void setParentPad(Value *ParentPad)
bool unwindsToCaller() const
static bool classof(const Value *V)
handler_iterator handler_end()
Returns a read-only iterator that points one past the last handler in the CatchSwitchInst.
BasicBlock * getUnwindDest() const
BasicBlock * getSuccessor(unsigned Idx) const
const_handler_iterator handler_end() const
Returns an iterator that points one past the last handler in the CatchSwitchInst.
bool hasUnwindDest() const
handler_iterator handler_begin()
Returns an iterator that points to the first handler in CatchSwitchInst.
static CatchSwitchInst * Create(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumHandlers, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
handler_range handlers()
iteration adapter for range-for loops.
const_handler_range handlers() const
iteration adapter for range-for loops.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Provide fast operand accessors.
static bool classof(const Value *V)
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
static CleanupPadInst * Create(Value *ParentPad, ArrayRef< Value * > Args={}, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static bool classof(const Instruction *I)
CleanupPadInst * getCleanupPad() const
Convenience accessor.
unsigned getNumSuccessors() const
BasicBlock * getUnwindDest() const
void setCleanupPad(CleanupPadInst *CleanupPad)
static bool classof(const Value *V)
void setUnwindDest(BasicBlock *NewDest)
static CleanupReturnInst * Create(Value *CleanupPad, BasicBlock *UnwindBB=nullptr, InsertPosition InsertBefore=nullptr)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
LLVM_ABI CleanupReturnInst * cloneImpl() const
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Provide fast operand accessors.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Definition InstrTypes.h:984
void setPredicate(Predicate P)
Set the predicate for this instruction to the specified value.
Definition InstrTypes.h:770
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:678
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
Definition InstrTypes.h:681
@ FCMP_TRUE
1 1 1 1 Always true (always folded)
Definition InstrTypes.h:695
@ ICMP_SLT
signed less than
Definition InstrTypes.h:707
@ ICMP_SLE
signed less or equal
Definition InstrTypes.h:708
@ ICMP_UGE
unsigned greater or equal
Definition InstrTypes.h:702
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:701
@ ICMP_SGT
signed greater than
Definition InstrTypes.h:705
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
Definition InstrTypes.h:686
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
Definition InstrTypes.h:689
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:703
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
Definition InstrTypes.h:687
@ ICMP_NE
not equal
Definition InstrTypes.h:700
@ ICMP_SGE
signed greater or equal
Definition InstrTypes.h:706
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
Definition InstrTypes.h:694
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:704
@ FCMP_FALSE
0 0 0 0 Always false (always folded)
Definition InstrTypes.h:680
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition InstrTypes.h:688
static auto ICmpPredicates()
Returns the sequence of all ICmp predicates.
Definition InstrTypes.h:724
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition InstrTypes.h:829
static auto FCmpPredicates()
Returns the sequence of all FCmp predicates.
Definition InstrTypes.h:717
Predicate getNonStrictPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
Definition InstrTypes.h:873
bool isFPPredicate() const
Definition InstrTypes.h:784
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition InstrTypes.h:791
Predicate getPredicate() const
Return the predicate for this instruction.
Definition InstrTypes.h:767
static bool isIntPredicate(Predicate P)
Definition InstrTypes.h:778
LLVM_ABI CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred, Value *LHS, Value *RHS, const Twine &Name="", InsertPosition InsertBefore=nullptr, Instruction *FlagsSource=nullptr)
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
Definition Constants.h:87
This is an important base class in LLVM.
Definition Constant.h:43
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
This instruction extracts a single (scalar) element from a VectorType value.
const Value * getVectorOperand() const
LLVM_ABI ExtractElementInst * cloneImpl() const
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
static bool classof(const Value *V)
static ExtractElementInst * Create(Value *Vec, Value *Idx, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
const Value * getIndexOperand() const
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Instruction *I)
VectorType * getVectorOperandType() const
static LLVM_ABI bool isValidOperands(const Value *Vec, const Value *Idx)
Return true if an extractelement instruction can be formed with the specified operands.
