161#define LV_NAME "loop-vectorize"
162#define DEBUG_TYPE LV_NAME
168STATISTIC(LoopsVectorized,
"Number of loops vectorized");
169STATISTIC(LoopsAnalyzed,
"Number of loops analyzed for vectorization");
170STATISTIC(LoopsEpilogueVectorized,
"Number of epilogues vectorized");
171STATISTIC(LoopsEarlyExitVectorized,
"Number of early exit loops vectorized");
175 cl::desc(
"Enable vectorization of epilogue loops."));
179 cl::desc(
"When epilogue vectorization is enabled, and a value greater than "
180 "1 is specified, forces the given VF for all applicable epilogue "
184 "epilogue-vectorization-minimum-VF",
cl::Hidden,
185 cl::desc(
"Only loops with vectorization factor equal to or larger than "
186 "the specified value are considered for epilogue vectorization."));
192 cl::desc(
"Loops with a constant trip count that is smaller than this "
193 "value are vectorized only if no scalar iteration overheads "
198 cl::desc(
"The maximum allowed number of runtime memory checks"));
214 "prefer-predicate-over-epilogue",
217 cl::desc(
"Tail-folding and predication preferences over creating a scalar "
221 "Don't tail-predicate loops, create scalar epilogue"),
223 "predicate-else-scalar-epilogue",
224 "prefer tail-folding, create scalar epilogue if tail "
227 "predicate-dont-vectorize",
228 "prefers tail-folding, don't attempt vectorization if "
229 "tail-folding fails.")));
232 "force-tail-folding-style",
cl::desc(
"Force the tail folding style"),
238 "Create lane mask for data only, using active.lane.mask intrinsic"),
240 "data-without-lane-mask",
241 "Create lane mask with compare/stepvector"),
243 "Create lane mask using active.lane.mask intrinsic, and use "
244 "it for both data and control flow"),
246 "data-and-control-without-rt-check",
247 "Similar to data-and-control, but remove the runtime check"),
249 "Use predicated EVL instructions for tail folding. If EVL "
250 "is unsupported, fallback to data-without-lane-mask.")));
254 cl::desc(
"Maximize bandwidth when selecting vectorization factor which "
255 "will be determined by the smallest type in loop."));
259 cl::desc(
"Enable vectorization on interleaved memory accesses in a loop"));
265 cl::desc(
"Enable vectorization on masked interleaved memory accesses in a loop"));
269 cl::desc(
"A flag that overrides the target's number of scalar registers."));
273 cl::desc(
"A flag that overrides the target's number of vector registers."));
277 cl::desc(
"A flag that overrides the target's max interleave factor for "
282 cl::desc(
"A flag that overrides the target's max interleave factor for "
283 "vectorized loops."));
287 cl::desc(
"A flag that overrides the target's expected cost for "
288 "an instruction to a single constant value. Mostly "
289 "useful for getting consistent testing."));
294 "Pretend that scalable vectors are supported, even if the target does "
295 "not support them. This flag should only be used for testing."));
300 "The cost of a loop that is considered 'small' by the interleaver."));
304 cl::desc(
"Enable the use of the block frequency analysis to access PGO "
305 "heuristics minimizing code growth in cold regions and being more "
306 "aggressive in hot regions."));
312 "Enable runtime interleaving until load/store ports are saturated"));
317 cl::desc(
"Max number of stores to be predicated behind an if."));
321 cl::desc(
"Count the induction variable only once when interleaving"));
325 cl::desc(
"Enable if predication of stores during vectorization."));
329 cl::desc(
"The maximum interleave count to use when interleaving a scalar "
330 "reduction in a nested loop."));
335 cl::desc(
"Prefer in-loop vector reductions, "
336 "overriding the targets preference."));
340 cl::desc(
"Enable the vectorisation of loops with in-order (strict) "
346 "Prefer predicating a reduction operation over an after loop select."));
350 cl::desc(
"Enable VPlan-native vectorization path with "
351 "support for outer loop vectorization."));
355#ifdef EXPENSIVE_CHECKS
361 cl::desc(
"Verfiy VPlans after VPlan transforms."));
370 "Build VPlan for every supported loop nest in the function and bail "
371 "out right after the build (stress test the VPlan H-CFG construction "
372 "in the VPlan-native vectorization path)."));
376 cl::desc(
"Enable loop interleaving in Loop vectorization passes"));
379 cl::desc(
"Run the Loop vectorization passes"));
382 "force-widen-divrem-via-safe-divisor",
cl::Hidden,
384 "Override cost based safe divisor widening for div/rem instructions"));
387 "vectorizer-maximize-bandwidth-for-vector-calls",
cl::init(
true),
389 cl::desc(
"Try wider VFs if they enable the use of vector variants"));
394 "Enable vectorization of early exit loops with uncountable exits."));
398 cl::desc(
"Discard VFs if their register pressure is too high."));
411 return DL.getTypeAllocSizeInBits(Ty) !=
DL.getTypeSizeInBits(Ty);
446static std::optional<ElementCount>
448 bool CanUseConstantMax =
true) {
458 if (!CanUseConstantMax)
470class GeneratedRTChecks;
503 VF(VecWidth),
UF(UnrollFactor),
Builder(
PSE.getSE()->getContext()),
506 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
616 "A high UF for the epilogue loop is likely not beneficial.");
667 EPI.MainLoopVF,
EPI.MainLoopUF) {}
709 EPI.EpilogueVF,
EPI.EpilogueUF) {
719 assert(AdditionalBypassBlock &&
720 "Trying to access AdditionalBypassBlock but it has not been set");
721 return AdditionalBypassBlock;
742 if (
I->getDebugLoc() !=
Empty)
743 return I->getDebugLoc();
745 for (
Use &
Op :
I->operands()) {
747 if (OpInst->getDebugLoc() !=
Empty)
748 return OpInst->getDebugLoc();
751 return I->getDebugLoc();
760 dbgs() <<
"LV: " << Prefix << DebugMsg;
782 if (
I &&
I->getDebugLoc())
783 DL =
I->getDebugLoc();
795 assert(Ty->isIntegerTy() &&
"Expected an integer step");
803 return B.CreateElementCount(Ty, VFxStep);
808 return B.CreateElementCount(Ty, VF);
819 <<
"loop not vectorized: " << OREMsg);
842 "Vectorizing: ", TheLoop->
isInnermost() ?
"innermost loop" :
"outer loop",
848 <<
"vectorized " << LoopType <<
"loop (vectorization width: "
850 <<
", interleaved count: " <<
ore::NV(
"InterleaveCount", IC) <<
")";
906 initializeVScaleForTuning();
987 "Profitable to scalarize relevant only for VF > 1.");
990 "cost-model should not be used for outer loops (in VPlan-native path)");
992 auto Scalars = InstsToScalarize.find(VF);
993 assert(Scalars != InstsToScalarize.end() &&
994 "VF not yet analyzed for scalarization profitability");
995 return Scalars->second.contains(
I);
1002 "cost-model should not be used for outer loops (in VPlan-native path)");
1012 auto UniformsPerVF = Uniforms.find(VF);
1013 assert(UniformsPerVF != Uniforms.end() &&
1014 "VF not yet analyzed for uniformity");
1015 return UniformsPerVF->second.count(
I);
1022 "cost-model should not be used for outer loops (in VPlan-native path)");
1026 auto ScalarsPerVF = Scalars.find(VF);
1027 assert(ScalarsPerVF != Scalars.end() &&
1028 "Scalar values are not calculated for VF");
1029 return ScalarsPerVF->second.count(
I);
1035 return VF.
isVector() && MinBWs.contains(
I) &&
1057 WideningDecisions[{
I, VF}] = {W,
Cost};
1076 for (
unsigned Idx = 0; Idx < Grp->
getFactor(); ++Idx) {
1079 WideningDecisions[{
I, VF}] = {W, InsertPosCost};
1081 WideningDecisions[{
I, VF}] = {W, OtherMemberCost};
1093 "cost-model should not be used for outer loops (in VPlan-native path)");
1095 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1096 auto Itr = WideningDecisions.find(InstOnVF);
1097 if (Itr == WideningDecisions.end())
1099 return Itr->second.first;
1106 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1107 assert(WideningDecisions.contains(InstOnVF) &&
1108 "The cost is not calculated");
1109 return WideningDecisions[InstOnVF].second;
1122 std::optional<unsigned> MaskPos,
1125 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos,
Cost};
1131 auto I = CallWideningDecisions.find({CI, VF});
1132 if (
I == CallWideningDecisions.end())
1155 Value *
Op = Trunc->getOperand(0);
1156 if (
Op !=
Legal->getPrimaryInduction() &&
TTI.isTruncateFree(SrcTy, DestTy))
1160 return Legal->isInductionPhi(
Op);
1176 if (VF.
isScalar() || Uniforms.contains(VF))
1179 collectLoopUniforms(VF);
1181 collectLoopScalars(VF);
1189 return Legal->isConsecutivePtr(DataType,
Ptr) &&
1197 return Legal->isConsecutivePtr(DataType,
Ptr) &&
1212 return (
LI &&
TTI.isLegalMaskedGather(Ty,
Align)) ||
1219 return (
all_of(
Legal->getReductionVars(), [&](
auto &Reduction) ->
bool {
1220 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1221 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1232 return ScalarCost < SafeDivisorCost;
1256 std::pair<InstructionCost, InstructionCost>
1284 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1291 LLVM_DEBUG(
dbgs() <<
"LV: Loop requires scalar epilogue: not exiting "
1292 "from latch block\n");
1297 "interleaved group requires scalar epilogue\n");
1300 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1312 if (!ChosenTailFoldingStyle)
1314 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1315 : ChosenTailFoldingStyle->second;
1323 assert(!ChosenTailFoldingStyle &&
"Tail folding must not be selected yet.");
1324 if (!
Legal->canFoldTailByMasking()) {
1330 ChosenTailFoldingStyle = {
1331 TTI.getPreferredTailFoldingStyle(
true),
1332 TTI.getPreferredTailFoldingStyle(
false)};
1342 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1356 dbgs() <<
"LV: Preference for VP intrinsics indicated. Will "
1357 "not try to generate VP Intrinsics "
1359 ?
"since interleave count specified is greater than 1.\n"
1360 :
"due to non-interleaving reasons.\n"));
1394 return InLoopReductions.contains(Phi);
1405 TTI.preferPredicatedReductionSelect();
1420 WideningDecisions.clear();
1421 CallWideningDecisions.clear();
1440 const unsigned IC)
const;
1450 Type *VectorTy)
const;
1460 unsigned NumPredStores = 0;
1464 std::optional<unsigned> VScaleForTuning;
1469 void initializeVScaleForTuning() {
1474 auto Max = Attr.getVScaleRangeMax();
1475 if (Max && Min == Max) {
1476 VScaleForTuning = Max;
1481 VScaleForTuning =
TTI.getVScaleForTuning();
1489 FixedScalableVFPair computeFeasibleMaxVF(
unsigned MaxTripCount,
1490 ElementCount UserVF,
1491 bool FoldTailByMasking);
1495 ElementCount clampVFByMaxTripCount(ElementCount VF,
unsigned MaxTripCount,
1496 bool FoldTailByMasking)
const;
1501 ElementCount getMaximizedVFForTarget(
unsigned MaxTripCount,
1502 unsigned SmallestType,
1503 unsigned WidestType,
1504 ElementCount MaxSafeVF,
1505 bool FoldTailByMasking);
1509 bool isScalableVectorizationAllowed();
1513 ElementCount getMaxLegalScalableVF(
unsigned MaxSafeElements);
1519 InstructionCost getMemInstScalarizationCost(Instruction *
I, ElementCount VF);
1540 ElementCount VF)
const;
1544 bool useEmulatedMaskMemRefHack(Instruction *
I, ElementCount VF);
1549 MapVector<Instruction *, uint64_t> MinBWs;
1554 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1558 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1559 PredicatedBBsAfterVectorization;
1572 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1573 ChosenTailFoldingStyle;
1576 std::optional<bool> IsScalableVectorizationAllowed;
1582 std::optional<unsigned> MaxSafeElements;
1588 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1592 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1596 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1600 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1603 SmallPtrSet<PHINode *, 4> InLoopReductions;
1608 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1616 ScalarCostsTy &ScalarCosts,
1628 void collectLoopUniforms(ElementCount VF);
1637 void collectLoopScalars(ElementCount VF);
1641 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1642 std::pair<InstWidening, InstructionCost>>;
1644 DecisionList WideningDecisions;
1646 using CallDecisionList =
1649 CallDecisionList CallWideningDecisions;
1653 bool needsExtract(
Value *V, ElementCount VF)
const {
1673 ElementCount VF)
const {
1675 SmallPtrSet<const Value *, 4> UniqueOperands;
1679 !needsExtract(
Op, VF))
1751class GeneratedRTChecks {
1757 Value *SCEVCheckCond =
nullptr;
1764 Value *MemRuntimeCheckCond =
nullptr;
1773 bool CostTooHigh =
false;
1775 Loop *OuterLoop =
nullptr;
1786 : DT(DT), LI(LI),
TTI(
TTI), SCEVExp(*PSE.
getSE(),
DL,
"scev.check"),
1787 MemCheckExp(*PSE.
getSE(),
DL,
"scev.check"), PSE(PSE),
1795 void create(Loop *L,
const LoopAccessInfo &LAI,
1796 const SCEVPredicate &UnionPred, ElementCount VF,
unsigned IC) {
1816 nullptr,
"vector.scevcheck");
1823 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1824 SCEVCleaner.cleanup();
1829 if (RtPtrChecking.Need) {
1830 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1831 MemCheckBlock =
SplitBlock(Pred, Pred->getTerminator(), DT, LI,
nullptr,
1834 auto DiffChecks = RtPtrChecking.getDiffChecks();
1836 Value *RuntimeVF =
nullptr;
1839 [VF, &RuntimeVF](IRBuilderBase &
B,
unsigned Bits) {
1841 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1847 MemCheckBlock->
getTerminator(), L, RtPtrChecking.getChecks(),
1850 assert(MemRuntimeCheckCond &&
1851 "no RT checks generated although RtPtrChecking "
1852 "claimed checks are required");
1857 if (!MemCheckBlock && !SCEVCheckBlock)
1867 if (SCEVCheckBlock) {
1870 auto *UI =
new UnreachableInst(Preheader->
getContext(), SCEVCheckBlock);
1874 if (MemCheckBlock) {
1877 auto *UI =
new UnreachableInst(Preheader->
getContext(), MemCheckBlock);
1883 if (MemCheckBlock) {
1887 if (SCEVCheckBlock) {
1893 OuterLoop =
L->getParentLoop();
1897 if (SCEVCheckBlock || MemCheckBlock)
1909 for (Instruction &
I : *SCEVCheckBlock) {
1910 if (SCEVCheckBlock->getTerminator() == &
I)
1916 if (MemCheckBlock) {
1918 for (Instruction &
I : *MemCheckBlock) {
1919 if (MemCheckBlock->getTerminator() == &
I)
1931 ScalarEvolution *SE = MemCheckExp.
getSE();
1936 const SCEV *
Cond = SE->
getSCEV(MemRuntimeCheckCond);
1941 unsigned BestTripCount = 2;
1945 PSE, OuterLoop,
false))
1946 if (EstimatedTC->isFixed())
1947 BestTripCount = EstimatedTC->getFixedValue();
1952 NewMemCheckCost = std::max(NewMemCheckCost.
getValue(),
1953 (InstructionCost::CostType)1);
1955 if (BestTripCount > 1)
1957 <<
"We expect runtime memory checks to be hoisted "
1958 <<
"out of the outer loop. Cost reduced from "
1959 << MemCheckCost <<
" to " << NewMemCheckCost <<
'\n');
1961 MemCheckCost = NewMemCheckCost;
1965 RTCheckCost += MemCheckCost;
1968 if (SCEVCheckBlock || MemCheckBlock)
1969 LLVM_DEBUG(
dbgs() <<
"Total cost of runtime checks: " << RTCheckCost
1977 ~GeneratedRTChecks() {
1978 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1979 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
1980 bool SCEVChecksUsed = !SCEVCheckBlock || !
pred_empty(SCEVCheckBlock);
1981 bool MemChecksUsed = !MemCheckBlock || !
pred_empty(MemCheckBlock);
1983 SCEVCleaner.markResultUsed();
1985 if (MemChecksUsed) {
1986 MemCheckCleaner.markResultUsed();
1988 auto &SE = *MemCheckExp.
getSE();
1995 I.eraseFromParent();
1998 MemCheckCleaner.cleanup();
1999 SCEVCleaner.cleanup();
2001 if (!SCEVChecksUsed)
2002 SCEVCheckBlock->eraseFromParent();
2004 MemCheckBlock->eraseFromParent();
2009 std::pair<Value *, BasicBlock *> getSCEVChecks()
const {
2010 using namespace llvm::PatternMatch;
2012 return {
nullptr,
nullptr};
2014 return {SCEVCheckCond, SCEVCheckBlock};
2019 std::pair<Value *, BasicBlock *> getMemRuntimeChecks()
const {
2020 using namespace llvm::PatternMatch;
2021 if (MemRuntimeCheckCond &&
match(MemRuntimeCheckCond,
m_ZeroInt()))
2022 return {
nullptr,
nullptr};
2023 return {MemRuntimeCheckCond, MemCheckBlock};
2027 bool hasChecks()
const {
2028 return getSCEVChecks().first || getMemRuntimeChecks().first;
2071 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent outer loop vectorization.\n");
2077 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Interleave is not supported for "
2107 for (
Loop *InnerL : L)
2130 ?