ArrayRef< unsigned > getIndices() const
unsigned getNumIndices() const
static bool classof(const Value *V)
static bool classof(const Instruction *I)
LLVM_ABI ExtractValueInst * cloneImpl() const
const unsigned * idx_iterator
iterator_range< idx_iterator > indices() const
friend class Instruction
Iterator for Instructions in a `BasicBlock.
idx_iterator idx_end() const
static ExtractValueInst * Create(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
const Value * getAggregateOperand() const
static unsigned getAggregateOperandIndex()
idx_iterator idx_begin() const
bool isRelational() const
FCmpInst(Predicate Pred, Value *LHS, Value *RHS, const Twine &NameStr="", Instruction *FlagsSource=nullptr)
Constructor with no-insertion semantics.
bool isEquality() const
static bool classof(const Value *V)
bool isCommutative() const
static bool isCommutative(Predicate Pred)
static LLVM_ABI bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
static bool isEquality(Predicate Pred)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
static auto predicates()
Returns the sequence of all FCmp predicates.
LLVM_ABI FCmpInst * cloneImpl() const
Clone an identical FCmpInst.
void swapOperands()
Exchange the two operands to this instruction in such a way that it does not modify the semantics of ...
FCmpInst(InsertPosition InsertBefore, Predicate pred, Value *LHS, Value *RHS, const Twine &NameStr="")
Constructor with insertion semantics.
static bool classof(const Value *V)
LLVM_ABI FPExtInst * cloneImpl() const
Clone an identical FPExtInst.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
LLVM_ABI FPExtInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
static bool classof(const Value *V)
LLVM_ABI FPToSIInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
LLVM_ABI FPToSIInst * cloneImpl() const
Clone an identical FPToSIInst.
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Value *V)
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
friend class Instruction
Iterator for Instructions in a `BasicBlock.
LLVM_ABI FPToUIInst * cloneImpl() const
Clone an identical FPToUIInst.
LLVM_ABI FPToUIInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
LLVM_ABI FPTruncInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
static bool classof(const Value *V)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
LLVM_ABI FPTruncInst * cloneImpl() const
Clone an identical FPTruncInst.
static bool classof(const Value *V)
LLVM_ABI FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System, InsertPosition InsertBefore=nullptr)
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this fence instruction.
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this fence instruction.
LLVM_ABI FenceInst * cloneImpl() const
static bool classof(const Instruction *I)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this fence instruction.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this fence instruction.
static bool classof(const Value *V)
LLVM_ABI FreezeInst(Value *S, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
LLVM_ABI FreezeInst * cloneImpl() const
Clone an identical FreezeInst.
static bool classof(const Instruction *I)
friend class CatchPadInst
friend class Instruction
Iterator for Instructions in a `BasicBlock.
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Class to represent function types.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
LLVM_ABI bool isInBounds() const
Determine whether the GEP has the inbounds flag.
LLVM_ABI bool hasNoUnsignedSignedWrap() const
Determine whether the GEP has the nusw flag.
static LLVM_ABI Type * getTypeAtIndex(Type *Ty, Value *Idx)
Return the type of the element at the given index of an indexable type.
LLVM_ABI bool hasAllZeroIndices() const
Return true if all of the indices of this GEP are zeros.
static Type * getGEPReturnType(Value *Ptr, ArrayRef< Value * > IdxList)
Returns the pointer type returned by the GEP instruction, which may be a vector of pointers.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
void setResultElementType(Type *Ty)
LLVM_ABI bool hasNoUnsignedWrap() const
Determine whether the GEP has the nuw flag.
LLVM_ABI bool hasAllConstantIndices() const
Return true if all of the indices of this GEP are constant integers.
unsigned getAddressSpace() const
Returns the address space of this instruction's pointer type.
iterator_range< const_op_iterator > indices() const
Type * getResultElementType() const
static bool classof(const Instruction *I)
static bool classof(const Value *V)
iterator_range< op_iterator > indices()
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI void setIsInBounds(bool b=true)
Set or clear the inbounds flag on this GEP instruction.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
void setSourceElementType(Type *Ty)
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
Type * getSourceElementType() const
static GetElementPtrInst * CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Create an "inbounds" getelementptr.
Type * getPointerOperandType() const
Method to return the pointer operand as a PointerType.