B.CreateSExtOrTrunc(Index, StepTy)
2131 :
B.CreateCast(Instruction::SIToFP, Index, StepTy);
2132 if (CastedIndex != Index) {
2134 Index = CastedIndex;
2144 assert(
X->getType() ==
Y->getType() &&
"Types don't match!");
2149 return B.CreateAdd(
X,
Y);
2155 assert(
X->getType()->getScalarType() ==
Y->getType() &&
2156 "Types don't match!");
2163 Y =
B.CreateVectorSplat(XVTy->getElementCount(),
Y);
2164 return B.CreateMul(
X,
Y);
2167 switch (InductionKind) {
2170 "Vector indices not supported for integer inductions yet");
2172 "Index type does not match StartValue type");
2174 return B.CreateSub(StartValue, Index);
2179 return B.CreatePtrAdd(StartValue,
CreateMul(Index, Step));
2182 "Vector indices not supported for FP inductions yet");
2185 (InductionBinOp->
getOpcode() == Instruction::FAdd ||
2186 InductionBinOp->
getOpcode() == Instruction::FSub) &&
2187 "Original bin op should be defined for FP induction");
2189 Value *MulExp =
B.CreateFMul(Step, Index);
2190 return B.CreateBinOp(InductionBinOp->
getOpcode(), StartValue, MulExp,
2201 if (std::optional<unsigned> MaxVScale =
TTI.getMaxVScale())
2204 if (
F.hasFnAttribute(Attribute::VScaleRange))
2205 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2207 return std::nullopt;
2216 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2218 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2220 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2226 if (
unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2229 std::optional<unsigned> MaxVScale =
2233 MaxVF *= *MaxVScale;
2236 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2250 return TTI.enableMaskedInterleavedAccessVectorization();
2263 PreVectorPH = CheckVPIRBB;
2273 "must have incoming values for all operands");
2274 R.addOperand(R.getOperand(NumPredecessors - 2));
2300 auto CreateStep = [&]() ->
Value * {
2307 if (!
VF.isScalable())
2309 return Builder.CreateBinaryIntrinsic(
2315 Value *Step = CreateStep();
2324 CheckMinIters =
Builder.getTrue();
2326 TripCountSCEV, SE.
getSCEV(Step))) {
2329 CheckMinIters =
Builder.CreateICmp(
P,
Count, Step,
"min.iters.check");
2331 }
else if (
VF.isScalable() && !
TTI->isVScaleKnownToBeAPowerOfTwo() &&
2339 Value *MaxUIntTripCount =
2346 return CheckMinIters;
2355 VPlan *Plan =
nullptr) {
2359 auto IP = IRVPBB->
begin();
2361 R.moveBefore(*IRVPBB, IP);
2365 R.moveBefore(*IRVPBB, IRVPBB->
end());
2374 assert(VectorPH &&
"Invalid loop structure");
2376 Cost->requiresScalarEpilogue(
VF.isVector())) &&
2377 "loops not exiting via the latch without required epilogue?");
2384 Twine(Prefix) +
"scalar.ph");
2390 const SCEV2ValueTy &ExpandedSCEVs) {
2391 const SCEV *Step =
ID.getStep();
2393 return C->getValue();
2395 return U->getValue();
2396 Value *V = ExpandedSCEVs.lookup(Step);
2397 assert(V &&
"SCEV must be expanded at this point");
2407 auto *Cmp = L->getLatchCmpInst();
2409 InstsToIgnore.
insert(Cmp);
2410 for (
const auto &KV : IL) {
2419 [&](
const User *U) { return U == IV || U == Cmp; }))
2420 InstsToIgnore.
insert(IVInst);
2432struct CSEDenseMapInfo {
2443 return DenseMapInfo<Instruction *>::getTombstoneKey();
2446 static unsigned getHashValue(
const Instruction *
I) {
2447 assert(canHandle(
I) &&
"Unknown instruction!");
2452 static bool isEqual(
const Instruction *
LHS,
const Instruction *
RHS) {
2453 if (
LHS == getEmptyKey() ||
RHS == getEmptyKey() ||
2454 LHS == getTombstoneKey() ||
RHS == getTombstoneKey())
2456 return LHS->isIdenticalTo(
RHS);
2467 if (!CSEDenseMapInfo::canHandle(&In))
2473 In.replaceAllUsesWith(V);
2474 In.eraseFromParent();
2487 std::optional<unsigned> VScale) {
2491 EstimatedVF *= *VScale;
2492 assert(EstimatedVF >= 1 &&
"Estimated VF shouldn't be less than 1");
2510 for (
auto &ArgOp : CI->
args())
2521 return ScalarCallCost;
2534 assert(
ID &&
"Expected intrinsic call!");
2538 FMF = FPMO->getFastMathFlags();
2544 std::back_inserter(ParamTys),
2545 [&](
Type *Ty) { return maybeVectorizeType(Ty, VF); });
2550 return TTI.getIntrinsicInstrCost(CostAttrs,
CostKind);
2564 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2579 Builder.SetInsertPoint(NewPhi);
2581 NewPhi->
addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2586void LoopVectorizationCostModel::collectLoopScalars(
ElementCount VF) {
2591 "This function should not be visited twice for the same VF");
2616 "Widening decision should be ready at this moment");
2618 if (
Ptr == Store->getValueOperand())
2621 "Ptr is neither a value or pointer operand");
2627 auto IsLoopVaryingGEP = [&](
Value *
V) {
2638 if (!IsLoopVaryingGEP(
Ptr))
2650 if (IsScalarUse(MemAccess,
Ptr) &&
2654 PossibleNonScalarPtrs.
insert(
I);
2670 for (
auto *BB :
TheLoop->blocks())
2671 for (
auto &
I : *BB) {
2673 EvaluatePtrUse(Load,
Load->getPointerOperand());
2675 EvaluatePtrUse(Store,
Store->getPointerOperand());
2676 EvaluatePtrUse(Store,
Store->getValueOperand());
2679 for (
auto *
I : ScalarPtrs)
2680 if (!PossibleNonScalarPtrs.
count(
I)) {
2688 auto ForcedScalar = ForcedScalars.find(VF);
2689 if (ForcedScalar != ForcedScalars.end())
2690 for (
auto *
I : ForcedScalar->second) {
2691 LLVM_DEBUG(
dbgs() <<
"LV: Found (forced) scalar instruction: " << *
I <<
"\n");
2700 while (Idx != Worklist.
size()) {
2702 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2706 auto *J = cast<Instruction>(U);
2707 return !TheLoop->contains(J) || Worklist.count(J) ||
2708 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2709 IsScalarUse(J, Src));
2712 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Src <<
"\n");
2718 for (
const auto &Induction :
Legal->getInductionVars()) {
2719 auto *Ind = Induction.first;
2729 auto IsDirectLoadStoreFromPtrIndvar = [&](
Instruction *Indvar,
2731 return Induction.second.getKind() ==
2739 bool ScalarInd =
all_of(Ind->users(), [&](User *U) ->
bool {
2740 auto *I = cast<Instruction>(U);
2741 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2742 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2751 if (IndUpdatePhi &&
Legal->isFixedOrderRecurrence(IndUpdatePhi))
2756 bool ScalarIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
2757 auto *I = cast<Instruction>(U);
2758 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2759 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2761 if (!ScalarIndUpdate)
2766 Worklist.
insert(IndUpdate);
2767 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Ind <<
"\n");
2768 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *IndUpdate
2772 Scalars[VF].insert_range(Worklist);
2782 switch(
I->getOpcode()) {
2785 case Instruction::Call:
2789 case Instruction::Load:
2790 case Instruction::Store: {
2799 TTI.isLegalMaskedGather(VTy, Alignment))
2801 TTI.isLegalMaskedScatter(VTy, Alignment));
2803 case Instruction::UDiv:
2804 case Instruction::SDiv:
2805 case Instruction::SRem:
2806 case Instruction::URem: {
2827 if (
Legal->blockNeedsPredication(
I->getParent()))
2839 switch(
I->getOpcode()) {
2842 "instruction should have been considered by earlier checks");
2843 case Instruction::Call:
2847 "should have returned earlier for calls not needing a mask");
2849 case Instruction::Load:
2852 case Instruction::Store: {
2860 case Instruction::UDiv:
2861 case Instruction::SDiv:
2862 case Instruction::SRem:
2863 case Instruction::URem:
2865 return !
Legal->isInvariant(
I->getOperand(1));
2869std::pair<InstructionCost, InstructionCost>
2872 assert(
I->getOpcode() == Instruction::UDiv ||
2873 I->getOpcode() == Instruction::SDiv ||
2874 I->getOpcode() == Instruction::SRem ||
2875 I->getOpcode() == Instruction::URem);
2884 ScalarizationCost = 0;
2890 ScalarizationCost +=
2894 ScalarizationCost +=
2896 TTI.getArithmeticInstrCost(
I->getOpcode(),
I->getType(),
CostKind);
2900 ScalarizationCost += getScalarizationOverhead(
I, VF);
2913 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2918 SafeDivisorCost +=
TTI.getArithmeticInstrCost(
2920 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2921 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2923 return {ScalarizationCost, SafeDivisorCost};
2930 "Decision should not be set yet.");
2932 assert(Group &&
"Must have a group.");
2933 unsigned InterleaveFactor = Group->getFactor();
2937 auto &
DL =
I->getDataLayout();
2949 bool ScalarNI =
DL.isNonIntegralPointerType(ScalarTy);
2950 for (
unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
2955 bool MemberNI =
DL.isNonIntegralPointerType(MemberTy);
2957 if (MemberNI != ScalarNI)
2960 if (MemberNI && ScalarNI &&
2961 ScalarTy->getPointerAddressSpace() !=
2962 MemberTy->getPointerAddressSpace())
2971 bool PredicatedAccessRequiresMasking =
2973 Legal->isMaskRequired(
I);
2974 bool LoadAccessWithGapsRequiresEpilogMasking =
2977 bool StoreAccessWithGapsRequiresMasking =
2979 if (!PredicatedAccessRequiresMasking &&
2980 !LoadAccessWithGapsRequiresEpilogMasking &&
2981 !StoreAccessWithGapsRequiresMasking)
2988 "Masked interleave-groups for predicated accesses are not enabled.");
2990 if (Group->isReverse())
2994 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
2995 StoreAccessWithGapsRequiresMasking;
3003 :
TTI.isLegalMaskedStore(Ty, Alignment, AS);
3015 if (!
Legal->isConsecutivePtr(ScalarTy,
Ptr))
3025 auto &
DL =
I->getDataLayout();
3032void LoopVectorizationCostModel::collectLoopUniforms(
ElementCount VF) {
3039 "This function should not be visited twice for the same VF");
3043 Uniforms[VF].
clear();
3051 auto IsOutOfScope = [&](
Value *V) ->
bool {
3063 auto AddToWorklistIfAllowed = [&](
Instruction *
I) ->
void {
3064 if (IsOutOfScope(
I)) {
3071 dbgs() <<
"LV: Found not uniform due to requiring predication: " << *
I
3075 LLVM_DEBUG(
dbgs() <<
"LV: Found uniform instruction: " << *
I <<
"\n");
3084 TheLoop->getExitingBlocks(Exiting);
3085 for (BasicBlock *
E : Exiting) {
3086 if (
Legal->hasUncountableEarlyExit() &&
TheLoop->getLoopLatch() !=
E)
3089 if (Cmp &&
TheLoop->contains(Cmp) &&
Cmp->hasOneUse())
3090 AddToWorklistIfAllowed(Cmp);
3099 if (PrevVF.isVector()) {
3100 auto Iter = Uniforms.find(PrevVF);
3101 if (Iter != Uniforms.end() && !Iter->second.contains(
I))
3104 if (!
Legal->isUniformMemOp(*
I, VF))
3114 auto IsUniformDecision = [&](
Instruction *
I, ElementCount VF) {
3117 "Widening decision should be ready at this moment");
3119 if (IsUniformMemOpUse(
I))
3122 return (WideningDecision ==
CM_Widen ||
3134 (IsUniformDecision(
I, VF) ||
Legal->isInvariant(
Ptr));
3142 SetVector<Value *> HasUniformUse;
3146 for (
auto *BB :
TheLoop->blocks())
3147 for (
auto &
I : *BB) {
3149 switch (
II->getIntrinsicID()) {
3150 case Intrinsic::sideeffect:
3151 case Intrinsic::experimental_noalias_scope_decl:
3152 case Intrinsic::assume:
3153 case Intrinsic::lifetime_start:
3154 case Intrinsic::lifetime_end:
3155 if (
TheLoop->hasLoopInvariantOperands(&
I))
3156 AddToWorklistIfAllowed(&
I);
3164 if (IsOutOfScope(EVI->getAggregateOperand())) {
3165 AddToWorklistIfAllowed(EVI);
3171 "Expected aggregate value to be call return value");
3184 if (IsUniformMemOpUse(&
I))
3185 AddToWorklistIfAllowed(&
I);
3187 if (IsVectorizedMemAccessUse(&
I,
Ptr))
3194 for (
auto *V : HasUniformUse) {
3195 if (IsOutOfScope(V))
3198 bool UsersAreMemAccesses =
all_of(
I->users(), [&](User *U) ->
bool {
3199 auto *UI = cast<Instruction>(U);
3200 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3202 if (UsersAreMemAccesses)
3203 AddToWorklistIfAllowed(
I);
3210 while (Idx != Worklist.
size()) {
3213 for (
auto *OV :
I->operand_values()) {
3215 if (IsOutOfScope(OV))
3220 if (
OP &&
Legal->isFixedOrderRecurrence(
OP))
3226 auto *J = cast<Instruction>(U);
3227 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3229 AddToWorklistIfAllowed(OI);
3240 for (
const auto &Induction :
Legal->getInductionVars()) {
3241 auto *Ind = Induction.first;
3246 bool UniformInd =
all_of(Ind->users(), [&](User *U) ->
bool {
3247 auto *I = cast<Instruction>(U);
3248 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3249 IsVectorizedMemAccessUse(I, Ind);
3256 bool UniformIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
3257 auto *I = cast<Instruction>(U);
3258 return I == Ind || Worklist.count(I) ||
3259 IsVectorizedMemAccessUse(I, IndUpdate);
3261 if (!UniformIndUpdate)
3265 AddToWorklistIfAllowed(Ind);
3266 AddToWorklistIfAllowed(IndUpdate);
3269 Uniforms[VF].insert_range(Worklist);
3275 if (
Legal->getRuntimePointerChecking()->Need) {
3277 "runtime pointer checks needed. Enable vectorization of this "
3278 "loop with '#pragma clang loop vectorize(enable)' when "
3279 "compiling with -Os/-Oz",
3280 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3284 if (!
PSE.getPredicate().isAlwaysTrue()) {
3286 "runtime SCEV checks needed. Enable vectorization of this "
3287 "loop with '#pragma clang loop vectorize(enable)' when "
3288 "compiling with -Os/-Oz",
3289 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3294 if (!
Legal->getLAI()->getSymbolicStrides().empty()) {
3296 "runtime stride == 1 checks needed. Enable vectorization of "
3297 "this loop without such check by compiling with -Os/-Oz",
3298 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3305bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3306 if (IsScalableVectorizationAllowed)
3307 return *IsScalableVectorizationAllowed;
3309 IsScalableVectorizationAllowed =
false;
3315 "ScalableVectorizationDisabled",
ORE,
TheLoop);
3319 LLVM_DEBUG(
dbgs() <<
"LV: Scalable vectorization is available\n");
3322 std::numeric_limits<ElementCount::ScalarTy>::max());
3333 "Scalable vectorization not supported for the reduction "
3334 "operations found in this loop.",
3343 !this->
TTI.isElementTypeLegalForScalableVector(Ty);
3346 "for all element types found in this loop.",
3353 "for safe distance analysis.",
3358 IsScalableVectorizationAllowed =
true;
3363LoopVectorizationCostModel::getMaxLegalScalableVF(
unsigned MaxSafeElements) {
3364 if (!isScalableVectorizationAllowed())
3368 std::numeric_limits<ElementCount::ScalarTy>::max());
3369 if (
Legal->isSafeForAnyVectorWidth())
3370 return MaxScalableVF;
3378 "Max legal vector width too small, scalable vectorization "
3382 return MaxScalableVF;
3386 unsigned MaxTripCount,
ElementCount UserVF,
bool FoldTailByMasking) {
3388 unsigned SmallestType, WidestType;
3395 unsigned MaxSafeElementsPowerOf2 =
3397 if (!
Legal->isSafeForAnyStoreLoadForwardDistances()) {
3398 unsigned SLDist =
Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3399 MaxSafeElementsPowerOf2 =
3400 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3403 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3405 if (!
Legal->isSafeForAnyVectorWidth())
3406 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3408 LLVM_DEBUG(
dbgs() <<
"LV: The max safe fixed VF is: " << MaxSafeFixedVF
3410 LLVM_DEBUG(
dbgs() <<
"LV: The max safe scalable VF is: " << MaxSafeScalableVF
3415 auto MaxSafeUserVF =
3416 UserVF.
isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3421 return FixedScalableVFPair(
3433 <<
" is unsafe, clamping to max safe VF="
3434 << MaxSafeFixedVF <<
".\n");
3436 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3439 <<
"User-specified vectorization factor "
3440 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3441 <<
" is unsafe, clamping to maximum safe vectorization factor "
3442 <<
ore::NV(
"VectorizationFactor", MaxSafeFixedVF);
3444 return MaxSafeFixedVF;
3449 <<
" is ignored because scalable vectors are not "
3452 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3455 <<
"User-specified vectorization factor "
3456 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3457 <<
" is ignored because the target does not support scalable "
3458 "vectors. The compiler will pick a more suitable value.";
3462 <<
" is unsafe. Ignoring scalable UserVF.\n");
3464 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3467 <<
"User-specified vectorization factor "
3468 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3469 <<
" is unsafe. Ignoring the hint to let the compiler pick a "
3470 "more suitable value.";
3475 LLVM_DEBUG(
dbgs() <<
"LV: The Smallest and Widest types: " << SmallestType
3476 <<
" / " << WidestType <<
" bits.\n");
3481 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3482 MaxSafeFixedVF, FoldTailByMasking))
3486 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3487 MaxSafeScalableVF, FoldTailByMasking))
3488 if (MaxVF.isScalable()) {
3489 Result.ScalableVF = MaxVF;
3490 LLVM_DEBUG(
dbgs() <<
"LV: Found feasible scalable VF = " << MaxVF
3499 if (
Legal->getRuntimePointerChecking()->Need &&
TTI.hasBranchDivergence()) {
3503 "Not inserting runtime ptr check for divergent target",
3504 "runtime pointer checks needed. Not enabled for divergent target",
3505 "CantVersionLoopWithDivergentTarget",
ORE,
TheLoop);
3511 unsigned MaxTC =
PSE.getSmallConstantMaxTripCount();
3514 LLVM_DEBUG(
dbgs() <<
"LV: Found maximum trip count: " << MaxTC <<
'\n');
3517 "loop trip count is one, irrelevant for vectorization",
3528 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3532 "Trip count computation wrapped",
3533 "backedge-taken count is -1, loop trip count wrapped to 0",
3538 switch (ScalarEpilogueStatus) {
3540 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
3545 dbgs() <<
"LV: vector predicate hint/switch found.\n"
3546 <<
"LV: Not allowing scalar epilogue, creating predicated "
3547 <<
"vector loop.\n");
3554 dbgs() <<
"LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3556 LLVM_DEBUG(
dbgs() <<
"LV: Not allowing scalar epilogue due to low trip "
3572 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3573 "No decisions should have been taken at this point");
3583 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3587 if (MaxVScale &&
TTI.isVScaleKnownToBeAPowerOfTwo()) {
3588 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3589 *MaxPowerOf2RuntimeVF,
3592 MaxPowerOf2RuntimeVF = std::nullopt;
3595 auto NoScalarEpilogueNeeded = [
this, &UserIC](
unsigned MaxVF) {
3599 !
Legal->hasUncountableEarlyExit())
3601 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3606 const SCEV *BackedgeTakenCount =
PSE.getSymbolicMaxBackedgeTakenCount();
3608 BackedgeTakenCount ==
PSE.getBackedgeTakenCount()) &&
3609 "Invalid loop count");
3611 BackedgeTakenCount, SE->
getOne(BackedgeTakenCount->
getType()));
3618 if (MaxPowerOf2RuntimeVF > 0u) {
3620 "MaxFixedVF must be a power of 2");
3621 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3623 LLVM_DEBUG(
dbgs() <<
"LV: No tail will remain for any chosen VF.\n");
3629 if (ExpectedTC && ExpectedTC->isFixed() &&
3630 ExpectedTC->getFixedValue() <=
3631 TTI.getMinTripCountTailFoldingThreshold()) {
3632 if (MaxPowerOf2RuntimeVF > 0u) {
3638 LLVM_DEBUG(
dbgs() <<
"LV: Picking a fixed-width so that no tail will "
3639 "remain for any chosen VF.\n");
3646 "The trip count is below the minial threshold value.",
3647 "loop trip count is too low, avoiding vectorization",
"LowTripCount",
3662 <<
"LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3663 "try to generate VP Intrinsics with scalable vector "
3668 assert(ContainsScalableVF &&
"Expected scalable vector factor.");
3678 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
3679 "scalar epilogue instead.\n");
3685 LLVM_DEBUG(
dbgs() <<
"LV: Can't fold tail by masking: don't vectorize\n");
3691 "unable to calculate the loop count due to complex control flow",
3697 "Cannot optimize for size and vectorize at the same time.",
3698 "cannot optimize for size and vectorize at the same time. "
3699 "Enable vectorization of this loop with '#pragma clang loop "
3700 "vectorize(enable)' when compiling with -Os/-Oz",
3712 if (
TTI.shouldConsiderVectorizationRegPressure())
3728 (
TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3730 Legal->hasVectorCallVariants())));
3733ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3734 ElementCount VF,
unsigned MaxTripCount,
bool FoldTailByMasking)
const {
3748 if (MaxTripCount && MaxTripCount <= EstimatedVF &&
3756 LLVM_DEBUG(
dbgs() <<
"LV: Clamping the MaxVF to maximum power of two not "
3757 "exceeding the constant trip count: "
3758 << ClampedUpperTripCount <<
"\n");
3760 FoldTailByMasking ? VF.
isScalable() :
false);
3765ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3766 unsigned MaxTripCount,
unsigned SmallestType,
unsigned WidestType,
3768 bool ComputeScalableMaxVF = MaxSafeVF.
isScalable();
3769 const TypeSize WidestRegister =
TTI.getRegisterBitWidth(
3774 auto MinVF = [](
const ElementCount &
LHS,
const ElementCount &
RHS) {
3776 "Scalable flags must match");
3784 ComputeScalableMaxVF);
3785 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3787 << (MaxVectorElementCount * WidestType) <<
" bits.\n");
3789 if (!MaxVectorElementCount) {
3791 << (ComputeScalableMaxVF ?
"scalable" :
"fixed")
3792 <<
" vector registers.\n");
3796 ElementCount MaxVF = clampVFByMaxTripCount(MaxVectorElementCount,
3797 MaxTripCount, FoldTailByMasking);
3800 if (MaxVF != MaxVectorElementCount)
3815 ComputeScalableMaxVF);
3816 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3818 if (ElementCount MinVF =
3819 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
3822 <<
") with target's minimum: " << MinVF <<
'\n');
3827 MaxVF = clampVFByMaxTripCount(MaxVF, MaxTripCount, FoldTailByMasking);
3829 if (MaxVectorElementCount != MaxVF) {
3841 const unsigned MaxTripCount,
3843 bool IsEpilogue)
const {
3849 unsigned EstimatedWidthB =
B.Width.getKnownMinValue();
3850 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3851 if (
A.Width.isScalable())
3852 EstimatedWidthA *= *VScale;
3853 if (
B.Width.isScalable())
3854 EstimatedWidthB *= *VScale;
3861 return CostA < CostB ||
3862 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3867 bool PreferScalable = !TTI.preferFixedOverScalableIfEqualCost(IsEpilogue) &&
3868 A.Width.isScalable() && !
B.Width.isScalable();
3879 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3881 auto GetCostForTC = [MaxTripCount, HasTail](
unsigned VF,
3893 return VectorCost * (MaxTripCount / VF) +
3894 ScalarCost * (MaxTripCount % VF);
3895 return VectorCost *
divideCeil(MaxTripCount, VF);
3898 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA,
A.ScalarCost);
3899 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB,
B.ScalarCost);
3900 return CmpFn(RTCostA, RTCostB);
3906 bool IsEpilogue)
const {
3907 const unsigned MaxTripCount = PSE.getSmallConstantMaxTripCount();
3908 return LoopVectorizationPlanner::isMoreProfitable(
A,
B, MaxTripCount, HasTail,
3914 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3916 for (
const auto &Plan : VPlans) {
3925 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind);
3926 precomputeCosts(*Plan, VF, CostCtx);
3929 for (
auto &R : *VPBB) {
3930 if (!R.cost(VF, CostCtx).isValid())
3936 if (InvalidCosts.
empty())
3944 for (
auto &Pair : InvalidCosts)
3949 sort(InvalidCosts, [&Numbering](RecipeVFPair &
A, RecipeVFPair &
B) {
3950 unsigned NA = Numbering[
A.first];
3951 unsigned NB = Numbering[
B.first];
3966 Subset =
Tail.take_front(1);
3973 [](
const auto *R) {
return Instruction::PHI; })
3974 .Case<VPWidenSelectRecipe>(
3975 [](
const auto *R) {
return Instruction::Select; })
3976 .Case<VPWidenStoreRecipe>(
3977 [](
const auto *R) {
return Instruction::Store; })
3978 .Case<VPWidenLoadRecipe>(
3979 [](
const auto *R) {
return Instruction::Load; })
3980 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
3981 [](
const auto *R) {
return Instruction::Call; })
3984 [](
const auto *R) {
return R->getOpcode(); })
3986 return R->getStoredValues().empty() ? Instruction::Load
3987 : Instruction::Store;
3995 if (Subset ==
Tail ||
Tail[Subset.size()].first != R) {
3996 std::string OutString;
3998 assert(!Subset.empty() &&
"Unexpected empty range");
3999 OS <<
"Recipe with invalid costs prevented vectorization at VF=(";
4000 for (
const auto &Pair : Subset)
4001 OS << (Pair.second == Subset.front().second ?
"" :
", ") << Pair.second;
4003 if (Opcode == Instruction::Call) {
4006 Name =
Int->getIntrinsicName();
4010 WidenCall ? WidenCall->getCalledScalarFunction()
4012 ->getLiveInIRValue());
4015 OS <<
" call to " << Name;
4020 Tail =
Tail.drop_front(Subset.size());
4024 Subset =
Tail.take_front(Subset.size() + 1);
4025 }
while (!
Tail.empty());
4047 switch (R.getVPDefID()) {
4048 case VPDef::VPDerivedIVSC:
4049 case VPDef::VPScalarIVStepsSC:
4050 case VPDef::VPReplicateSC:
4051 case VPDef::VPInstructionSC:
4052 case VPDef::VPCanonicalIVPHISC:
4053 case VPDef::VPVectorPointerSC:
4054 case VPDef::VPVectorEndPointerSC:
4055 case VPDef::VPExpandSCEVSC:
4056 case VPDef::VPEVLBasedIVPHISC:
4057 case VPDef::VPPredInstPHISC:
4058 case VPDef::VPBranchOnMaskSC:
4060 case VPDef::VPReductionSC:
4061 case VPDef::VPActiveLaneMaskPHISC:
4062 case VPDef::VPWidenCallSC:
4063 case VPDef::VPWidenCanonicalIVSC:
4064 case VPDef::VPWidenCastSC:
4065 case VPDef::VPWidenGEPSC:
4066 case VPDef::VPWidenIntrinsicSC:
4067 case VPDef::VPWidenSC:
4068 case VPDef::VPWidenSelectSC:
4069 case VPDef::VPBlendSC:
4070 case VPDef::VPFirstOrderRecurrencePHISC:
4071 case VPDef::VPHistogramSC:
4072 case VPDef::VPWidenPHISC:
4073 case VPDef::VPWidenIntOrFpInductionSC:
4074 case VPDef::VPWidenPointerInductionSC:
4075 case VPDef::VPReductionPHISC:
4076 case VPDef::VPInterleaveEVLSC:
4077 case VPDef::VPInterleaveSC:
4078 case VPDef::VPWidenLoadEVLSC:
4079 case VPDef::VPWidenLoadSC:
4080 case VPDef::VPWidenStoreEVLSC:
4081 case VPDef::VPWidenStoreSC:
4087 auto WillGenerateTargetVectors = [&
TTI, VF](
Type *VectorTy) {
4088 unsigned NumLegalParts =
TTI.getNumberOfParts(VectorTy);
4104 if (R.getNumDefinedValues() == 0 &&
4113 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4115 if (!Visited.
insert({ScalarTy}).second)
4129 [](
auto *VPRB) { return VPRB->isReplicator(); });
4135 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ExpectedCost <<
".\n");
4136 assert(ExpectedCost.
isValid() &&
"Unexpected invalid cost for scalar loop");
4139 [](std::unique_ptr<VPlan> &
P) {
return P->hasScalarVFOnly(); }) &&
4140 "Expected Scalar VF to be a candidate");
4147 if (ForceVectorization &&
4148 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4155 for (
auto &
P : VPlans) {
4157 P->vectorFactors().end());
4160 if (
any_of(VFs, [
this](ElementCount VF) {
4161 return CM.shouldConsiderRegPressureForVF(VF);
4165 for (
unsigned I = 0;
I < VFs.size();
I++) {
4166 ElementCount VF = VFs[
I];
4174 if (CM.shouldConsiderRegPressureForVF(VF) &&
4182 VPCostContext CostCtx(CM.TTI, *CM.TLI, *
P, CM, CM.CostKind);
4183 VPRegionBlock *VectorRegion =
P->getVectorLoopRegion();
4184 assert(VectorRegion &&
"Expected to have a vector region!");
4187 for (VPRecipeBase &R : *VPBB) {
4191 switch (VPI->getOpcode()) {
4194 case Instruction::Select: {
4195 VPValue *VPV = VPI->getVPSingleValue();
4198 switch (WR->getOpcode()) {
4199 case Instruction::UDiv:
4200 case Instruction::SDiv:
4201 case Instruction::URem:
4202 case Instruction::SRem:
4209 C += VPI->cost(VF, CostCtx);
4213 unsigned Multiplier =
4216 C += VPI->cost(VF * Multiplier, CostCtx);
4220 C += VPI->cost(VF, CostCtx);
4232 <<
" costs: " << (Candidate.Cost / Width));
4235 << CM.getVScaleForTuning().value_or(1) <<
")");
4241 <<
"LV: Not considering vector loop of width " << VF
4242 <<
" because it will not generate any vector instructions.\n");
4249 <<
"LV: Not considering vector loop of width " << VF
4250 <<
" because it would cause replicated blocks to be generated,"
4251 <<
" which isn't allowed when optimizing for size.\n");
4255 if (isMoreProfitable(Candidate, ChosenFactor,
P->hasScalarTail()))
4256 ChosenFactor = Candidate;
4262 "There are conditional stores.",
4263 "store that is conditionally executed prevents vectorization",
4264 "ConditionalStore", ORE, OrigLoop);
4265 ChosenFactor = ScalarCost;
4269 !isMoreProfitable(ChosenFactor, ScalarCost,
4270 !CM.foldTailByMasking()))
dbgs()
4271 <<
"LV: Vectorization seems to be not beneficial, "
4272 <<
"but was forced by a user.\n");
4273 return ChosenFactor;
4277bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4281 if (
any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4282 if (!Legal->isReductionVariable(&Phi))
4283 return Legal->isFixedOrderRecurrence(&Phi);
4284 RecurKind RK = Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind();
4285 return RK == RecurKind::FMinNum || RK == RecurKind::FMaxNum;
4291 for (
const auto &Entry : Legal->getInductionVars()) {
4294 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4295 for (User *U :
PostInc->users())
4299 for (User *U :
Entry.first->users())
4308 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4322 if (!