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, GEPNoWrapFlags NW, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static unsigned getPointerOperandIndex()
LLVM_ABI bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const
Accumulate the constant address offset of this GEP if possible.
const_op_iterator idx_begin() const
LLVM_ABI GetElementPtrInst * cloneImpl() const
LLVM_ABI bool collectOffset(const DataLayout &DL, unsigned BitWidth, SmallMapVector< Value *, APInt, 4 > &VariableOffsets, APInt &ConstantOffset) const
LLVM_ABI void setNoWrapFlags(GEPNoWrapFlags NW)
Set nowrap flags for GEP instruction.
unsigned getNumIndices() const
LLVM_ABI GEPNoWrapFlags getNoWrapFlags() const
Get the nowrap flags for the GEP instruction.
const_op_iterator idx_end() const
const Value * getPointerOperand() const
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
bool hasSameSign() const
An icmp instruction, which can be marked as "samesign", indicating that the two operands have the sam...
static bool classof(const Value *V)
void setSameSign(bool B=true)
ICmpInst(InsertPosition InsertBefore, Predicate pred, Value *LHS, Value *RHS, const Twine &NameStr="")
Constructor with insertion semantics.
static bool isCommutative(Predicate P)
static CmpPredicate getSwappedCmpPredicate(CmpPredicate Pred)
CmpPredicate getCmpPredicate() const
bool isCommutative() const
static bool isGE(Predicate P)
Return true if the predicate is SGE or UGE.
CmpPredicate getSwappedCmpPredicate() const
static bool isLT(Predicate P)
Return true if the predicate is SLT or ULT.
LLVM_ABI ICmpInst * cloneImpl() const
Clone an identical ICmpInst.
CmpPredicate getInverseCmpPredicate() const
Predicate getNonStrictCmpPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
static bool isGT(Predicate P)
Return true if the predicate is SGT or UGT.
static bool classof(const Instruction *I)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Predicate getFlippedSignednessPredicate() const
For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ.
static CmpPredicate getNonStrictCmpPredicate(CmpPredicate Pred)
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
static CmpPredicate getInverseCmpPredicate(CmpPredicate Pred)
bool isEquality() const
Return true if this predicate is either EQ or NE.
static LLVM_ABI Predicate getFlippedSignednessPredicate(Predicate Pred)
For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
static bool isRelational(Predicate P)
Return true if the predicate is relational (not EQ or NE).
void swapOperands()
Exchange the two operands to this instruction in such a way that it does not modify the semantics of ...
static auto predicates()
Returns the sequence of all ICmp predicates.
ICmpInst(Predicate pred, Value *LHS, Value *RHS, const Twine &NameStr="")
Constructor with no-insertion semantics.
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
static bool isLE(Predicate P)
Return true if the predicate is SLE or ULE.
Indirect Branch Instruction.
static IndirectBrInst * Create(Value *Address, unsigned NumDests, InsertPosition InsertBefore=nullptr)
BasicBlock * getDestination(unsigned i)
Return the specified destination.
static bool classof(const Value *V)
const Value * getAddress() const
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Instruction *I)
BasicBlock * getSuccessor(unsigned i) const
iterator_range< const_succ_op_iterator > successors() const
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Provide fast operand accessors.
unsigned getNumDestinations() const
return the number of possible destinations in this indirectbr instruction.
const BasicBlock * getDestination(unsigned i) const
void setSuccessor(unsigned i, BasicBlock *NewSucc)
void setAddress(Value *V)
unsigned getNumSuccessors() const
iterator_range< succ_op_iterator > successors()
LLVM_ABI IndirectBrInst * cloneImpl() const
This instruction inserts a single (scalar) element into a VectorType value.
LLVM_ABI InsertElementInst * cloneImpl() const
static bool classof(const Value *V)
static InsertElementInst * Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
VectorType * getType() const
Overload to return most specific vector type.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Instruction *I)
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
This instruction inserts a struct field of array element value into an aggregate value.
Value * getInsertedValueOperand()
static bool classof(const Instruction *I)
static unsigned getAggregateOperandIndex()
const unsigned * idx_iterator
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Value *V)
unsigned getNumIndices() const
ArrayRef< unsigned > getIndices() const
iterator_range< idx_iterator > indices() const
static unsigned getInsertedValueOperandIndex()
LLVM_ABI InsertValueInst * cloneImpl() const
idx_iterator idx_end() const
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
const Value * getAggregateOperand() const
const Value * getInsertedValueOperand() const
idx_iterator idx_begin() const
BitfieldElement::Type getSubclassData() const
typename Bitfield::Element< unsigned, Offset, 6, Value::MaxAlignmentExponent > AlignmentBitfieldElementT
typename Bitfield::Element< AtomicOrdering, Offset, 3, AtomicOrdering::LAST > AtomicOrderingBitfieldElementT
typename Bitfield::Element< bool, Offset, 1 > BoolBitfieldElementT
LLVM_ABI bool isAtomic() const LLVM_READONLY
Return true if this instruction has an AtomicOrdering of unordered or higher.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
LLVM_ABI void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
friend class BasicBlock
Various leaf nodes.