TTI.preferEpilogueVectorization())
4327 if (
TTI.getMaxInterleaveFactor(VF) <= 1)
4332 :
TTI.getEpilogueVectorizationMinVF();
4340 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is disabled.\n");
4344 if (!CM.isScalarEpilogueAllowed()) {
4345 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because no "
4346 "epilogue is allowed.\n");
4352 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4353 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because the loop "
4354 "is not a supported candidate.\n");
4359 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization factor is forced.\n");
4362 return {ForcedEC, 0, 0};
4364 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization forced factor is not "
4369 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4371 dbgs() <<
"LEV: Epilogue vectorization skipped due to opt for size.\n");
4375 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4376 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is not profitable for "
4388 Type *TCType = Legal->getWidestInductionType();
4389 const SCEV *RemainingIterations =
nullptr;
4390 unsigned MaxTripCount = 0;
4394 RemainingIterations =
4398 if (RemainingIterations->
isZero())
4408 << MaxTripCount <<
"\n");
4411 for (
auto &NextVF : ProfitableVFs) {
4418 if ((!NextVF.Width.isScalable() && MainLoopVF.
isScalable() &&
4420 (NextVF.Width.isScalable() &&
4422 (!NextVF.Width.isScalable() && !MainLoopVF.
isScalable() &&
4428 if (RemainingIterations && !NextVF.Width.isScalable()) {
4431 SE.
getConstant(TCType, NextVF.Width.getFixedValue()),
4432 RemainingIterations))
4436 if (Result.Width.isScalar() ||
4437 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4444 << Result.Width <<
"\n");
4448std::pair<unsigned, unsigned>
4450 unsigned MinWidth = -1U;
4451 unsigned MaxWidth = 8;
4457 for (
const auto &PhiDescriptorPair :
Legal->getReductionVars()) {
4461 MinWidth = std::min(
4465 MaxWidth = std::max(MaxWidth,
4470 MinWidth = std::min<unsigned>(
4471 MinWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4472 MaxWidth = std::max<unsigned>(
4473 MaxWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4476 return {MinWidth, MaxWidth};
4484 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
4498 if (!
Legal->isReductionVariable(PN))
4501 Legal->getRecurrenceDescriptor(PN);
4511 T = ST->getValueOperand()->getType();
4514 "Expected the load/store/recurrence type to be sized");
4538 if (!CM.isScalarEpilogueAllowed())
4543 LLVM_DEBUG(
dbgs() <<
"LV: Preference for VP intrinsics indicated. "
4544 "Unroll factor forced to be 1.\n");
4549 if (!Legal->isSafeForAnyVectorWidth())
4558 const bool HasReductions =
4564 if (LoopCost == 0) {
4566 LoopCost = CM.expectedCost(VF);
4568 LoopCost = cost(Plan, VF);
4569 assert(LoopCost.
isValid() &&
"Expected to have chosen a VF with valid cost");
4580 for (
auto &Pair : R.MaxLocalUsers) {
4581 Pair.second = std::max(Pair.second, 1U);
4595 unsigned IC = UINT_MAX;
4597 for (
const auto &Pair : R.MaxLocalUsers) {
4598 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4601 << TTI.getRegisterClassName(Pair.first)
4602 <<
" register class\n");
4610 unsigned MaxLocalUsers = Pair.second;
4611 unsigned LoopInvariantRegs = 0;
4612 if (R.LoopInvariantRegs.contains(Pair.first))
4613 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4615 unsigned TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4619 TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4620 std::max(1U, (MaxLocalUsers - 1)));
4623 IC = std::min(IC, TmpIC);
4627 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4643 if (BestKnownTC && (BestKnownTC->isFixed() || VF.
isScalable())) {
4645 unsigned AvailableTC =
4651 if (CM.requiresScalarEpilogue(VF.
isVector()))
4654 unsigned InterleaveCountLB =
bit_floor(std::max(
4655 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4669 unsigned InterleaveCountUB =
bit_floor(std::max(
4670 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4671 MaxInterleaveCount = InterleaveCountLB;
4673 if (InterleaveCountUB != InterleaveCountLB) {
4674 unsigned TailTripCountUB =
4675 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4676 unsigned TailTripCountLB =
4677 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4680 if (TailTripCountUB == TailTripCountLB)
4681 MaxInterleaveCount = InterleaveCountUB;
4689 MaxInterleaveCount = InterleaveCountLB;
4693 assert(MaxInterleaveCount > 0 &&
4694 "Maximum interleave count must be greater than 0");
4698 if (IC > MaxInterleaveCount)
4699 IC = MaxInterleaveCount;
4702 IC = std::max(1u, IC);
4704 assert(IC > 0 &&
"Interleave count must be greater than 0.");
4708 if (VF.
isVector() && HasReductions) {
4709 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving because of reductions.\n");
4717 bool ScalarInterleavingRequiresPredication =
4719 return Legal->blockNeedsPredication(BB);
4721 bool ScalarInterleavingRequiresRuntimePointerCheck =
4722 (VF.
isScalar() && Legal->getRuntimePointerChecking()->Need);
4727 <<
"LV: IC is " << IC <<
'\n'
4728 <<
"LV: VF is " << VF <<
'\n');
4729 const bool AggressivelyInterleaveReductions =
4730 TTI.enableAggressiveInterleaving(HasReductions);
4731 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4732 !ScalarInterleavingRequiresPredication && LoopCost <
SmallLoopCost) {
4741 unsigned NumStores = 0;
4742 unsigned NumLoads = 0;
4756 if (
unsigned StoreOps = InterleaveR->getNumStoreOperands())
4757 NumStores += StoreOps;
4759 NumLoads += InterleaveR->getNumDefinedValues();
4774 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4775 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4781 bool HasSelectCmpReductions =
4785 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4786 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4787 RedR->getRecurrenceKind()) ||
4788 RecurrenceDescriptor::isFindIVRecurrenceKind(
4789 RedR->getRecurrenceKind()));
4791 if (HasSelectCmpReductions) {
4792 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving select-cmp reductions.\n");
4801 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4802 bool HasOrderedReductions =
4805 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4807 return RedR && RedR->isOrdered();
4809 if (HasOrderedReductions) {
4811 dbgs() <<
"LV: Not interleaving scalar ordered reductions.\n");
4816 SmallIC = std::min(SmallIC,
F);
4817 StoresIC = std::min(StoresIC,
F);
4818 LoadsIC = std::min(LoadsIC,
F);
4822 std::max(StoresIC, LoadsIC) > SmallIC) {
4824 dbgs() <<
"LV: Interleaving to saturate store or load ports.\n");
4825 return std::max(StoresIC, LoadsIC);
4830 if (VF.
isScalar() && AggressivelyInterleaveReductions) {
4834 return std::max(IC / 2, SmallIC);
4837 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving to reduce branch cost.\n");
4843 if (AggressivelyInterleaveReductions) {
4852bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(
Instruction *
I,
4863 "Expecting a scalar emulated instruction");
4876 if (InstsToScalarize.contains(VF) ||
4877 PredicatedBBsAfterVectorization.contains(VF))
4883 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
4893 ScalarCostsTy ScalarCosts;
4900 !useEmulatedMaskMemRefHack(&
I, VF) &&
4901 computePredInstDiscount(&
I, ScalarCosts, VF) >= 0) {
4902 for (
const auto &[
I, IC] : ScalarCosts)
4903 ScalarCostsVF.
insert({
I, IC});
4906 for (
const auto &[
I,
Cost] : ScalarCosts) {
4908 if (!CI || !CallWideningDecisions.contains({CI, VF}))
4911 CallWideningDecisions[{CI, VF}].Cost =
Cost;
4915 PredicatedBBsAfterVectorization[VF].insert(BB);
4917 if (Pred->getSingleSuccessor() == BB)
4918 PredicatedBBsAfterVectorization[VF].insert(Pred);
4927 "Instruction marked uniform-after-vectorization will be predicated");
4945 if (!
I->hasOneUse() || PredInst->
getParent() !=
I->getParent() ||
4964 for (
Use &U :
I->operands())
4977 while (!Worklist.
empty()) {
4981 if (ScalarCosts.contains(
I))
5004 ScalarCost +=
TTI.getScalarizationOverhead(
5017 for (Use &U :
I->operands())
5020 "Instruction has non-scalar type");
5021 if (CanBeScalarized(J))
5023 else if (needsExtract(J, VF)) {
5026 ScalarCost +=
TTI.getScalarizationOverhead(
5039 Discount += VectorCost - ScalarCost;
5040 ScalarCosts[
I] = ScalarCost;
5056 ValuesToIgnoreForVF);
5063 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5076 LLVM_DEBUG(
dbgs() <<
"LV: Found an estimated cost of " <<
C <<
" for VF "
5077 << VF <<
" For instruction: " <<
I <<
'\n');
5105 const Loop *TheLoop) {
5113 auto *SE = PSE.
getSE();
5114 unsigned NumOperands = Gep->getNumOperands();
5115 for (
unsigned Idx = 1; Idx < NumOperands; ++Idx) {
5116 Value *Opd = Gep->getOperand(Idx);
5118 !
Legal->isInductionVariable(Opd))
5127LoopVectorizationCostModel::getMemInstScalarizationCost(
Instruction *
I,
5130 "Scalarization cost of instruction implies vectorization.");
5135 auto *SE =
PSE.getSE();
5161 Cost += getScalarizationOverhead(
I, VF);
5172 Cost +=
TTI.getScalarizationOverhead(
5177 if (useEmulatedMaskMemRefHack(
I, VF))
5187LoopVectorizationCostModel::getConsecutiveMemOpCost(
Instruction *
I,
5193 int ConsecutiveStride =
Legal->isConsecutivePtr(ValTy,
Ptr);
5195 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5196 "Stride should be 1 or -1 for consecutive memory access");
5199 if (
Legal->isMaskRequired(
I)) {
5200 Cost +=
TTI.getMaskedMemoryOpCost(
I->getOpcode(), VectorTy, Alignment, AS,
5204 Cost +=
TTI.getMemoryOpCost(
I->getOpcode(), VectorTy, Alignment, AS,
5208 bool Reverse = ConsecutiveStride < 0;
5216LoopVectorizationCostModel::getUniformMemOpCost(
Instruction *
I,
5226 return TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5227 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
5234 bool IsLoopInvariantStoreValue =
Legal->isInvariant(
SI->getValueOperand());
5240 TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5241 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
CostKind);
5242 if (!IsLoopInvariantStoreValue)
5243 Cost +=
TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
5249LoopVectorizationCostModel::getGatherScatterCost(
Instruction *
I,
5260 return TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5261 TTI.getGatherScatterOpCost(
I->getOpcode(), VectorTy,
Ptr,
5262 Legal->isMaskRequired(
I), Alignment,
5267LoopVectorizationCostModel::getInterleaveGroupCost(
Instruction *
I,
5270 assert(Group &&
"Fail to get an interleaved access group.");
5277 unsigned InterleaveFactor = Group->getFactor();
5281 SmallVector<unsigned, 4> Indices;
5282 for (
unsigned IF = 0;
IF < InterleaveFactor;
IF++)
5283 if (Group->getMember(IF))
5287 bool UseMaskForGaps =
5291 InsertPos->
getOpcode(), WideVecTy, Group->getFactor(), Indices,
5295 if (Group->isReverse()) {
5298 "Reverse masked interleaved access not supported.");
5299 Cost += Group->getNumMembers() *
5306std::optional<InstructionCost>
5313 return std::nullopt;
5331 return std::nullopt;
5342 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5344 return std::nullopt;
5350 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5359 BaseCost =
TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5362 BaseCost =
TTI.getArithmeticReductionCost(
5370 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy,
CostKind);
5387 if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5393 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1) &&
5405 TTI.getCastInstrCost(Op0->
getOpcode(), MulType, ExtType,
5408 TTI.getArithmeticInstrCost(Instruction::Mul, MulType,
CostKind);
5410 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, MulType,
5418 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5419 return I == RetI ? RedCost : 0;
5421 !
TheLoop->isLoopInvariant(RedOp)) {
5430 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, ExtType,
5432 if (RedCost.
isValid() && RedCost < BaseCost + ExtCost)
5433 return I == RetI ? RedCost : 0;
5434 }
else if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5438 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1)) {
5457 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5463 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5464 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5465 ExtraExtCost =
TTI.getCastInstrCost(
5472 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5473 return I == RetI ? RedCost : 0;
5477 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5483 if (RedCost.
isValid() && RedCost < MulCost + BaseCost)
5484 return I == RetI ? RedCost : 0;
5488 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5492LoopVectorizationCostModel::getMemoryInstructionCost(
Instruction *
I,
5503 return TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5504 TTI.getMemoryOpCost(
I->getOpcode(), ValTy, Alignment, AS,
CostKind,
5511LoopVectorizationCostModel::getScalarizationOverhead(
Instruction *
I,
5528 Cost +=
TTI.getScalarizationOverhead(
5550 for (
auto *V : filterExtractingOperands(
Ops, VF))
5573 if (
Legal->isUniformMemOp(
I, VF)) {
5574 auto IsLegalToScalarize = [&]() {
5594 return TheLoop->isLoopInvariant(
SI.getValueOperand());
5606 IsLegalToScalarize() ? getUniformMemOpCost(&
I, VF)
5612 if (GatherScatterCost < ScalarizationCost)
5622 int ConsecutiveStride =
Legal->isConsecutivePtr(
5624 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5625 "Expected consecutive stride.");
5634 unsigned NumAccesses = 1;
5637 assert(Group &&
"Fail to get an interleaved access group.");
5643 NumAccesses = Group->getNumMembers();
5645 InterleaveCost = getInterleaveGroupCost(&
I, VF);
5650 ? getGatherScatterCost(&
I, VF) * NumAccesses
5654 getMemInstScalarizationCost(&
I, VF) * NumAccesses;
5660 if (InterleaveCost <= GatherScatterCost &&
5661 InterleaveCost < ScalarizationCost) {
5663 Cost = InterleaveCost;
5664 }
else if (GatherScatterCost < ScalarizationCost) {
5666 Cost = GatherScatterCost;
5669 Cost = ScalarizationCost;
5676 for (
unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5677 if (
auto *
I = Group->getMember(Idx)) {
5679 getMemInstScalarizationCost(
I, VF));
5695 if (
TTI.prefersVectorizedAddressing())
5704 if (PtrDef &&
TheLoop->contains(PtrDef) &&
5712 while (!Worklist.
empty()) {
5714 for (
auto &
Op :
I->operands())
5716 if ((InstOp->getParent() ==
I->getParent()) && !
isa<PHINode>(InstOp) &&
5717 AddrDefs.
insert(InstOp).second)
5721 for (
auto *
I : AddrDefs) {
5739 for (
unsigned I = 0;
I < Group->getFactor(); ++
I) {
5754 ForcedScalars[VF].insert(
I);
5761 "Trying to set a vectorization decision for a scalar VF");
5763 auto ForcedScalar = ForcedScalars.find(VF);
5778 for (
auto &ArgOp : CI->
args())
5787 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys,
CostKind);
5797 "Unexpected valid cost for scalarizing scalable vectors");
5804 if (VF.
isVector() && ((ForcedScalar != ForcedScalars.end() &&
5805 ForcedScalar->second.contains(CI)) ||
5813 bool MaskRequired =
Legal->isMaskRequired(CI);
5816 for (
Type *ScalarTy : ScalarTys)
5825 std::nullopt, *RedCost);
5836 if (Info.Shape.VF != VF)
5840 if (MaskRequired && !Info.isMasked())
5844 bool ParamsOk =
true;
5846 switch (Param.ParamKind) {
5852 if (!
PSE.getSE()->isLoopInvariant(
PSE.getSCEV(ScalarParam),
5889 VectorCost =
TTI.getCallInstrCost(
nullptr, RetTy, Tys,
CostKind);
5900 if (VectorCost <=
Cost) {
5922 return !OpI || !
TheLoop->contains(OpI) ||
5926 [
this](
Value *
Op) { return shouldConsiderInvariant(Op); }));
5938 return InstsToScalarize[VF][
I];
5941 auto ForcedScalar = ForcedScalars.find(VF);
5942 if (VF.
isVector() && ForcedScalar != ForcedScalars.end()) {
5943 auto InstSet = ForcedScalar->second;
5944 if (InstSet.count(
I))
5949 Type *RetTy =
I->getType();
5952 auto *SE =
PSE.getSE();
5956 [[maybe_unused]]
auto HasSingleCopyAfterVectorization =
5961 auto Scalarized = InstsToScalarize.find(VF);
5962 assert(Scalarized != InstsToScalarize.end() &&
5963 "VF not yet analyzed for scalarization profitability");
5964 return !Scalarized->second.count(
I) &&
5966 auto *UI = cast<Instruction>(U);
5967 return !Scalarized->second.count(UI);
5976 assert(
I->getOpcode() == Instruction::GetElementPtr ||
5977 I->getOpcode() == Instruction::PHI ||
5978 (
I->getOpcode() == Instruction::BitCast &&
5979 I->getType()->isPointerTy()) ||
5980 HasSingleCopyAfterVectorization(
I, VF));
5986 !
TTI.getNumberOfParts(VectorTy))
5990 switch (
I->getOpcode()) {
5991 case Instruction::GetElementPtr:
5997 case Instruction::Br: {
6004 bool ScalarPredicatedBB =
false;
6007 (PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(0)) ||
6008 PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(1))) &&
6010 ScalarPredicatedBB =
true;
6012 if (ScalarPredicatedBB) {
6020 TTI.getScalarizationOverhead(
6028 return TTI.getCFInstrCost(Instruction::Br,
CostKind);
6036 case Instruction::Switch: {
6038 return TTI.getCFInstrCost(Instruction::Switch,
CostKind);
6040 return Switch->getNumCases() *
6041 TTI.getCmpSelInstrCost(
6043 toVectorTy(Switch->getCondition()->getType(), VF),
6047 case Instruction::PHI: {
6064 Type *ResultTy = Phi->getType();
6070 auto *Phi = dyn_cast<PHINode>(U);
6071 if (Phi && Phi->getParent() == TheLoop->getHeader())
6076 auto &ReductionVars =
Legal->getReductionVars();
6077 auto Iter = ReductionVars.find(HeaderUser);
6078 if (Iter != ReductionVars.end() &&
6080 Iter->second.getRecurrenceKind()))
6083 return (Phi->getNumIncomingValues() - 1) *
6084 TTI.getCmpSelInstrCost(
6085 Instruction::Select,
toVectorTy(ResultTy, VF),
6095 Intrinsic::vp_merge,
toVectorTy(Phi->getType(), VF),
6096 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6100 return TTI.getCFInstrCost(Instruction::PHI,
CostKind);
6102 case Instruction::UDiv:
6103 case Instruction::SDiv:
6104 case Instruction::URem:
6105 case Instruction::SRem:
6109 ScalarCost : SafeDivisorCost;
6113 case Instruction::Add:
6114 case Instruction::Sub: {
6115 auto Info =
Legal->getHistogramInfo(
I);
6122 if (!RHS || RHS->getZExtValue() != 1)
6124 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6128 Type *ScalarTy =
I->getType();
6132 {PtrTy, ScalarTy, MaskTy});
6135 return TTI.getIntrinsicInstrCost(ICA,
CostKind) + MulCost +
6136 TTI.getArithmeticInstrCost(
I->getOpcode(), VectorTy,
CostKind);
6140 case Instruction::FAdd:
6141 case Instruction::FSub:
6142 case Instruction::Mul:
6143 case Instruction::FMul:
6144 case Instruction::FDiv:
6145 case Instruction::FRem:
6146 case Instruction::Shl:
6147 case Instruction::LShr:
6148 case Instruction::AShr:
6149 case Instruction::And:
6150 case Instruction::Or:
6151 case Instruction::Xor: {
6155 if (
I->getOpcode() == Instruction::Mul &&
6156 ((
TheLoop->isLoopInvariant(
I->getOperand(0)) &&
6157 PSE.getSCEV(
I->getOperand(0))->isOne()) ||
6158 (
TheLoop->isLoopInvariant(
I->getOperand(1)) &&
6159 PSE.getSCEV(
I->getOperand(1))->isOne())))
6168 Value *Op2 =
I->getOperand(1);
6174 auto Op2Info =
TTI.getOperandInfo(Op2);
6180 return TTI.getArithmeticInstrCost(
6182 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6185 case Instruction::FNeg: {
6186 return TTI.getArithmeticInstrCost(
6188 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6189 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6190 I->getOperand(0),
I);
6192 case Instruction::Select: {
6197 const Value *Op0, *Op1;
6208 return TTI.getArithmeticInstrCost(
6210 VectorTy,
CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1},
I);
6213 Type *CondTy =
SI->getCondition()->getType();
6219 Pred = Cmp->getPredicate();
6220 return TTI.getCmpSelInstrCost(
I->getOpcode(), VectorTy, CondTy, Pred,
6221 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6222 {TTI::OK_AnyValue, TTI::OP_None},
I);
6224 case Instruction::ICmp:
6225 case Instruction::FCmp: {
6226 Type *ValTy =
I->getOperand(0)->getType();
6232 MinBWs[
I] == MinBWs[Op0AsInstruction]) &&
6233 "if both the operand and the compare are marked for "
6234 "truncation, they must have the same bitwidth");
6239 return TTI.getCmpSelInstrCost(
6242 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
I);
6244 case Instruction::Store:
6245 case Instruction::Load: {
6250 "CM decision should be taken at this point");
6257 return getMemoryInstructionCost(
I, VF);
6259 case Instruction::BitCast:
6260 if (
I->getType()->isPointerTy())
6263 case Instruction::ZExt:
6264 case Instruction::SExt:
6265 case Instruction::FPToUI:
6266 case Instruction::FPToSI:
6267 case Instruction::FPExt:
6268 case Instruction::PtrToInt:
6269 case Instruction::IntToPtr:
6270 case Instruction::SIToFP:
6271 case Instruction::UIToFP:
6272 case Instruction::Trunc:
6273 case Instruction::FPTrunc: {
6277 "Expected a load or a store!");
6303 unsigned Opcode =
I->getOpcode();
6306 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6309 CCH = ComputeCCH(Store);
6312 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6313 Opcode == Instruction::FPExt) {
6315 CCH = ComputeCCH(Load);
6323 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6324 Trunc->getSrcTy(), CCH,
CostKind, Trunc);
6331 Type *SrcScalarTy =
I->getOperand(0)->getType();
6343 (
I->getOpcode() == Instruction::ZExt ||
6344 I->getOpcode() == Instruction::SExt))
6348 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH,
CostKind,
I);
6350 case Instruction::Call:
6352 case Instruction::ExtractValue:
6354 case Instruction::Alloca:
6362 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6377 auto IsLiveOutDead = [
this, RequiresScalarEpilogue](
User *U) {
6378 return RequiresScalarEpilogue &&
6391 Legal->isInvariantAddressOfReduction(
SI->getPointerOperand())) {
6393 DeadInvariantStoreOps[
SI->getPointerOperand()].push_back(
6394 SI->getValueOperand());
6403 all_of(
I.users(), [
this, IsLiveOutDead](
User *U) {
6404 return VecValuesToIgnore.contains(U) ||
6405 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6414 if (Group->getInsertPos() == &
I)
6417 DeadInterleavePointerOps.
push_back(PointerOp);
6423 if (Br->isConditional())
6430 for (
unsigned I = 0;
I != DeadInterleavePointerOps.
size(); ++
I) {
6433 Instruction *UI = cast<Instruction>(U);
6434 return !VecValuesToIgnore.contains(U) &&
6435 (!isAccessInterleaved(UI) ||
6436 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6443 for (
const auto &[
_,
Ops] : DeadInvariantStoreOps)
6459 for (
unsigned I = 0;
I != DeadOps.
size(); ++
I) {
6471 if ((ThenEmpty && ElseEmpty) ||
6473 ElseBB->
phis().empty()) ||
6475 ThenBB->
phis().empty())) {
6487 return !VecValuesToIgnore.contains(U) &&
6488 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6496 [
this](
User *U) { return ValuesToIgnore.contains(U); }))
6505 for (
const auto &Reduction :
Legal->getReductionVars()) {
6512 for (
const auto &Induction :
Legal->getInductionVars()) {
6521 if (!InLoopReductions.empty())
6524 for (
const auto &Reduction :
Legal->getReductionVars()) {
6525 PHINode *Phi = Reduction.first;
6536 !
TTI.preferInLoopReduction(Kind, Phi->getType()))
6544 bool InLoop = !ReductionOperations.
empty();
6547 InLoopReductions.insert(Phi);
6550 for (
auto *
I : ReductionOperations) {
6551 InLoopReductionImmediateChains[
I] = LastChain;
6555 LLVM_DEBUG(
dbgs() <<
"LV: Using " << (InLoop ?
"inloop" :
"out of loop")
6556 <<
" reduction for phi: " << *Phi <<
"\n");
6569 unsigned WidestType;
6573 TTI.enableScalableVectorization()
6578 unsigned N =
RegSize.getKnownMinValue() / WidestType;
6589 if (!OrigLoop->isInnermost()) {
6599 <<
"overriding computed VF.\n");
6602 }
else if (UserVF.
isScalable() && !TTI.supportsScalableVectors() &&
6604 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing. Scalable VF requested, but "
6605 <<
"not supported by the target.\n");
6607 "Scalable vectorization requested but not supported by the target",
6608 "the scalable user-specified vectorization width for outer-loop "
6609 "vectorization cannot be used because the target does not support "
6610 "scalable vectors.",
6611 "ScalableVFUnfeasible", ORE, OrigLoop);
6616 "VF needs to be a power of two");
6618 <<
"VF " << VF <<
" to build VPlans.\n");
6628 return {VF, 0 , 0 };
6632 dbgs() <<
"LV: Not vectorizing. Inner loops aren't supported in the "
6633 "VPlan-native path.\n");
6638 assert(OrigLoop->isInnermost() &&
"Inner loop expected.");
6639 CM.collectValuesToIgnore();
6640 CM.collectElementTypesForWidening();
6647 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6651 <<
"LV: Invalidate all interleaved groups due to fold-tail by masking "
6652 "which requires masked-interleaved support.\n");
6653 if (CM.InterleaveInfo.invalidateGroups())
6657 CM.invalidateCostModelingDecisions();
6660 if (CM.foldTailByMasking())
6661 Legal->prepareToFoldTailByMasking();
6668 "UserVF ignored because it may be larger than the maximal safe VF",
6669 "InvalidUserVF", ORE, OrigLoop);
6672 "VF needs to be a power of two");
6675 CM.collectInLoopReductions();
6676 if (CM.selectUserVectorizationFactor(UserVF)) {
6678 buildVPlansWithVPRecipes(UserVF, UserVF);
6683 "InvalidCost", ORE, OrigLoop);
6696 CM.collectInLoopReductions();
6697 for (
const auto &VF : VFCandidates) {
6699 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6718 return CM.isUniformAfterVectorization(
I, VF);
6722 return CM.ValuesToIgnore.contains(UI) ||
6723 (IsVector &&
CM.VecValuesToIgnore.contains(UI)) ||
6743 for (
const auto &[
IV, IndDesc] :
Legal->getInductionVars()) {
6747 for (
unsigned I = 0;
I != IVInsts.
size();
I++) {
6748 for (
Value *
Op : IVInsts[
I]->operands()) {
6750 if (
Op ==
IV || !OpI || !OrigLoop->
contains(OpI) || !
Op->hasOneUse())
6756 for (User *U :
IV->users()) {
6769 if (TC == VF && !CM.foldTailByMasking())
6773 for (Instruction *IVInst : IVInsts) {
6778 dbgs() <<
"Cost of " << InductionCost <<
" for VF " << VF
6779 <<
": induction instruction " << *IVInst <<
"\n";
6781 Cost += InductionCost;
6791 CM.TheLoop->getExitingBlocks(Exiting);
6792 SetVector<Instruction *> ExitInstrs;
6794 for (BasicBlock *EB : Exiting) {
6799 ExitInstrs.
insert(CondI);
6803 for (
unsigned I = 0;
I != ExitInstrs.
size(); ++
I) {
6805 if (!OrigLoop->contains(CondI) ||
6810 dbgs() <<
"Cost of " << CondICost <<
" for VF " << VF
6811 <<
": exit condition instruction " << *CondI <<
"\n";
6817 any_of(OpI->users(), [&ExitInstrs,
this](User *U) {
6818 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
6819 !ExitInstrs.contains(cast<Instruction>(U));
6831 for (BasicBlock *BB : OrigLoop->blocks()) {
6835 if (BB == OrigLoop->getLoopLatch())
6837 auto BranchCost = CostCtx.
getLegacyCost(BB->getTerminator(), VF);
6844 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6850 dbgs() <<
"Cost of " << ForcedCost <<
" for VF " << VF
6851 <<
": forced scalar " << *ForcedScalar <<
"\n";
6855 for (
const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
6860 dbgs() <<
"Cost of " << ScalarCost <<
" for VF " << VF
6861 <<
": profitable to scalarize " << *Scalarized <<
"\n";
6871 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind);
6879 <<
" (Estimated cost per lane: ");
6881 double CostPerLane = double(
Cost.
getValue()) / EstimatedWidth;
6904 return &WidenMem->getIngredient();
6913 if (!VPI || VPI->getOpcode() != Instruction::Select ||
6914 VPI->getNumUsers() != 1)
6918 switch (WR->getOpcode()) {
6919 case Instruction::UDiv:
6920 case Instruction::SDiv:
6921 case Instruction::URem:
6922 case Instruction::SRem:
6935 auto *IG =
IR->getInterleaveGroup();
6936 unsigned NumMembers = IG->getNumMembers();
6937 for (
unsigned I = 0;
I != NumMembers; ++
I) {
6971 if (RepR->isSingleScalar() &&
6973 RepR->getUnderlyingInstr(), VF))
6976 if (
Instruction *UI = GetInstructionForCost(&R)) {
6981 if (
match(&R,
m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
6993 return any_of(TheLoop->
blocks(), [&SeenInstrs, &CostCtx,
6995 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
6998 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
6999 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
7001 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
7011 VPlan &FirstPlan = *VPlans[0];
7017 ?
"Reciprocal Throughput\n"
7019 ?
"Instruction Latency\n"
7022 ?
"Code Size and Latency\n"
7027 "More than a single plan/VF w/o any plan having scalar VF");
7031 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ScalarCost <<
".\n");
7036 if (ForceVectorization) {
7043 for (
auto &
P : VPlans) {
7045 P->vectorFactors().end());
7049 return CM.shouldConsiderRegPressureForVF(VF);
7053 for (
unsigned I = 0;
I < VFs.
size();
I++) {
7060 <<
"LV: Not considering vector loop of width " << VF
7061 <<
" because it will not generate any vector instructions.\n");
7067 <<
"LV: Not considering vector loop of width " << VF
7068 <<
" because it would cause replicated blocks to be generated,"
7069 <<
" which isn't allowed when optimizing for size.\n");
7076 if (CM.shouldConsiderRegPressureForVF(VF) &&
7078 LLVM_DEBUG(
dbgs() <<
"LV(REG): Not considering vector loop of width "
7079 << VF <<
" because it uses too many registers\n");
7083 if (isMoreProfitable(CurrentFactor, BestFactor,
P->hasScalarTail()))
7084 BestFactor = CurrentFactor;
7087 if (isMoreProfitable(CurrentFactor, ScalarFactor,
P->hasScalarTail()))
7088 ProfitableVFs.push_back(CurrentFactor);
7104 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind);
7105 precomputeCosts(BestPlan, BestFactor.
Width, CostCtx);
7112 BestFactor.
Width) ||
7115 " VPlan cost model and legacy cost model disagreed");
7117 "when vectorizing, the scalar cost must be computed.");
7127 "RdxResult must be ComputeFindIVResult");
7145 if (!EpiRedResult ||
7151 auto *EpiRedHeaderPhi =
7153 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7154 Value *MainResumeValue;
7158 "unexpected start recipe");
7159 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7161 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7163 [[maybe_unused]]
Value *StartV =
7164 EpiRedResult->getOperand(1)->getLiveInIRValue();
7167 "AnyOf expected to start with ICMP_NE");
7168 assert(Cmp->getOperand(1) == StartV &&
7169 "AnyOf expected to start by comparing main resume value to original "
7171 MainResumeValue = Cmp->getOperand(0);
7174 Value *SentinelV = EpiRedResult->getOperand(2)->getLiveInIRValue();
7176 Value *Cmp, *OrigResumeV, *CmpOp;
7177 [[maybe_unused]]
bool IsExpectedPattern =
7178 match(MainResumeValue,
7184 assert(IsExpectedPattern &&
"Unexpected reduction resume pattern");
7185 MainResumeValue = OrigResumeV;
7200 "Trying to execute plan with unsupported VF");
7202 "Trying to execute plan with unsupported UF");
7204 ++LoopsEarlyExitVectorized;
7211 bool HasBranchWeights =
7213 if (HasBranchWeights) {
7214 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7216 BestVPlan, BestVF, VScale);
7221 attachRuntimeChecks(BestVPlan, ILV.