void setSubclassData(typename BitfieldElement::Type Value)
static bool classof(const Instruction *I)
LLVM_ABI IntToPtrInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI IntToPtrInst * cloneImpl() const
Clone an identical IntToPtrInst.
unsigned getAddressSpace() const
Returns the address space of this instruction's pointer type.
static bool classof(const Value *V)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Instruction *I)
BasicBlock * getUnwindDest() const
void setNormalDest(BasicBlock *B)
LLVM_ABI InvokeInst * cloneImpl() const
static bool classof(const Value *V)
static InvokeInst * Create(FunctionCallee Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
void setSuccessor(unsigned i, BasicBlock *NewSucc)
static InvokeInst * Create(FunctionCallee Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, ArrayRef< OperandBundleDef > Bundles={}, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
void setUnwindDest(BasicBlock *B)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
BasicBlock * getNormalDest() const
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, ArrayRef< OperandBundleDef > Bundles={}, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
unsigned getNumSuccessors() const
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
The landingpad instruction holds all of the information necessary to generate correct exception handl...
bool isCleanup() const
Return 'true' if this landingpad instruction is a cleanup.
LLVM_ABI LandingPadInst * cloneImpl() const
unsigned getNumClauses() const
Get the number of clauses for this landing pad.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Provide fast operand accessors.
bool isCatch(unsigned Idx) const
Return 'true' if the clause and index Idx is a catch clause.
bool isFilter(unsigned Idx) const
Return 'true' if the clause and index Idx is a filter clause.
Constant * getClause(unsigned Idx) const
Get the value of the clause at index Idx.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Value *V)
void setCleanup(bool V)
Indicate that this landingpad instruction is a cleanup.
void reserveClauses(unsigned Size)
Grow the size of the operand list to accommodate the new number of clauses.
static bool classof(const Instruction *I)
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
const Value * getPointerOperand() const
void setAlignment(Align Align)
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
static bool classof(const Instruction *I)
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this load instruction.
static bool classof(const Value *V)
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this load instruction.
void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System)
Sets the ordering constraint and the synchronization scope ID of this load instruction.
LLVM_ABI LoadInst * cloneImpl() const
friend class Instruction
Iterator for Instructions in a `BasicBlock.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this load instruction.
Type * getPointerOperandType() const
static unsigned getPointerOperandIndex()
bool isUnordered() const
void setVolatile(bool V)
Specify whether this is a volatile load or not.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this load instruction.
bool isSimple() const
LLVM_ABI LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, InsertPosition InsertBefore)
Align getAlign() const
Return the alignment of the access that is being performed.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition ArrayRef.h:303
BasicBlock * getIncomingBlock(Value::const_user_iterator I) const
Return incoming basic block corresponding to value use iterator.
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
bool isComplete() const
If the PHI node is complete which means all of its parent's predecessors have incoming value in this ...
iterator_range< const_block_iterator > blocks() const
op_range incoming_values()
static bool classof(const Value *V)
void allocHungoffUses(unsigned N)
const_block_iterator block_begin() const
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
BasicBlock ** block_iterator
void setIncomingBlock(unsigned i, BasicBlock *BB)
LLVM_ABI Value * removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty=true)
Remove an incoming value.
BasicBlock *const * const_block_iterator
friend class Instruction
Iterator for Instructions in a `BasicBlock.
void setIncomingValue(unsigned i, Value *V)
static unsigned getOperandNumForIncomingValue(unsigned i)
void copyIncomingBlocks(iterator_range< const_block_iterator > BBRange, uint32_t ToIdx=0)
Copies the basic blocks from BBRange to the incoming basic block list of this PHINode,...
const_block_iterator block_end() const
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Provide fast operand accessors.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
static unsigned getIncomingValueNumForOperand(unsigned i)
const_op_range incoming_values() const
Value * removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true)
LLVM_ABI PHINode * cloneImpl() const
void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New)
Replace every incoming basic block Old to basic block New.
BasicBlock * getIncomingBlock(const Use &U) const
Return incoming basic block corresponding to an operand of the PHI.
int getBasicBlockIndex(const BasicBlock *BB) const
Return the first index of the specified basic block in the value list for this PHI.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
Class to represent pointers.
unsigned getAddressSpace() const
Return the address space of the Pointer type.
PtrToAddrInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
static unsigned getPointerOperandIndex()
Gets the operand index of the pointer operand.
static bool classof(const Instruction *I)
PtrToAddrInst * cloneImpl() const
Clone an identical PtrToAddrInst.
static bool classof(const Value *V)
const Value * getPointerOperand() const
Gets the pointer operand.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Value * getPointerOperand()
Gets the pointer operand.
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
Value * getPointerOperand()
Gets the pointer operand.
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
static bool classof(const Value *V)
const Value * getPointerOperand() const
Gets the pointer operand.
static unsigned getPointerOperandIndex()
Gets the operand index of the pointer operand.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Instruction *I)
LLVM_ABI PtrToIntInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI PtrToIntInst * cloneImpl() const
Clone an identical PtrToIntInst.
Resume the propagation of an exception.
static ResumeInst * Create(Value *Exn, InsertPosition InsertBefore=nullptr)
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Provide fast operand accessors.
Value * getValue() const
Convenience accessor.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Value *V)
unsigned getNumSuccessors() const
LLVM_ABI ResumeInst * cloneImpl() const
static bool classof(const Instruction *I)
Return a value (possibly void), from a function.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Provide fast operand accessors.
unsigned getNumSuccessors() const
static bool classof(const Value *V)
static bool classof(const Instruction *I)
static ReturnInst * Create(LLVMContext &C, BasicBlock *InsertAtEnd)
Value * getReturnValue() const
Convenience accessor. Returns null if there is no return value.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static ReturnInst * Create(LLVMContext &C, Value *retVal=nullptr, InsertPosition InsertBefore=nullptr)
LLVM_ABI ReturnInst * cloneImpl() const
static bool classof(const Value *V)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
LLVM_ABI SExtInst * cloneImpl() const
Clone an identical SExtInst.
LLVM_ABI SExtInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI SIToFPInst * cloneImpl() const
Clone an identical SIToFPInst.
LLVM_ABI SIToFPInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Value *V)
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
void setFalseValue(Value *V)
const Value * getFalseValue() const
void setTrueValue(Value *V)
OtherOps getOpcode() const
Value * getCondition()
Value * getTrueValue()
void swapValues()
Swap the true and false values of the select instruction.
Value * getFalseValue()
const Value * getCondition() const
LLVM_ABI SelectInst * cloneImpl() const
friend class Instruction
Iterator for Instructions in a `BasicBlock.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
static LLVM_ABI const char * areInvalidOperands(Value *Cond, Value *True, Value *False)
Return a string if the specified operands are invalid for a select operation, otherwise return null.
static bool classof(const Value *V)
void setCondition(Value *V)
const Value * getTrueValue() const
static bool classof(const Instruction *I)
This instruction constructs a fixed permutation of two input vectors.
static bool classof(const Value *V)
static bool isInterleaveMask(ArrayRef< int > Mask, unsigned Factor, unsigned NumInputElts)
Constant * getShuffleMaskForBitcode() const
Return the mask for this instruction, for use in bitcode.
bool isSingleSource() const
Return true if this shuffle chooses elements from exactly one source vector without changing the leng...
static LLVM_ABI bool isZeroEltSplatMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses all elements with the same value as the first element of exa...
bool changesLength() const
Return true if this shuffle returns a vector with a different number of elements than its source vect...
bool isExtractSubvectorMask(int &Index) const
Return true if this shuffle mask is an extract subvector mask.
ArrayRef< int > getShuffleMask() const
static LLVM_ABI bool isSpliceMask(ArrayRef< int > Mask, int NumSrcElts, int &Index)
Return true if this shuffle mask is a splice mask, concatenating the two inputs together and then ext...
static bool isInsertSubvectorMask(const Constant *Mask, int NumSrcElts, int &NumSubElts, int &Index)
static bool isSingleSourceMask(const Constant *Mask, int NumSrcElts)
int getMaskValue(unsigned Elt) const
Return the shuffle mask value of this instruction for the given element index.
LLVM_ABI ShuffleVectorInst(Value *V1, Value *Mask, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
void getShuffleMask(SmallVectorImpl< int > &Result) const
Return the mask for this instruction as a vector of integers.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
static bool isDeInterleaveMaskOfFactor(ArrayRef< int > Mask, unsigned Factor)
static LLVM_ABI bool isSelectMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from its source vectors without lane crossings.
VectorType * getType() const
Overload to return most specific vector type.
bool isInsertSubvectorMask(int &NumSubElts, int &Index) const
Return true if this shuffle mask is an insert subvector mask.
bool increasesLength() const
Return true if this shuffle returns a vector with a greater number of elements than its source vector...
bool isZeroEltSplat() const
Return true if all elements of this shuffle are the same value as the first element of exactly one so...
static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts, int &Index)
static LLVM_ABI bool isSingleSourceMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector.
static LLVM_ABI void getShuffleMask(const Constant *Mask, SmallVectorImpl< int > &Result)
Convert the input shuffle mask operand to a vector of integers.
bool isSelect() const
Return true if this shuffle chooses elements from its source vectors without lane crossings and all o...
static LLVM_ABI bool isDeInterleaveMaskOfFactor(ArrayRef< int > Mask, unsigned Factor, unsigned &Index)
Check if the mask is a DE-interleave mask of the given factor Factor like: <Index,...
LLVM_ABI ShuffleVectorInst * cloneImpl() const
static LLVM_ABI bool isIdentityMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector without lane crossin...
static bool isSpliceMask(const Constant *Mask, int NumSrcElts, int &Index)
static LLVM_ABI bool isExtractSubvectorMask(ArrayRef< int > Mask, int NumSrcElts, int &Index)
Return true if this shuffle mask is an extract subvector mask.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
bool isTranspose() const
Return true if this shuffle transposes the elements of its inputs without changing the length of the ...
static void commuteShuffleMask(MutableArrayRef< int > Mask, unsigned InVecNumElts)
Change values in a shuffle permute mask assuming the two vector operands of length InVecNumElts have ...
static LLVM_ABI bool isTransposeMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask is a transpose mask.
bool isSplice(int &Index) const
Return true if this shuffle splices two inputs without changing the length of the vectors.
static bool isReverseMask(const Constant *Mask, int NumSrcElts)
static LLVM_ABI bool isInsertSubvectorMask(ArrayRef< int > Mask, int NumSrcElts, int &NumSubElts, int &Index)
Return true if this shuffle mask is an insert subvector mask.
static bool isSelectMask(const Constant *Mask, int NumSrcElts)
static bool classof(const Instruction *I)
static bool isZeroEltSplatMask(const Constant *Mask, int NumSrcElts)
bool isIdentity() const
Return true if this shuffle chooses elements from exactly one source vector without lane crossings an...
static bool isReplicationMask(const Constant *Mask, int &ReplicationFactor, int &VF)
static LLVM_ABI bool isReplicationMask(ArrayRef< int > Mask, int &ReplicationFactor, int &VF)
Return true if this shuffle mask replicates each of the VF elements in a vector ReplicationFactor tim...
static bool isIdentityMask(const Constant *Mask, int NumSrcElts)
static bool isTransposeMask(const Constant *Mask, int NumSrcElts)
static LLVM_ABI bool isInterleaveMask(ArrayRef< int > Mask, unsigned Factor, unsigned NumInputElts, SmallVectorImpl< unsigned > &StartIndexes)
Return true if the mask interleaves one or more input vectors together.
bool isReverse() const
Return true if this shuffle swaps the order of elements from exactly one source vector.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
static bool classof(const Instruction *I)
AtomicOrdering getOrdering() const
Returns the ordering constraint of this store instruction.
const Value * getPointerOperand() const
Align getAlign() const
Type * getPointerOperandType() const
void setVolatile(bool V)
Specify whether this is a volatile store or not.
void setAlignment(Align Align)
bool isSimple() const
const Value * getValueOperand() const
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this store instruction.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Value * getValueOperand()
static bool classof(const Value *V)
bool isUnordered() const
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this store instruction.
LLVM_ABI StoreInst * cloneImpl() const
LLVM_ABI StoreInst(Value *Val, Value *Ptr, InsertPosition InsertBefore)
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
static unsigned getPointerOperandIndex()
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this store instruction.
bool isVolatile() const
Return true if this is a store to a volatile memory location.
Value * getPointerOperand()
void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System)
Sets the ordering constraint and the synchronization scope ID of this store instruction.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
LLVM_ABI void setSuccessorWeight(unsigned idx, CaseWeightOpt W)
LLVM_ABI Instruction::InstListType::iterator eraseFromParent()
Delegate the call to the underlying SwitchInst::eraseFromParent() and mark this object to not touch t...
LLVM_ABI void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W)
Delegate the call to the underlying SwitchInst::addCase() and set the specified branch weight for the...
SwitchInstProfUpdateWrapper(SwitchInst &SI)
LLVM_ABI CaseWeightOpt getSuccessorWeight(unsigned idx)
std::optional< uint32_t > CaseWeightOpt
LLVM_ABI SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I)
Delegate the call to the underlying SwitchInst::removeCase() and remove correspondent branch weight.
A handle to a particular switch case.
unsigned getCaseIndex() const
Returns number of current case.
BasicBlockT * getCaseSuccessor() const
Resolves successor for current case.
CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index)
bool operator==(const CaseHandleImpl &RHS) const
ConstantIntT * getCaseValue() const
Resolves case value for current case.
CaseHandle(SwitchInst *SI, ptrdiff_t Index)
void setValue(ConstantInt *V) const
Sets the new value for current case.
void setSuccessor(BasicBlock *S) const
Sets the new successor for current case.
const CaseHandleT & operator*() const
CaseIteratorImpl()=default
Default constructed iterator is in an invalid state until assigned to a case for a particular switch.
CaseIteratorImpl & operator-=(ptrdiff_t N)
bool operator==(const CaseIteratorImpl &RHS) const
CaseIteratorImpl & operator+=(ptrdiff_t N)
ptrdiff_t operator-(const CaseIteratorImpl &RHS) const
bool operator<(const CaseIteratorImpl &RHS) const
CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum)
Initializes case iterator for given SwitchInst and for given case number.
static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI, unsigned SuccessorIndex)
Initializes case iterator for given SwitchInst and for given successor index.
Multiway switch.
BasicBlock * getDefaultDest() const
CaseIteratorImpl< ConstCaseHandle > ConstCaseIt
CaseIt case_end()
Returns a read/write iterator that points one past the last in the SwitchInst.
LLVM_ABI SwitchInst * cloneImpl() const
BasicBlock * getSuccessor(unsigned idx) const
ConstCaseIt findCaseValue(const ConstantInt *C) const
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Provide fast operand accessors.
static SwitchInst * Create(Value *Value, BasicBlock *Default, unsigned NumCases, InsertPosition InsertBefore=nullptr)
void setCondition(Value *V)
bool defaultDestUnreachable() const
Returns true if the default branch must result in immediate undefined behavior, false otherwise.
ConstCaseIt case_begin() const
Returns a read-only iterator that points to the first case in the SwitchInst.
iterator_range< ConstCaseIt > cases() const
Constant iteration adapter for range-for loops.
static const unsigned DefaultPseudoIndex
CaseIteratorImpl< CaseHandle > CaseIt
ConstantInt * findCaseDest(BasicBlock *BB)
Finds the unique case value for a given successor.
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
CaseHandleImpl< const SwitchInst, const ConstantInt, const BasicBlock > ConstCaseHandle
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Value *V)
unsigned getNumSuccessors() const
CaseIt case_default()
Returns an iterator that points to the default case.
void setDefaultDest(BasicBlock *DefaultCase)
unsigned getNumCases() const
Return the number of 'cases' in this switch instruction, excluding the default case.
CaseIt findCaseValue(const ConstantInt *C)
Search all of the case values for the specified constant.
Value * getCondition() const
ConstCaseIt case_default() const
CaseIt case_begin()
Returns a read/write iterator that points to the first case in the SwitchInst.
static bool classof(const Instruction *I)
iterator_range< CaseIt > cases()
Iteration adapter for range-for loops.
ConstCaseIt case_end() const
Returns a read-only iterator that points one past the last in the SwitchInst.
void setHasNoSignedWrap(bool B)
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
LLVM_ABI TruncInst * cloneImpl() const
Clone an identical TruncInst.
void setHasNoUnsignedWrap(bool B)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
unsigned getNoWrapKind() const
Returns the no-wrap kind of the operation.
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
static bool classof(const Value *V)
LLVM_ABI TruncInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static bool classof(const Value *V)
LLVM_ABI UIToFPInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
LLVM_ABI UIToFPInst * cloneImpl() const
Clone an identical UIToFPInst.
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
UnaryInstruction(Type *Ty, unsigned iType, Value *V, InsertPosition InsertBefore=nullptr)
Definition InstrTypes.h:62
This function has undefined behavior.
LLVM_ABI UnreachableInst(LLVMContext &C, InsertPosition InsertBefore=nullptr)
unsigned getNumSuccessors() const
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Value *V)
static bool classof(const Instruction *I)
LLVM_ABI UnreachableInst * cloneImpl() const
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
iterator_range< const_op_iterator > const_op_range
Definition User.h:282
Use * op_iterator
Definition User.h:279
const Use * getOperandList() const
Definition User.h:225
op_range operands()
Definition User.h:292
LLVM_ABI void allocHungoffUses(unsigned N, bool IsPhi=false)
Allocate the array of Uses, followed by a pointer (with bottom bit set) to the User.
Definition User.cpp:50
op_iterator op_begin()
Definition User.h:284
const Use & getOperandUse(unsigned i) const
Definition User.h:245
value_op_iterator value_op_end()
Definition User.h:313
void setOperand(unsigned i, Value *Val)
Definition User.h:237
const Use * const_op_iterator
Definition User.h:280
void setNumHungOffUseOperands(unsigned NumOps)
Subclasses with hung off uses need to manage the operand count themselves.
Definition User.h:265
iterator_range< op_iterator > op_range
Definition User.h:281
Value * getOperand(unsigned i) const
Definition User.h:232
value_op_iterator value_op_begin()
Definition User.h:310
unsigned getNumOperands() const
Definition User.h:254
op_iterator op_end()
Definition User.h:286
static bool classof(const Instruction *I)
Value * getPointerOperand()
VAArgInst(Value *List, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
const Value * getPointerOperand() const
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Value *V)
static unsigned getPointerOperandIndex()
LLVM_ABI VAArgInst * cloneImpl() const
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
user_iterator_impl< const User > const_user_iterator
Definition Value.h:392
unsigned char SubclassOptionalData
Hold subclass data that can be dropped.
Definition Value.h:85
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
Definition Value.cpp:390
Base class of all SIMD vector types.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
LLVM_ABI ZExtInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Value *V)
LLVM_ABI ZExtInst * cloneImpl() const
Clone an identical ZExtInst.
An efficient, type-erasing, non-owning reference to a callable.
base_list_type::iterator iterator
Definition ilist.h:121
CRTP base class which implements the entire standard iterator facade in terms of a minimal subset of ...
Definition iterator.h:80
A range adaptor for a pair of iterators.
CallInst * Call
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ System
Synchronized with respect to all concurrently executing threads.
Definition LLVMContext.h:58
This is an optimization pass for GlobalISel generic memory operations.
@ Offset
Definition DWP.cpp:477
Type * checkGEPType(Type *Ty)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1705
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:644
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
auto cast_or_null(const Y &Val)
Definition Casting.h:715
void setAtomicSyncScopeID(Instruction *I, SyncScope::ID SSID)
A helper function that sets an atomic operation's sync scope.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
const Value * getPointerOperand(const Value *V)
A helper function that returns the pointer operand of a load, store or GEP instruction.
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected, bool ElideAllZero=false)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
std::optional< SyncScope::ID > getAtomicSyncScopeID(const Instruction *I)
A helper function that returns an atomic operation's sync scope; returns std::nullopt if it is not an...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
constexpr int PoisonMaskElem
AtomicOrdering
Atomic ordering for LLVM's memory model.
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
OutputIt copy(R &&Range, OutputIt Out)
Definition STLExtras.h:1815
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:560
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1738
auto predecessors(const MachineBasicBlock *BB)
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
void setLoadStoreAlignment(Value *I, Align NewAlign)
A helper function that set the alignment of load or store instruction.
unsigned Log2(Align A)
Returns the log2 of the alignment.
Definition Alignment.h:197
@ Default
The result values are uniform if and only if all operands are uniform.
Definition Uniformity.h:20
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Summary of memprof metadata on allocations.
Describes an element of a Bitfield.
Definition Bitfields.h:223
static constexpr bool areContiguous()
Definition Bitfields.h:280
The const version of succ_op_iterator.
const BasicBlock * operator->() const
const_succ_op_iterator(const_value_op_iterator I)
const BasicBlock * operator*() const
Iterator type that casts an operand to a basic block.
succ_op_iterator(value_op_iterator I)
FixedNumOperandTraits - determine the allocation regime of the Use array when it is a prefix to the U...
HungoffOperandTraits - determine the allocation regime of the Use array when it is not a prefix to th...
The const version of succ_op_iterator.
const_succ_op_iterator(const_value_op_iterator I)
Iterator type that casts an operand to a basic block.
Compile-time customization of User operands.
Definition User.h:42
A MapVector that performs no allocations if smaller than a certain size.
Definition MapVector.h:257
Information about how a User object was allocated, to be passed into the User constructor.
Definition User.h:79
const unsigned NumOps
Definition User.h:81
Indicates this User has operands "hung off" in another allocation.
Definition User.h:57
Indicates this User has operands co-allocated.
Definition User.h:60
Iterator for directly iterating over the operand Values.
Definition User.h:303
VariadicOperandTraits - determine the allocation regime of the Use array when it is a prefix to the U...