RTChecks, HasBranchWeights);
7234 OrigLoop->getStartLoc(),
7235 OrigLoop->getHeader())
7236 <<
"Created vector loop never executes due to insufficient trip "
7256 BestVPlan, VectorPH, CM.foldTailByMasking(),
7257 CM.requiresScalarEpilogue(BestVF.
isVector()));
7268 assert(VectorizingEpilogue &&
"should only re-use the existing trip "
7269 "count during epilogue vectorization");
7273 OrigLoop->getParentLoop(),
7274 Legal->getWidestInductionType());
7276#ifdef EXPENSIVE_CHECKS
7277 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7288 "final VPlan is invalid");
7295 if (!Exit->hasPredecessors())
7317 MDNode *LID = OrigLoop->getLoopID();
7318 unsigned OrigLoopInvocationWeight = 0;
7319 std::optional<unsigned> OrigAverageTripCount =
7331 bool DisableRuntimeUnroll = !ILV.
RTChecks.hasChecks() && !BestVF.
isScalar();
7333 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7335 HeaderVPBB, BestVPlan, VectorizingEpilogue, LID, OrigAverageTripCount,
7336 OrigLoopInvocationWeight,
7338 DisableRuntimeUnroll);
7346 return ExpandedSCEVs;
7361 EPI.EpilogueIterationCountCheck =
7363 EPI.EpilogueIterationCountCheck->setName(
"iter.check");
7373 EPI.MainLoopIterationCountCheck =
7382 dbgs() <<
"Create Skeleton for epilogue vectorized loop (first pass)\n"
7383 <<
"Main Loop VF:" <<
EPI.MainLoopVF
7384 <<
", Main Loop UF:" <<
EPI.MainLoopUF
7385 <<
", Epilogue Loop VF:" <<
EPI.EpilogueVF
7386 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7392 dbgs() <<
"intermediate fn:\n"
7393 << *
OrigLoop->getHeader()->getParent() <<
"\n";
7399 assert(Bypass &&
"Expected valid bypass basic block.");
7403 VectorPH, ForEpilogue ?
EPI.EpilogueVF :
EPI.MainLoopVF,
7404 ForEpilogue ?
EPI.EpilogueUF :
EPI.MainLoopUF);
7408 TCCheckBlock->
setName(
"vector.main.loop.iter.check");
7434 return TCCheckBlock;
7448 VectorPH->
setName(
"vec.epilog.ph");
7451 "vec.epilog.iter.check",
true);
7455 VecEpilogueIterationCountCheck);
7456 AdditionalBypassBlock = VecEpilogueIterationCountCheck;
7460 assert(
EPI.MainLoopIterationCountCheck &&
EPI.EpilogueIterationCountCheck &&
7461 "expected this to be saved from the previous pass.");
7462 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
7463 VecEpilogueIterationCountCheck, VectorPH);
7465 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
7466 VecEpilogueIterationCountCheck, ScalarPH);
7473 VecEpilogueIterationCountCheck, ScalarPH);
7476 VecEpilogueIterationCountCheck, ScalarPH);
7478 DT->changeImmediateDominator(ScalarPH,
EPI.EpilogueIterationCountCheck);
7486 for (
PHINode *Phi : PhisInBlock) {
7488 Phi->replaceIncomingBlockWith(
7490 VecEpilogueIterationCountCheck);
7497 return EPI.EpilogueIterationCountCheck == IncB;
7500 Phi->removeIncomingValue(
EPI.EpilogueIterationCountCheck);
7502 Phi->removeIncomingValue(SCEVCheckBlock);
7504 Phi->removeIncomingValue(MemCheckBlock);
7515 "Expected trip count to have been saved in the first pass.");
7522 auto P =
Cost->requiresScalarEpilogue(
EPI.EpilogueVF.isVector())
7526 Value *CheckMinIters =
7529 EPI.EpilogueVF,
EPI.EpilogueUF),
7530 "min.epilog.iters.check");
7533 auto VScale =
Cost->getVScaleForTuning();
7534 unsigned MainLoopStep =
7536 unsigned EpilogueLoopStep =
7544 unsigned EstimatedSkipCount = std::min(MainLoopStep, EpilogueLoopStep);
7545 const uint32_t Weights[] = {EstimatedSkipCount,
7546 MainLoopStep - EstimatedSkipCount};
7555 Plan.setEntry(NewEntry);
7563 dbgs() <<
"Create Skeleton for epilogue vectorized loop (second pass)\n"
7564 <<
"Epilogue Loop VF:" <<
EPI.EpilogueVF
7565 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7571 dbgs() <<
"final fn:\n" << *
OrigLoop->getHeader()->getParent() <<
"\n";
7579 "Must be called with either a load or store");
7585 "CM decision should be taken at this point.");
7598 if (
Legal->isMaskRequired(
I))
7612 Ptr->getUnderlyingValue()->stripPointerCasts());
7624 -1, Flags,
I->getDebugLoc());
7627 GEP ?
GEP->getNoWrapFlags()
7631 Builder.insert(VectorPtr);
7635 return new VPWidenLoadRecipe(*Load,
Ptr, Mask, Consecutive,
Reverse,
7636 VPIRMetadata(*Load, LVer),
I->getDebugLoc());
7639 return new VPWidenStoreRecipe(*Store,
Ptr,
Operands[0], Mask, Consecutive,
7640 Reverse, VPIRMetadata(*Store, LVer),
7653 "step must be loop invariant");
7660 TruncI->getDebugLoc());
7664 IndDesc, Phi->getDebugLoc());
7672 if (
auto *
II = Legal->getIntOrFpInductionDescriptor(Phi))
7674 *PSE.getSE(), *OrigLoop);
7677 if (
auto *
II = Legal->getPointerInductionDescriptor(Phi)) {
7679 return new VPWidenPointerInductionRecipe(
7680 Phi,
Operands[0], Step, &Plan.getVFxUF(), *
II,
7682 [&](ElementCount VF) {
7683 return CM.isScalarAfterVectorization(Phi, VF);
7686 Phi->getDebugLoc());
7700 auto IsOptimizableIVTruncate =
7701 [&](
Instruction *
K) -> std::function<
bool(ElementCount)> {
7702 return [=](ElementCount VF) ->
bool {
7703 return CM.isOptimizableIVTruncate(K, VF);
7708 IsOptimizableIVTruncate(
I),
Range)) {
7711 const InductionDescriptor &
II = *Legal->getIntOrFpInductionDescriptor(Phi);
7712 VPValue *
Start = Plan.getOrAddLiveIn(
II.getStartValue());
7723 [
this, CI](ElementCount VF) {
7724 return CM.isScalarWithPredication(CI, VF);
7732 if (
ID && (
ID == Intrinsic::assume ||
ID == Intrinsic::lifetime_end ||
7733 ID == Intrinsic::lifetime_start ||
ID == Intrinsic::sideeffect ||
7734 ID == Intrinsic::pseudoprobe ||
7735 ID == Intrinsic::experimental_noalias_scope_decl))
7741 bool ShouldUseVectorIntrinsic =
7743 [&](ElementCount VF) ->
bool {
7744 return CM.getCallWideningDecision(CI, VF).Kind ==
7748 if (ShouldUseVectorIntrinsic)
7749 return new VPWidenIntrinsicRecipe(*CI,
ID,
Ops, CI->
getType(),
7753 std::optional<unsigned> MaskPos;
7757 [&](ElementCount VF) ->
bool {
7772 LoopVectorizationCostModel::CallWideningDecision Decision =
7773 CM.getCallWideningDecision(CI, VF);
7783 if (ShouldUseVectorCall) {
7784 if (MaskPos.has_value()) {
7792 VPValue *
Mask =
nullptr;
7793 if (Legal->isMaskRequired(CI))
7796 Mask = Plan.getOrAddLiveIn(
7799 Ops.insert(
Ops.begin() + *MaskPos, Mask);
7803 return new VPWidenCallRecipe(CI, Variant,
Ops, CI->
getDebugLoc());
7811 !
isa<StoreInst>(
I) &&
"Instruction should have been handled earlier");
7814 auto WillScalarize = [
this,
I](ElementCount VF) ->
bool {
7815 return CM.isScalarAfterVectorization(
I, VF) ||
7816 CM.isProfitableToScalarize(
I, VF) ||
7817 CM.isScalarWithPredication(
I, VF);
7825 switch (
I->getOpcode()) {
7828 case Instruction::SDiv:
7829 case Instruction::UDiv:
7830 case Instruction::SRem:
7831 case Instruction::URem: {
7834 if (CM.isPredicatedInst(
I)) {
7838 Plan.getOrAddLiveIn(ConstantInt::get(
I->getType(), 1u,
false));
7839 auto *SafeRHS = Builder.createSelect(Mask,
Ops[1], One,
I->getDebugLoc());
7841 return new VPWidenRecipe(*
I,
Ops);
7845 case Instruction::Add:
7846 case Instruction::And:
7847 case Instruction::AShr:
7848 case Instruction::FAdd:
7849 case Instruction::FCmp:
7850 case Instruction::FDiv:
7851 case Instruction::FMul:
7852 case Instruction::FNeg:
7853 case Instruction::FRem:
7854 case Instruction::FSub:
7855 case Instruction::ICmp:
7856 case Instruction::LShr:
7857 case Instruction::Mul:
7858 case Instruction::Or:
7859 case Instruction::Select:
7860 case Instruction::Shl:
7861 case Instruction::Sub:
7862 case Instruction::Xor:
7863 case Instruction::Freeze: {
7869 ScalarEvolution &SE = *PSE.getSE();
7870 auto GetConstantViaSCEV = [
this, &SE](VPValue *
Op) {
7871 if (!
Op->isLiveIn())
7873 Value *
V =
Op->getUnderlyingValue();
7879 return Plan.getOrAddLiveIn(
C->getValue());
7882 if (
I->getOpcode() == Instruction::Mul)
7883 NewOps[0] = GetConstantViaSCEV(NewOps[0]);
7885 NewOps[1] = GetConstantViaSCEV(NewOps[1]);
7887 return new VPWidenRecipe(*
I, NewOps);
7889 case Instruction::ExtractValue: {
7893 assert(EVI->getNumIndices() == 1 &&
"Expected one extractvalue index");
7894 unsigned Idx = EVI->getIndices()[0];
7895 NewOps.push_back(Plan.getOrAddLiveIn(ConstantInt::get(I32Ty, Idx,
false)));
7896 return new VPWidenRecipe(*
I, NewOps);
7902VPRecipeBuilder::tryToWidenHistogram(
const HistogramInfo *HI,
7905 unsigned Opcode =
HI->Update->getOpcode();
7906 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7907 "Histogram update operation must be an Add or Sub");
7917 if (Legal->isMaskRequired(
HI->Store))
7920 return new VPHistogramRecipe(Opcode, HGramOps,
HI->Store->getDebugLoc());
7927 [&](
ElementCount VF) {
return CM.isUniformAfterVectorization(
I, VF); },
7930 bool IsPredicated = CM.isPredicatedInst(
I);
7938 case Intrinsic::assume:
7939 case Intrinsic::lifetime_start:
7940 case Intrinsic::lifetime_end:
7962 VPValue *BlockInMask =
nullptr;
7963 if (!IsPredicated) {
7967 LLVM_DEBUG(
dbgs() <<
"LV: Scalarizing and predicating:" << *
I <<
"\n");
7978 assert((
Range.Start.isScalar() || !IsUniform || !IsPredicated ||
7980 "Should not predicate a uniform recipe");
7991 PartialReductionChains;
7992 for (
const auto &[Phi, RdxDesc] : Legal->getReductionVars()) {
7993 getScaledReductions(Phi, RdxDesc.getLoopExitInstr(),
Range,
7994 PartialReductionChains);
8003 for (
const auto &[PartialRdx,
_] : PartialReductionChains)
8004 PartialReductionOps.
insert(PartialRdx.ExtendUser);
8006 auto ExtendIsOnlyUsedByPartialReductions =
8008 return all_of(Extend->users(), [&](
const User *U) {
8009 return PartialReductionOps.contains(U);
8015 for (
auto Pair : PartialReductionChains) {
8017 if (ExtendIsOnlyUsedByPartialReductions(Chain.
ExtendA) &&
8018 (!Chain.
ExtendB || ExtendIsOnlyUsedByPartialReductions(Chain.
ExtendB)))
8019 ScaledReductionMap.try_emplace(Chain.
Reduction, Pair.second);
8023bool VPRecipeBuilder::getScaledReductions(
8025 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
8033 Value *
Op = Update->getOperand(0);
8034 Value *PhiOp = Update->getOperand(1);
8042 if (getScaledReductions(
PHI, OpInst,
Range, Chains)) {
8043 PHI = Chains.rbegin()->first.Reduction;
8045 Op = Update->getOperand(0);
8046 PhiOp = Update->getOperand(1);
8054 using namespace llvm::PatternMatch;
8061 std::optional<unsigned> BinOpc;
8062 Type *ExtOpTypes[2] = {
nullptr};
8064 auto CollectExtInfo = [
this, &Exts,
8065 &ExtOpTypes](SmallVectorImpl<Value *> &
Ops) ->
bool {
8074 if (!CM.TheLoop->contains(Exts[
I]))
8092 if (!CollectExtInfo(
Ops))
8095 BinOpc = std::make_optional(ExtendUser->
getOpcode());
8099 if (!CollectExtInfo(
Ops))
8102 ExtendUser = Update;
8103 BinOpc = std::nullopt;
8111 PartialReductionChain Chain(RdxExitInstr, Exts[0], Exts[1], ExtendUser);
8113 TypeSize PHISize =
PHI->getType()->getPrimitiveSizeInBits();
8120 [&](ElementCount VF) {
8122 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
8123 PHI->getType(), VF, OpAExtend, OpBExtend, BinOpc, CM.CostKind);
8127 Chains.emplace_back(Chain, TargetScaleFactor);
8146 "Non-header phis should have been handled during predication");
8148 assert(
Operands.size() == 2 &&
"Must have 2 operands for header phis");
8149 if ((Recipe = tryToOptimizeInductionPHI(Phi,
Operands,
Range)))
8153 assert((Legal->isReductionVariable(Phi) ||
8154 Legal->isFixedOrderRecurrence(Phi)) &&
8155 "can only widen reductions and fixed-order recurrences here");
8157 if (Legal->isReductionVariable(Phi)) {
8160 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8163 unsigned ScaleFactor =
8167 CM.useOrderedReductions(RdxDesc), ScaleFactor);
8179 assert(!R->isPhi() &&
"only VPPhi nodes expected at this point");
8181 if (
isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate(
8194 if (
auto HistInfo = Legal->getHistogramInfo(
SI))
8195 return tryToWidenHistogram(*HistInfo,
Operands);
8203 if (!shouldWiden(Instr,
Range))
8218 return tryToWiden(Instr,
Operands);
8224 unsigned ScaleFactor) {
8226 "Unexpected number of operands for partial reduction");
8235 unsigned ReductionOpcode = Reduction->getOpcode();
8236 if (ReductionOpcode == Instruction::Sub) {
8237 auto *
const Zero = ConstantInt::get(Reduction->getType(), 0);
8239 Ops.push_back(Plan.getOrAddLiveIn(Zero));
8240 Ops.push_back(BinOp);
8243 ReductionOpcode = Instruction::Add;
8247 if (CM.blockNeedsPredicationForAnyReason(Reduction->getParent())) {
8248 assert((ReductionOpcode == Instruction::Add ||
8249 ReductionOpcode == Instruction::Sub) &&
8250 "Expected an ADD or SUB operation for predicated partial "
8251 "reductions (because the neutral element in the mask is zero)!");
8254 Plan.getOrAddLiveIn(ConstantInt::get(Reduction->getType(), 0));
8255 BinOp = Builder.createSelect(
Cond, BinOp, Zero, Reduction->getDebugLoc());
8258 ScaleFactor, Reduction);
8261void LoopVectorizationPlanner::buildVPlansWithVPRecipes(
ElementCount MinVF,
8270 OrigLoop, LI, DT, PSE.
getSE());
8275 LVer.prepareNoAliasMetadata();
8281 OrigLoop, *LI,
Legal->getWidestInductionType(),
8284 auto MaxVFTimes2 = MaxVF * 2;
8286 VFRange SubRange = {VF, MaxVFTimes2};
8287 if (
auto Plan = tryToBuildVPlanWithVPRecipes(
8288 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8293 *Plan, CM.getMinimalBitwidths());
8296 if (CM.foldTailWithEVL() && !HasScalarVF)
8298 *Plan, CM.getMaxSafeElements());
8300 VPlans.push_back(std::move(Plan));
8315 if (WideIntOrFp && WideIntOrFp->getTruncInst())
8322 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) {
8325 Start, VectorTC, Step);
8338 {EndValue, Start}, WideIV->
getDebugLoc(),
"bc.resume.val");
8339 return ResumePhiRecipe;
8354 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
8365 WideIVR, VectorPHBuilder, ScalarPHBuilder, TypeInfo,
8368 IVEndValues[WideIVR] = ResumePhi->getOperand(0);
8369 ScalarPhiIRI->addOperand(ResumePhi);
8376 "should only skip truncated wide inductions");
8384 auto *ResumeFromVectorLoop = VectorPhiR->getBackedgeValue();
8386 "Cannot handle loops with uncountable early exits");
8390 "vector.recur.extract");
8391 StringRef Name = IsFOR ?
"scalar.recur.init" :
"bc.merge.rdx";
8393 {ResumeFromVectorLoop, VectorPhiR->getStartValue()}, {}, Name);
8406 VPBuilder ScalarPHBuilder(ScalarPHVPBB);
8407 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
8419 "Cannot handle loops with uncountable early exits");
8491 for (
VPUser *U : FOR->users()) {
8505 {},
"vector.recur.extract.for.phi");
8511VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8514 using namespace llvm::VPlanPatternMatch;
8515 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8522 bool RequiresScalarEpilogueCheck =
8524 [
this](ElementCount VF) {
8525 return !CM.requiresScalarEpilogue(VF.
isVector());
8530 CM.foldTailByMasking());
8538 bool IVUpdateMayOverflow =
false;
8539 for (ElementCount VF :
Range)
8549 auto *IVInc = Plan->getVectorLoopRegion()
8550 ->getExitingBasicBlock()
8553 assert(
match(IVInc, m_VPInstruction<Instruction::Add>(
8555 "Did not find the canonical IV increment");
8568 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8569 auto ApplyIG = [IG,
this](ElementCount VF) ->
bool {
8571 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8576 "Unsupported interleave factor for scalable vectors");
8581 InterleaveGroups.
insert(IG);
8588 *Plan, CM.foldTailByMasking());
8594 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, PSE,
8595 Builder, BlockMaskCache, LVer);
8596 RecipeBuilder.collectScaledReductions(
Range);
8600 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8602 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8605 auto *MiddleVPBB = Plan->getMiddleBlock();
8609 DenseMap<VPValue *, VPValue *> Old2New;
8614 auto *UnderlyingValue = SingleDef->getUnderlyingValue();
8628 UnderlyingValue &&
"unsupported recipe");
8633 Builder.setInsertPoint(SingleDef);
8640 Legal->isInvariantAddressOfReduction(
SI->getPointerOperand())) {
8642 if (Legal->isInvariantStoreOfReduction(SI)) {
8644 new VPReplicateRecipe(SI,
R.operands(),
true ,
8645 nullptr , VPIRMetadata(*SI, LVer));
8646 Recipe->insertBefore(*MiddleVPBB, MBIP);
8648 R.eraseFromParent();
8652 VPRecipeBase *Recipe =
8653 RecipeBuilder.tryToCreateWidenRecipe(SingleDef,
Range);
8655 Recipe = RecipeBuilder.handleReplication(Instr,
R.operands(),
Range);
8657 RecipeBuilder.setRecipe(Instr, Recipe);
8663 Builder.insert(Recipe);
8670 "Unexpected multidef recipe");
8671 R.eraseFromParent();
8680 RecipeBuilder.updateBlockMaskCache(Old2New);
8681 for (VPValue *Old : Old2New.
keys())
8682 Old->getDefiningRecipe()->eraseFromParent();
8685 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
8686 "entry block must be set to a VPRegionBlock having a non-empty entry "
8692 for (
const auto &[Phi,
ID] : Legal->getInductionVars()) {
8694 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
8697 VPWidenInductionRecipe *WideIV =
8699 VPRecipeBase *
R = RecipeBuilder.getRecipe(IVInc);
8704 DenseMap<VPValue *, VPValue *> IVEndValues;
8713 adjustRecipesForReductions(Plan, RecipeBuilder,
Range.Start);
8725 if (!CM.foldTailWithEVL()) {
8726 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind);
8731 for (ElementCount VF :
Range)
8733 Plan->setName(
"Initial VPlan");
8739 InterleaveGroups, RecipeBuilder,
8740 CM.isScalarEpilogueAllowed());
8744 Legal->getLAI()->getSymbolicStrides());
8746 auto BlockNeedsPredication = [
this](
BasicBlock *BB) {
8747 return Legal->blockNeedsPredication(BB);
8750 BlockNeedsPredication);
8762 bool WithoutRuntimeCheck =
8765 WithoutRuntimeCheck);
8778 assert(!OrigLoop->isInnermost());
8782 OrigLoop, *LI, Legal->getWidestInductionType(),
8791 for (ElementCount VF :
Range)
8796 [
this](PHINode *
P) {
8797 return Legal->getIntOrFpInductionDescriptor(
P);
8804 DenseMap<VPBasicBlock *, VPValue *> BlockMaskCache;
8805 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, PSE,
8806 Builder, BlockMaskCache,
nullptr );
8807 for (
auto &R : Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8811 RecipeBuilder.setRecipe(HeaderR->getUnderlyingInstr(), HeaderR);
8813 DenseMap<VPValue *, VPValue *> IVEndValues;
8835void LoopVectorizationPlanner::adjustRecipesForReductions(
8837 using namespace VPlanPatternMatch;
8838 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8840 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8843 for (VPRecipeBase &R : Header->phis()) {
8845 if (!PhiR || !PhiR->isInLoop() || (MinVF.
isScalar() && !PhiR->isOrdered()))
8852 "AnyOf and FindIV reductions are not allowed for in-loop reductions");
8855 SetVector<VPSingleDefRecipe *> Worklist;
8857 for (
unsigned I = 0;
I != Worklist.
size(); ++
I) {
8858 VPSingleDefRecipe *Cur = Worklist[
I];
8859 for (VPUser *U : Cur->
users()) {
8861 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
8862 assert((UserRecipe->getParent() == MiddleVPBB ||
8863 UserRecipe->getParent() == Plan->getScalarPreheader()) &&
8864 "U must be either in the loop region, the middle block or the "
8865 "scalar preheader.");
8868 Worklist.
insert(UserRecipe);
8879 VPSingleDefRecipe *PreviousLink = PhiR;
8880 for (VPSingleDefRecipe *CurrentLink :
drop_begin(Worklist)) {
8882 assert(Blend->getNumIncomingValues() == 2 &&
8883 "Blend must have 2 incoming values");
8884 if (Blend->getIncomingValue(0) == PhiR) {
8885 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
8887 assert(Blend->getIncomingValue(1) == PhiR &&
8888 "PhiR must be an operand of the blend");
8889 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
8894 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
8897 unsigned IndexOfFirstOperand;
8901 VPBasicBlock *LinkVPBB = CurrentLink->getParent();
8905 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
8908 CurrentLink->getOperand(2) == PreviousLink &&
8909 "expected a call where the previous link is the added operand");
8915 VPInstruction *FMulRecipe =
new VPInstruction(
8917 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
8919 LinkVPBB->
insert(FMulRecipe, CurrentLink->getIterator());
8922 CurrentLinkI->
getOpcode() == Instruction::Sub) {
8923 Type *PhiTy = PhiR->getUnderlyingValue()->getType();
8924 auto *
Zero = Plan->getOrAddLiveIn(ConstantInt::get(PhiTy, 0));
8925 VPWidenRecipe *
Sub =
new VPWidenRecipe(
8926 Instruction::Sub, {
Zero, CurrentLink->getOperand(1)}, {},
8928 Sub->setUnderlyingValue(CurrentLinkI);
8929 LinkVPBB->
insert(
Sub, CurrentLink->getIterator());
8935 "need to have the compare of the select");
8939 "must be a select recipe");
8940 IndexOfFirstOperand = 1;
8943 "Expected to replace a VPWidenSC");
8944 IndexOfFirstOperand = 0;
8949 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
8950 ? IndexOfFirstOperand + 1
8951 : IndexOfFirstOperand;
8952 VecOp = CurrentLink->getOperand(VecOpId);
8953 assert(VecOp != PreviousLink &&
8954 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
8955 (VecOpId - IndexOfFirstOperand)) ==
8957 "PreviousLink must be the operand other than VecOp");
8960 VPValue *CondOp =
nullptr;
8961 if (CM.blockNeedsPredicationForAnyReason(CurrentLinkI->
getParent()))
8965 RecurrenceDescriptor RdxDesc = Legal->getRecurrenceDescriptor(
8971 auto *RedRecipe =
new VPReductionRecipe(
8972 Kind, FMFs, CurrentLinkI, PreviousLink, VecOp, CondOp,
8979 RedRecipe->insertBefore(&*std::prev(std::prev(LinkVPBB->
end())));
8983 CurrentLink->replaceAllUsesWith(RedRecipe);
8985 PreviousLink = RedRecipe;
8989 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->
end())));
8991 for (VPRecipeBase &R :
8992 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8997 const RecurrenceDescriptor &RdxDesc = Legal->getRecurrenceDescriptor(
9008 if (!PhiR->
isInLoop() && CM.foldTailByMasking() &&
9011 std::optional<FastMathFlags> FMFs =
9016 Builder.createSelect(
Cond, OrigExitingVPV, PhiR, {},
"", FMFs);
9017 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U,
unsigned) {
9026 if (CM.usePredicatedReductionSelect())
9037 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
9043 VPInstruction *FinalReductionResult;
9044 VPBuilder::InsertPointGuard Guard(Builder);
9045 Builder.setInsertPoint(MiddleVPBB, IP);
9050 FinalReductionResult =
9055 FinalReductionResult =
9057 {PhiR,
Start, NewExitingVPV}, ExitDL);
9063 FinalReductionResult =
9065 {PhiR, NewExitingVPV},
Flags, ExitDL);
9072 assert(!PhiR->
isInLoop() &&
"Unexpected truncated inloop reduction!");
9074 "Unexpected truncated min-max recurrence!");
9077 new VPWidenCastRecipe(Instruction::Trunc, NewExitingVPV, RdxTy);
9079 RdxDesc.
isSigned() ? Instruction::SExt : Instruction::ZExt;
9080 auto *Extnd =
new VPWidenCastRecipe(ExtendOpc, Trunc, PhiTy);
9081 Trunc->insertAfter(NewExitingVPV->getDefiningRecipe());
9082 Extnd->insertAfter(Trunc);
9084 PhiR->
setOperand(1, Extnd->getVPSingleValue());
9089 FinalReductionResult =
9090 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
9095 for (
auto *U :
to_vector(OrigExitingVPV->users())) {
9097 if (FinalReductionResult == U || Parent->getParent())
9099 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
9110 return isa<VPWidenSelectRecipe>(U) ||
9111 (isa<VPReplicateRecipe>(U) &&
9112 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
9113 Instruction::Select);
9118 if (VPRecipeBase *CmpR =
Cmp->getDefiningRecipe())
9120 Builder.setInsertPoint(
Select);
9124 if (
Select->getOperand(1) == PhiR)
9125 Cmp = Builder.createNot(Cmp);
9126 VPValue *
Or = Builder.createOr(PhiR, Cmp);
9127 Select->getVPSingleValue()->replaceAllUsesWith(
Or);
9133 OrigLoop->getHeader()->getContext())));
9148 VPBuilder PHBuilder(Plan->getVectorPreheader());
9149 VPValue *Iden = Plan->getOrAddLiveIn(
9152 unsigned ScaleFactor =
9156 auto *ScaleFactorVPV =
9157 Plan->getOrAddLiveIn(ConstantInt::get(I32Ty, ScaleFactor));
9158 VPValue *StartV = PHBuilder.createNaryOp(
9166 for (VPRecipeBase *R : ToDelete)
9167 R->eraseFromParent();
9172void LoopVectorizationPlanner::attachRuntimeChecks(
9173 VPlan &Plan, GeneratedRTChecks &RTChecks,
bool HasBranchWeights)
const {
9174 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
9175 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
9176 assert((!CM.OptForSize ||
9178 "Cannot SCEV check stride or overflow when optimizing for size");
9182 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
9183 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
9187 "Runtime checks are not supported for outer loops yet");
9189 if (CM.OptForSize) {
9192 "Cannot emit memory checks when optimizing for size, unless forced "
9195 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationCodeSize",
9196 OrigLoop->getStartLoc(),
9197 OrigLoop->getHeader())
9198 <<
"Code-size may be reduced by not forcing "
9199 "vectorization, or by source-code modifications "
9200 "eliminating the need for runtime checks "
9201 "(e.g., adding 'restrict').";
9215 bool IsIndvarOverflowCheckNeededForVF =
9216 VF.
isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
9218 CM.getTailFoldingStyle() !=
9225 Plan, VF, UF, MinProfitableTripCount,
9226 CM.requiresScalarEpilogue(VF.
isVector()), CM.foldTailByMasking(),
9227 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
9228 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(),
9233 assert(!State.Lane &&
"VPDerivedIVRecipe being replicated.");
9238 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
9246 State.set(
this, DerivedIV,
VPLane(0));
9292 if (
TTI->preferPredicateOverEpilogue(&TFI))
9311 LLVM_DEBUG(
dbgs() <<
"LV: cannot compute the outer-loop trip count\n");
9315 Function *
F = L->getHeader()->getParent();
9321 LoopVectorizationCostModel CM(
SEL, L, PSE, LI, LVL, *
TTI, TLI, DB, AC, ORE,
F,
9322 &Hints, IAI, PSI, BFI);
9326 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *
TTI, LVL, CM, IAI, PSE, Hints,
9346 GeneratedRTChecks Checks(PSE, DT, LI,
TTI,
F->getDataLayout(), CM.
CostKind);
9348 BFI, PSI, Checks, BestPlan);
9350 << L->getHeader()->getParent()->getName() <<
"\"\n");
9372 if (S->getValueOperand()->getType()->isFloatTy())
9382 while (!Worklist.
empty()) {
9384 if (!L->contains(
I))
9386 if (!Visited.
insert(
I).second)
9396 I->getDebugLoc(), L->getHeader())
9397 <<
"floating point conversion changes vector width. "
9398 <<
"Mixed floating point precision requires an up/down "
9399 <<
"cast that will negatively impact performance.";
9402 for (
Use &
Op :
I->operands())
9418 for (
auto *PredVPBB : ExitVPBB->getPredecessors()) {
9424 << PredVPBB->getName() <<
":\n");
9425 Cost += PredVPBB->cost(VF, CostCtx);
9444 std::optional<unsigned> VScale) {
9460 <<
"LV: Interleaving only is not profitable due to runtime checks\n");
9519 uint64_t MinTC = std::max(MinTC1, MinTC2);
9521 MinTC =
alignTo(MinTC, IntVF);
9525 dbgs() <<
"LV: Minimum required TC for runtime checks to be profitable:"
9532 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is not beneficial: expected "
9533 "trip count < minimum profitable VF ("
9544 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9546 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9567 if (EpiWidenedPhis.
contains(&VPIRInst->getIRPhi()))
9586 auto AddFreezeForFindLastIVReductions = [](
VPlan &Plan,
9587 bool UpdateResumePhis) {
9593 VPValue *OrigStart = VPI->getOperand(1);
9597 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {},
"fr");
9599 if (UpdateResumePhis)
9605 AddFreezeForFindLastIVReductions(MainPlan,
true);
9606 AddFreezeForFindLastIVReductions(EpiPlan,
false);
9613 auto ResumePhiIter =
9615 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9618 VPPhi *ResumePhi =
nullptr;
9619 if (ResumePhiIter == MainScalarPH->
phis().
end()) {
9623 "vec.epilog.resume.val");
9626 if (MainScalarPH->
begin() == MainScalarPH->
end())
9628 else if (&*MainScalarPH->
begin() != ResumePhi)
9640 const SCEV2ValueTy &ExpandedSCEVs,
9644 Header->
setName(
"vec.epilog.vector.body");
9658 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9663 "Must only have a single non-zero incoming value");
9675 [](
Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9676 "all incoming values must be 0");
9682 return isa<VPScalarIVStepsRecipe>(U) ||
9683 isa<VPDerivedIVRecipe>(U) ||
9684 cast<VPRecipeBase>(U)->isScalarCast() ||
9685 cast<VPInstruction>(U)->getOpcode() ==
9688 "the canonical IV should only be used by its increment or "
9689 "ScalarIVSteps when resetting the start value");
9690 IV->setOperand(0, VPV);
9694 Value *ResumeV =
nullptr;
9699 auto *VPI = dyn_cast<VPInstruction>(U);
9701 (VPI->getOpcode() == VPInstruction::ComputeAnyOfResult ||
9702 VPI->getOpcode() == VPInstruction::ComputeReductionResult ||
9703 VPI->getOpcode() == VPInstruction::ComputeFindIVResult);
9706 ->getIncomingValueForBlock(L->getLoopPreheader());
9707 RecurKind RK = ReductionPhi->getRecurrenceKind();
9715 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9718 ToFrozen[StartV] =
cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9729 Value *Cmp = Builder.CreateICmpEQ(ResumeV, ToFrozen[StartV]);
9730 Value *
Sentinel = RdxResult->getOperand(2)->getLiveInIRValue();
9731 ResumeV = Builder.CreateSelect(Cmp,
Sentinel, ResumeV);
9737 "unexpected start value");
9738 VPI->setOperand(0, StartVal);
9750 assert(ResumeV &&
"Must have a resume value");
9764 if (VPI && VPI->getOpcode() == Instruction::Freeze) {
9766 ToFrozen.
lookup(VPI->getOperand(0)->getLiveInIRValue())));
9781 ExpandR->eraseFromParent();
9791 const SCEV2ValueTy &ExpandedSCEVs,
Value *MainVectorTripCount,
9796 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9797 if (OrigPhi != OldInduction) {
9798 auto *BinOp =
II.getInductionBinOp();
9804 EndValueFromAdditionalBypass =
9806 II.getStartValue(), Step,
II.getKind(), BinOp);
9807 EndValueFromAdditionalBypass->
setName(
"ind.end");
9809 return EndValueFromAdditionalBypass;
9815 const SCEV2ValueTy &ExpandedSCEVs,
9816 Value *MainVectorTripCount) {
9821 if (Phi.getBasicBlockIndex(Pred) != -1)
9823 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9827 if (ScalarPH->hasPredecessors()) {
9830 for (
const auto &[R, IRPhi] :
9831 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9840 auto *Inc =
cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9842 IVPhi,
II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9845 Inc->setIncomingValueForBlock(BypassBlock, V);
9851 "VPlan-native path is not enabled. Only process inner loops.");
9854 << L->getHeader()->getParent()->getName() <<
"' from "
9855 << L->getLocStr() <<
"\n");
9860 dbgs() <<
"LV: Loop hints:"
9871 Function *
F = L->getHeader()->getParent();
9893 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Cannot prove legality.\n");
9900 "early exit is not enabled",
9901 "UncountableEarlyExitLoopsDisabled",
ORE, L);
9907 "faulting load is not supported",
9908 "PotentiallyFaultingLoadsNotSupported",
ORE, L);
9917 if (!L->isInnermost())
9921 assert(L->isInnermost() &&
"Inner loop expected.");
9924 bool UseInterleaved =
TTI->enableInterleavedAccessVectorization();
9938 [LoopLatch](
BasicBlock *BB) { return BB != LoopLatch; })) {
9940 "requiring a scalar epilogue is unsupported",
9941 "UncountableEarlyExitUnsupported",
ORE, L);
9954 if (ExpectedTC && ExpectedTC->isFixed() &&
9956 LLVM_DEBUG(
dbgs() <<
"LV: Found a loop with a very small trip count. "
9957 <<
"This loop is worth vectorizing only if no scalar "
9958 <<
"iteration overheads are incurred.");
9960 LLVM_DEBUG(
dbgs() <<
" But vectorizing was explicitly forced.\n");
9976 if (
F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9978 "Can't vectorize when the NoImplicitFloat attribute is used",
9979 "loop not vectorized due to NoImplicitFloat attribute",
9980 "NoImplicitFloat",
ORE, L);
9990 TTI->isFPVectorizationPotentiallyUnsafe()) {
9992 "Potentially unsafe FP op prevents vectorization",
9993 "loop not vectorized due to unsafe FP support.",
9994 "UnsafeFP",
ORE, L);
9999 bool AllowOrderedReductions;
10004 AllowOrderedReductions =
TTI->enableOrderedReductions();
10009 ExactFPMathInst->getDebugLoc(),
10010 ExactFPMathInst->getParent())
10011 <<
"loop not vectorized: cannot prove it is safe to reorder "
10012 "floating-point operations";
10014 LLVM_DEBUG(
dbgs() <<
"LV: loop not vectorized: cannot prove it is safe to "
10015 "reorder floating-point operations\n");
10021 LoopVectorizationCostModel CM(
SEL, L, PSE,
LI, &LVL, *
TTI,
TLI,
DB,
AC,
ORE,
10024 LoopVectorizationPlanner LVP(L,
LI,
DT,
TLI, *
TTI, &LVL, CM, IAI, PSE, Hints,
10032 LVP.
plan(UserVF, UserIC);
10039 GeneratedRTChecks Checks(PSE,
DT,
LI,
TTI,
F->getDataLayout(), CM.
CostKind);
10044 unsigned SelectedIC = std::max(IC, UserIC);
10053 if (Checks.getSCEVChecks().first &&
10054 match(Checks.getSCEVChecks().first,
m_One()))
10056 if (Checks.getMemRuntimeChecks().first &&
10057 match(Checks.getMemRuntimeChecks().first,
m_One()))
10062 bool ForceVectorization =
10066 if (!ForceVectorization &&
10072 DEBUG_TYPE,
"CantReorderMemOps", L->getStartLoc(),
10074 <<
"loop not vectorized: cannot prove it is safe to reorder "
10075 "memory operations";
10084 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10085 bool VectorizeLoop =
true, InterleaveLoop =
true;
10087 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is possible but not beneficial.\n");
10089 "VectorizationNotBeneficial",
10090 "the cost-model indicates that vectorization is not beneficial"};
10091 VectorizeLoop =
false;
10097 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring UserIC, because vectorization and "
10098 "interleaving should be avoided up front\n");
10099 IntDiagMsg = {
"InterleavingAvoided",
10100 "Ignoring UserIC, because interleaving was avoided up front"};
10101 InterleaveLoop =
false;
10102 }
else if (IC == 1 && UserIC <= 1) {
10106 "InterleavingNotBeneficial",
10107 "the cost-model indicates that interleaving is not beneficial"};
10108 InterleaveLoop =
false;
10110 IntDiagMsg.first =
"InterleavingNotBeneficialAndDisabled";
10111 IntDiagMsg.second +=
10112 " and is explicitly disabled or interleave count is set to 1";
10114 }
else if (IC > 1 && UserIC == 1) {
10116 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving is beneficial but is explicitly "
10118 IntDiagMsg = {
"InterleavingBeneficialButDisabled",
10119 "the cost-model indicates that interleaving is beneficial "
10120 "but is explicitly disabled or interleave count is set to 1"};
10121 InterleaveLoop =
false;
10127 if (!VectorizeLoop && InterleaveLoop && LVL.
hasHistograms()) {
10128 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving without vectorization due "
10129 <<
"to histogram operations.\n");
10131 "HistogramPreventsScalarInterleaving",
10132 "Unable to interleave without vectorization due to constraints on "
10133 "the order of histogram operations"};
10134 InterleaveLoop =
false;
10138 IC = UserIC > 0 ? UserIC : IC;
10142 if (!VectorizeLoop && !InterleaveLoop) {
10146 L->getStartLoc(), L->getHeader())
10147 << VecDiagMsg.second;
10151 L->getStartLoc(), L->getHeader())
10152 << IntDiagMsg.second;
10157 if (!VectorizeLoop && InterleaveLoop) {
10161 L->getStartLoc(), L->getHeader())
10162 << VecDiagMsg.second;
10164 }
else if (VectorizeLoop && !InterleaveLoop) {
10166 <<
") in " << L->getLocStr() <<
'\n');
10169 L->getStartLoc(), L->getHeader())
10170 << IntDiagMsg.second;
10172 }
else if (VectorizeLoop && InterleaveLoop) {
10174 <<
") in " << L->getLocStr() <<
'\n');
10180 using namespace ore;
10185 <<
"interleaved loop (interleaved count: "
10186 << NV(
"InterleaveCount", IC) <<
")";
10203 std::unique_ptr<VPlan> BestMainPlan(BestPlan.
duplicate());
10214 PSI, Checks, *BestMainPlan);
10216 *BestMainPlan, MainILV,
DT,
false);
10222 BFI,
PSI, Checks, BestEpiPlan);
10230 BestEpiPlan, LVL, ExpandedSCEVs,
10232 ++LoopsEpilogueVectorized;
10234 InnerLoopVectorizer LB(L, PSE,
LI,
DT,
TTI,
AC, VF.
Width, IC, &CM,
BFI,
PSI,
10248 assert(
DT->verify(DominatorTree::VerificationLevel::Fast) &&
10249 "DT not preserved correctly");
10264 if (!
TTI->getNumberOfRegisters(
TTI->getRegisterClassForType(
true)) &&
10268 bool Changed =
false, CFGChanged =
false;
10275 for (
const auto &L : *
LI)
10287 LoopsAnalyzed += Worklist.
size();
10290 while (!Worklist.
empty()) {
10333 if (
PSI &&
PSI->hasProfileSummary())
10336 if (!Result.MadeAnyChange)
10350 if (Result.MadeCFGChange) {
10366 OS, MapClassName2PassName);
10369 OS << (InterleaveOnlyWhenForced ?
"" :
"no-") <<
"interleave-forced-only;";
10370 OS << (VectorizeOnlyWhenForced ?
"" :
"no-") <<
"vectorize-forced-only;";
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static const char * VerboseDebug
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static void addScalarResumePhis(VPRecipeBuilder &Builder, VPlan &Plan, DenseMap< VPValue *, VPValue * > &IVEndValues)
Create resume phis in the scalar preheader for first-order recurrences, reductions and inductions,...
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB, VPlan *Plan=nullptr)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static VPInstruction * addResumePhiRecipeForInduction(VPWidenInductionRecipe *WideIV, VPBuilder &VectorPHBuilder, VPBuilder &ScalarPHBuilder, VPTypeAnalysis &TypeInfo, VPValue *VectorTC)
Create and return a ResumePhi for WideIV, unless it is truncated.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static cl::opt< bool > ConsiderRegPressure("vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden, cl::desc("Discard VFs if their register pressure is too high."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static void preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI)
Prepare Plan for vectorizing the epilogue loop.
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static VPWidenIntOrFpInductionRecipe * createWidenInductionRecipes(PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, const InductionDescriptor &IndDesc, VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop)
Creates a VPWidenIntOrFpInductionRecpipe for Phi.
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static void cse(BasicBlock *BB)
Perform cse of induction variable instructions.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void addExitUsersForFirstOrderRecurrences(VPlan &Plan, VFRange &Range)
Handle users in the exit block for first order reductions in the original exit block.
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
mir Rename Register Operands
This file implements a map that provides insertion order iteration.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
static const uint32_t IV[8]
A manager for alias analyses.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
uint64_t getZExtValue() const
Get zero extended value.
unsigned getActiveBits() const
Compute the number of active bits in the value.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
static DebugLoc getTemporary()
static DebugLoc getUnknown()
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Implements a dense probed hash-table based set.
Analysis pass which computes a DominatorTree.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
void printDebugTracesAtEnd() override
BasicBlock * getAdditionalBypassBlock() const
Return the additional bypass block which targets the scalar loop by skipping the epilogue loop after ...
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan)
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
BasicBlock * emitMinimumVectorEpilogueIterCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, BasicBlock *Insert)
Emits an iteration count bypass check after the main vector loop has finished to see if there are any...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Check, VPlan &Plan)
void printDebugTracesAtEnd() override
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
Common base class shared among various IRBuilders.
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
const SCEV * getStep() const
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
const SmallVectorImpl< Instruction * > & getCastInsts() const
Returns a reference to the type cast instructions in the induction update chain, that are redundant w...
Value * getStartValue() const
ElementCount MinProfitableTripCount
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
BlockFrequencyInfo * BFI
BFI and PSI are used to check for profile guided size optimizations.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks, VPlan &Plan)
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
bool hasPredStores() const
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
friend class LoopVectorizationPlanner
const Function * TheFunction
LoopVectorizationLegality * Legal
Vectorization legality.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool runtimeChecksRequired()
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
bool isScalarWithPredication(Instruction *I, ElementCount VF) const
Returns true if I is an instruction which requires predication and for which our chosen predication s...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF) const
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, const VPlan &Plan, bool VectorizingEpilogue, MDNode *OrigLoopID, std::optional< unsigned > OrigAverageTripCount, unsigned OrigLoopInvocationWeight, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void printPlans(raw_ostream &O)
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Instruction * getExactFPInst()
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
bool isScalableVectorizationDisabled() const
enum ForceKind getForce() const
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
void emitRemarkWithHints() const
Dumps all the hint information.
bool isPotentiallyUnsafe() const
ElementCount getWidth() const
@ FK_Enabled
Forcing enabled.
@ FK_Undefined
Not selected.
@ FK_Disabled
Forcing disabled.
unsigned getPredicate() const
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
unsigned getInterleave() const
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
This class implements a map that also provides access to all stored values in a deterministic order.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
Analysis providing profile information.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
Type * getRecurrenceType() const
Returns the type of the recurrence.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
TrackingVH< Value > getRecurrenceStartValue() const
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
void insert_range(Range &&R)
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
This class represents a truncation of integer types.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
A Use represents the edge between a Value definition and its users.
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
iterator_range< op_iterator > op_range
Value * getOperand(unsigned i) const
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRegionBlock * getEnclosingLoopRegion()
void insert(VPRecipeBase *Recipe, iterator InsertPt)
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
void setName(const Twine &newName)
size_t getNumSuccessors() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
size_t getNumPredecessors() const
VPBlockBase * getSinglePredecessor() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
VPlan-based builder utility analogous to IRBuilder.
VPDerivedIVRecipe * createDerivedIV(InductionDescriptor::InductionKind Kind, FPMathOperator *FPBinOp, VPValue *Start, VPValue *Current, VPValue *Step, const Twine &Name="")
Convert the input value Current to the corresponding value of an induction with Start and Step values...
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
VPInstruction * createScalarCast(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy, DebugLoc DL)
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
VPValue * getStartValue() const
A recipe representing a sequence of load -> update -> store as part of a histogram operation.
A special type of VPBasicBlock that wraps an existing IR basic block.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ ExtractPenultimateElement
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
unsigned getOpcode() const
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
A recipe for forming partial reductions.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPRecipeBase * tryToCreateWidenRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for R if one can be created within the given VF Range.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
VPValue * getVPValueOrAddLiveIn(Value *V)
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(Instruction *I, ArrayRef< VPValue * > Operands, VFRange &Range)
Build a VPReplicationRecipe for I using Operands.
VPRecipeBase * tryToCreatePartialReduction(Instruction *Reduction, ArrayRef< VPValue * > Operands, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
A recipe for handling reduction phis.
bool isInLoop() const
Returns true, if the phi is part of an in-loop reduction.
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
VPValue * getOperand(unsigned N) const
void addOperand(VPValue *Operand)
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void replaceAllUsesWith(VPValue *New)
user_iterator user_begin()
unsigned getNumUsers() const
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
Base class for widened induction (VPWidenIntOrFpInductionRecipe and VPWidenPointerInductionRecipe),...
VPValue * getStepValue()
Returns the step value of the induction.
const InductionDescriptor & getInductionDescriptor() const
Returns the induction descriptor for the recipe.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
A common base class for widening memory operations.
A recipe for widened phis.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
bool hasVF(ElementCount VF) const
VPBasicBlock * getEntry()
VPValue & getVectorTripCount()
The vector trip count.
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
bool hasUF(unsigned UF) const
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
bool hasScalarVFOnly() const
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the vector loop.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isNonZero() const
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr bool isZero() const
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ PredicateElseScalarEpilogue
@ PredicateOrDontVectorize
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t > m_scev_Mul(const Op0_t &Op0, const Op1_t &Op1)
bool match(const SCEV *S, const Pattern &P)
class_match< const SCEV > m_SCEV()
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastElement, Op0_t > m_ExtractLastElement(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
NodeAddr< PhiNode * > Phi
friend class Instruction
Iterator for Instructions in a `BasicBlock.
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
const SCEV * getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
FunctionAddr VTableAddr Count
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ Sub
Subtraction of integers.
@ AddChainWithSubs
A chain of adds and subs.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
cl::opt< bool > EnableVPlanNativePath
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
bool pred_empty(const BasicBlock *BB)
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
unsigned getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind)
A helper function that returns how much we should divide the cost of a predicated block by.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
std::unique_ptr< VPlan > VPlanPtr
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
BasicBlock * MainLoopIterationCountCheck
BasicBlock * EpilogueIterationCountCheck
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
std::optional< unsigned > MaskPos
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
TargetTransformInfo * TTI
Storage for information about made changes.
A chain of instructions that form a partial reduction.
Instruction * Reduction
The top-level binary operation that forms the reduction to a scalar after the loop body.
Instruction * ExtendA
The extension of each of the inner binary operation's operands.
A CRTP mix-in to automatically provide informational APIs needed for passes.
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A recipe for handling first-order recurrence phis.
A struct that represents some properties of the register usage of a loop.
A recipe for widening select instructions.
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks