Thanks to visit codestin.com
Credit goes to llvm.org

LLVM 22.0.0git
MachineBasicBlock.cpp
Go to the documentation of this file.
1//===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Collect the sequence of machine instructions for a basic block.
10//
11//===----------------------------------------------------------------------===//
12
14#include "llvm/ADT/STLExtras.h"
31#include "llvm/Config/llvm-config.h"
32#include "llvm/IR/BasicBlock.h"
34#include "llvm/MC/MCAsmInfo.h"
35#include "llvm/MC/MCContext.h"
36#include "llvm/Support/Debug.h"
39#include <algorithm>
40#include <cmath>
41using namespace llvm;
42
43#define DEBUG_TYPE "codegen"
44
46 "print-slotindexes",
47 cl::desc("When printing machine IR, annotate instructions and blocks with "
48 "SlotIndexes when available"),
49 cl::init(true), cl::Hidden);
50
51MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
52 : BB(B), Number(-1), xParent(&MF) {
53 Insts.Parent = this;
54 if (B)
55 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
56}
57
58MachineBasicBlock::~MachineBasicBlock() = default;
59
60/// Return the MCSymbol for this basic block.
62 if (!CachedMCSymbol) {
63 const MachineFunction *MF = getParent();
64 MCContext &Ctx = MF->getContext();
65
66 // We emit a non-temporary symbol -- with a descriptive name -- if it begins
67 // a section (with basic block sections). Otherwise we fall back to use temp
68 // label.
69 if (MF->hasBBSections() && isBeginSection()) {
70 SmallString<5> Suffix;
71 if (SectionID == MBBSectionID::ColdSectionID) {
72 Suffix += ".cold";
73 } else if (SectionID == MBBSectionID::ExceptionSectionID) {
74 Suffix += ".eh";
75 } else {
76 // For symbols that represent basic block sections, we add ".__part." to
77 // allow tools like symbolizers to know that this represents a part of
78 // the original function.
79 Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str();
80 }
81 CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix);
82 } else {
83 // If the block occurs as label in inline assembly, parsing the assembly
84 // needs an actual label name => set AlwaysEmit in these cases.
85 CachedMCSymbol = Ctx.createBlockSymbol(
86 "BB" + Twine(MF->getFunctionNumber()) + "_" + Twine(getNumber()),
87 /*AlwaysEmit=*/hasLabelMustBeEmitted());
88 }
89 }
90 return CachedMCSymbol;
91}
92
94 if (!CachedEHContMCSymbol) {
95 const MachineFunction *MF = getParent();
96 SmallString<128> SymbolName;
97 raw_svector_ostream(SymbolName)
98 << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber();
99 CachedEHContMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName);
100 }
101 return CachedEHContMCSymbol;
102}
103
105 if (!CachedEndMCSymbol) {
106 const MachineFunction *MF = getParent();
107 MCContext &Ctx = MF->getContext();
108 CachedEndMCSymbol = Ctx.createBlockSymbol(
109 "BB_END" + Twine(MF->getFunctionNumber()) + "_" + Twine(getNumber()),
110 /*AlwaysEmit=*/false);
111 }
112 return CachedEndMCSymbol;
113}
114
116 MBB.print(OS);
117 return OS;
118}
119
121 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
122}
123
124/// When an MBB is added to an MF, we need to update the parent pointer of the
125/// MBB, the MBB numbering, and any instructions in the MBB to be on the right
126/// operand list for registers.
127///
128/// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
129/// gets the next available unique MBB number. If it is removed from a
130/// MachineFunction, it goes back to being #-1.
133 MachineFunction &MF = *N->getParent();
134 N->Number = MF.addToMBBNumbering(N);
135
136 // Make sure the instructions have their operands in the reginfo lists.
138 for (MachineInstr &MI : N->instrs())
139 MI.addRegOperandsToUseLists(RegInfo);
140}
141
144 N->getParent()->removeFromMBBNumbering(N->Number);
145 N->Number = -1;
146}
147
148/// When we add an instruction to a basic block list, we update its parent
149/// pointer and add its operands from reg use/def lists if appropriate.
151 assert(!N->getParent() && "machine instruction already in a basic block");
152 N->setParent(Parent);
153
154 // Add the instruction's register operands to their corresponding
155 // use/def lists.
156 MachineFunction *MF = Parent->getParent();
157 N->addRegOperandsToUseLists(MF->getRegInfo());
158 MF->handleInsertion(*N);
159}
160
161/// When we remove an instruction from a basic block list, we update its parent
162/// pointer and remove its operands from reg use/def lists if appropriate.
164 assert(N->getParent() && "machine instruction not in a basic block");
165
166 // Remove from the use/def lists.
167 if (MachineFunction *MF = N->getMF()) {
168 MF->handleRemoval(*N);
169 N->removeRegOperandsFromUseLists(MF->getRegInfo());
170 }
171
172 N->setParent(nullptr);
173}
174
175/// When moving a range of instructions from one MBB list to another, we need to
176/// update the parent pointers and the use/def lists.
178 instr_iterator First,
179 instr_iterator Last) {
180 assert(Parent->getParent() == FromList.Parent->getParent() &&
181 "cannot transfer MachineInstrs between MachineFunctions");
182
183 // If it's within the same BB, there's nothing to do.
184 if (this == &FromList)
185 return;
186
187 assert(Parent != FromList.Parent && "Two lists have the same parent?");
188
189 // If splicing between two blocks within the same function, just update the
190 // parent pointers.
191 for (; First != Last; ++First)
192 First->setParent(Parent);
193}
194
196 assert(!MI->getParent() && "MI is still in a block!");
197 Parent->getParent()->deleteMachineInstr(MI);
198}
199
202 while (I != E && I->isPHI())
203 ++I;
204 assert((I == E || !I->isInsideBundle()) &&
205 "First non-phi MI cannot be inside a bundle!");
206 return I;
207}
208
212
213 iterator E = end();
214 while (I != E && (I->isPHI() || I->isPosition() ||
215 TII->isBasicBlockPrologue(*I)))
216 ++I;
217 // FIXME: This needs to change if we wish to bundle labels
218 // inside the bundle.
219 assert((I == E || !I->isInsideBundle()) &&
220 "First non-phi / non-label instruction is inside a bundle!");
221 return I;
222}
223
226 Register Reg, bool SkipPseudoOp) {
228
229 iterator E = end();
230 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
231 (SkipPseudoOp && I->isPseudoProbe()) ||
232 TII->isBasicBlockPrologue(*I, Reg)))
233 ++I;
234 // FIXME: This needs to change if we wish to bundle labels / dbg_values
235 // inside the bundle.
236 assert((I == E || !I->isInsideBundle()) &&
237 "First non-phi / non-label / non-debug "
238 "instruction is inside a bundle!");
239 return I;
240}
241
243 iterator B = begin(), E = end(), I = E;
244 while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
245 ; /*noop */
246 while (I != E && !I->isTerminator())
247 ++I;
248 return I;
249}
250
252 instr_iterator B = instr_begin(), E = instr_end(), I = E;
253 while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
254 ; /*noop */
255 while (I != E && !I->isTerminator())
256 ++I;
257 return I;
258}
259
261 return find_if(instrs(), [](auto &II) { return II.isTerminator(); });
262}
263
266 // Skip over begin-of-block dbg_value instructions.
267 return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp);
268}
269
272 // Skip over end-of-block dbg_value instructions.
274 while (I != B) {
275 --I;
276 // Return instruction that starts a bundle.
277 if (I->isDebugInstr() || I->isInsideBundle())
278 continue;
279 if (SkipPseudoOp && I->isPseudoProbe())
280 continue;
281 return I;
282 }
283 // The block is all debug values.
284 return end();
285}
286
288 for (const MachineBasicBlock *Succ : successors())
289 if (Succ->isEHPad())
290 return true;
291 return false;
292}
293
295 return getParent()->begin() == getIterator();
296}
297
298#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
302#endif
303
305 for (const MachineBasicBlock *Succ : successors()) {
306 if (Succ->isInlineAsmBrIndirectTarget())
307 return true;
308 }
309 return false;
310}
311
314 return false;
315 return true;
316}
317
319 if (const BasicBlock *LBB = getBasicBlock())
320 return LBB->hasName();
321 return false;
322}
323
325 if (const BasicBlock *LBB = getBasicBlock())
326 return LBB->getName();
327 else
328 return StringRef("", 0);
329}
330
331/// Return a hopefully unique identifier for this block.
333 std::string Name;
334 if (getParent())
335 Name = (getParent()->getName() + ":").str();
336 if (getBasicBlock())
337 Name += getBasicBlock()->getName();
338 else
339 Name += ("BB" + Twine(getNumber())).str();
340 return Name;
341}
342
344 bool IsStandalone) const {
345 const MachineFunction *MF = getParent();
346 if (!MF) {
347 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
348 << " is null\n";
349 return;
350 }
351 const Function &F = MF->getFunction();
352 const Module *M = F.getParent();
353 ModuleSlotTracker MST(M);
355 print(OS, MST, Indexes, IsStandalone);
356}
357
359 const SlotIndexes *Indexes,
360 bool IsStandalone) const {
361 const MachineFunction *MF = getParent();
362 if (!MF) {
363 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
364 << " is null\n";
365 return;
366 }
367
368 if (Indexes && PrintSlotIndexes)
369 OS << Indexes->getMBBStartIdx(this) << '\t';
370
372 OS << ":\n";
373
375 const MachineRegisterInfo &MRI = MF->getRegInfo();
377 bool HasLineAttributes = false;
378
379 // Print the preds of this block according to the CFG.
380 if (!pred_empty() && IsStandalone) {
381 if (Indexes) OS << '\t';
382 // Don't indent(2), align with previous line attributes.
383 OS << "; predecessors: ";
384 ListSeparator LS;
385 for (auto *Pred : predecessors())
386 OS << LS << printMBBReference(*Pred);
387 OS << '\n';
388 HasLineAttributes = true;
389 }
390
391 if (!succ_empty()) {
392 if (Indexes) OS << '\t';
393 // Print the successors
394 OS.indent(2) << "successors: ";
395 ListSeparator LS;
396 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
397 OS << LS << printMBBReference(**I);
398 if (!Probs.empty())
399 OS << '('
400 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
401 << ')';
402 }
403 if (!Probs.empty() && IsStandalone) {
404 // Print human readable probabilities as comments.
405 OS << "; ";
406 ListSeparator LS;
407 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
409 OS << LS << printMBBReference(**I) << '('
410 << format("%.2f%%",
411 rint(((double)BP.getNumerator() / BP.getDenominator()) *
412 100.0 * 100.0) /
413 100.0)
414 << ')';
415 }
416 }
417
418 OS << '\n';
419 HasLineAttributes = true;
420 }
421
422 if (!livein_empty() && MRI.tracksLiveness()) {
423 if (Indexes) OS << '\t';
424 OS.indent(2) << "liveins: ";
425
426 ListSeparator LS;
427 for (const auto &LI : liveins()) {
428 OS << LS << printReg(LI.PhysReg, TRI);
429 if (!LI.LaneMask.all())
430 OS << ":0x" << PrintLaneMask(LI.LaneMask);
431 }
432 HasLineAttributes = true;
433 }
434
435 if (HasLineAttributes)
436 OS << '\n';
437
438 bool IsInBundle = false;
439 for (const MachineInstr &MI : instrs()) {
440 if (Indexes && PrintSlotIndexes) {
441 if (Indexes->hasIndex(MI))
442 OS << Indexes->getInstructionIndex(MI);
443 OS << '\t';
444 }
445
446 if (IsInBundle && !MI.isInsideBundle()) {
447 OS.indent(2) << "}\n";
448 IsInBundle = false;
449 }
450
451 OS.indent(IsInBundle ? 4 : 2);
452 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
453 /*AddNewLine=*/false, &TII);
454
455 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
456 OS << " {";
457 IsInBundle = true;
458 }
459 OS << '\n';
460 }
461
462 if (IsInBundle)
463 OS.indent(2) << "}\n";
464
465 if (IrrLoopHeaderWeight && IsStandalone) {
466 if (Indexes) OS << '\t';
467 OS.indent(2) << "; Irreducible loop header weight: " << *IrrLoopHeaderWeight
468 << '\n';
469 }
470}
471
472/// Print the basic block's name as:
473///
474/// bb.{number}[.{ir-name}] [(attributes...)]
475///
476/// The {ir-name} is only printed when the \ref PrintNameIr flag is passed
477/// (which is the default). If the IR block has no name, it is identified
478/// numerically using the attribute syntax as "(%ir-block.{ir-slot})".
479///
480/// When the \ref PrintNameAttributes flag is passed, additional attributes
481/// of the block are printed when set.
482///
483/// \param printNameFlags Combination of \ref PrintNameFlag flags indicating
484/// the parts to print.
485/// \param moduleSlotTracker Optional ModuleSlotTracker. This method will
486/// incorporate its own tracker when necessary to
487/// determine the block's IR name.
488void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags,
489 ModuleSlotTracker *moduleSlotTracker) const {
490 os << "bb." << getNumber();
491 bool hasAttributes = false;
492
493 auto PrintBBRef = [&](const BasicBlock *bb) {
494 os << "%ir-block.";
495 if (bb->hasName()) {
496 os << bb->getName();
497 } else {
498 int slot = -1;
499
500 if (moduleSlotTracker) {
501 slot = moduleSlotTracker->getLocalSlot(bb);
502 } else if (bb->getParent()) {
503 ModuleSlotTracker tmpTracker(bb->getModule(), false);
504 tmpTracker.incorporateFunction(*bb->getParent());
505 slot = tmpTracker.getLocalSlot(bb);
506 }
507
508 if (slot == -1)
509 os << "<ir-block badref>";
510 else
511 os << slot;
512 }
513 };
514
515 if (printNameFlags & PrintNameIr) {
516 if (const auto *bb = getBasicBlock()) {
517 if (bb->hasName()) {
518 os << '.' << bb->getName();
519 } else {
520 hasAttributes = true;
521 os << " (";
522 PrintBBRef(bb);
523 }
524 }
525 }
526
527 if (printNameFlags & PrintNameAttributes) {
529 os << (hasAttributes ? ", " : " (");
530 os << "machine-block-address-taken";
531 hasAttributes = true;
532 }
533 if (isIRBlockAddressTaken()) {
534 os << (hasAttributes ? ", " : " (");
535 os << "ir-block-address-taken ";
536 PrintBBRef(getAddressTakenIRBlock());
537 hasAttributes = true;
538 }
539 if (isEHPad()) {
540 os << (hasAttributes ? ", " : " (");
541 os << "landing-pad";
542 hasAttributes = true;
543 }
545 os << (hasAttributes ? ", " : " (");
546 os << "inlineasm-br-indirect-target";
547 hasAttributes = true;
548 }
549 if (isEHFuncletEntry()) {
550 os << (hasAttributes ? ", " : " (");
551 os << "ehfunclet-entry";
552 hasAttributes = true;
553 }
554 if (getAlignment() != Align(1)) {
555 os << (hasAttributes ? ", " : " (");
556 os << "align " << getAlignment().value();
557 hasAttributes = true;
558 }
559 if (getSectionID() != MBBSectionID(0)) {
560 os << (hasAttributes ? ", " : " (");
561 os << "bbsections ";
562 switch (getSectionID().Type) {
564 os << "Exception";
565 break;
567 os << "Cold";
568 break;
569 default:
570 os << getSectionID().Number;
571 }
572 hasAttributes = true;
573 }
574 if (getBBID().has_value()) {
575 os << (hasAttributes ? ", " : " (");
576 os << "bb_id " << getBBID()->BaseID;
577 if (getBBID()->CloneID != 0)
578 os << " " << getBBID()->CloneID;
579 hasAttributes = true;
580 }
581 if (CallFrameSize != 0) {
582 os << (hasAttributes ? ", " : " (");
583 os << "call-frame-size " << CallFrameSize;
584 hasAttributes = true;
585 }
586 }
587
588 if (hasAttributes)
589 os << ')';
590}
591
593 bool /*PrintType*/) const {
594 OS << '%';
595 printName(OS, 0);
596}
597
599 LiveInVector::iterator I = find_if(
600 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
601 if (I == LiveIns.end())
602 return;
603
604 I->LaneMask &= ~LaneMask;
605 if (I->LaneMask.none())
606 LiveIns.erase(I);
607}
608
610 const MachineFunction *MF = getParent();
612 // Remove Reg and its subregs from live in set.
613 for (MCPhysReg S : TRI->subregs_inclusive(Reg))
614 removeLiveIn(S);
615
616 // Remove live-in bitmask in super registers as well.
617 for (MCPhysReg Super : TRI->superregs(Reg)) {
618 for (MCSubRegIndexIterator SRI(Super, TRI); SRI.isValid(); ++SRI) {
619 if (Reg == SRI.getSubReg()) {
620 unsigned SubRegIndex = SRI.getSubRegIndex();
621 LaneBitmask SubRegLaneMask = TRI->getSubRegIndexLaneMask(SubRegIndex);
622 removeLiveIn(Super, SubRegLaneMask);
623 break;
624 }
625 }
626 }
627}
628
631 // Get non-const version of iterator.
632 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
633 return LiveIns.erase(LI);
634}
635
638 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
639 return I != livein_end() && (I->LaneMask & LaneMask).any();
640}
641
643 llvm::sort(LiveIns,
644 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
645 return LI0.PhysReg < LI1.PhysReg;
646 });
647 // Liveins are sorted by physreg now we can merge their lanemasks.
648 LiveInVector::const_iterator I = LiveIns.begin();
649 LiveInVector::const_iterator J;
650 LiveInVector::iterator Out = LiveIns.begin();
651 for (; I != LiveIns.end(); ++Out, I = J) {
652 MCRegister PhysReg = I->PhysReg;
653 LaneBitmask LaneMask = I->LaneMask;
654 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
655 LaneMask |= J->LaneMask;
656 Out->PhysReg = PhysReg;
657 Out->LaneMask = LaneMask;
658 }
659 LiveIns.erase(Out, LiveIns.end());
660}
661
664 assert(getParent() && "MBB must be inserted in function");
665 assert(PhysReg.isPhysical() && "Expected physreg");
666 assert(RC && "Register class is required");
667 assert((isEHPad() || this == &getParent()->front()) &&
668 "Only the entry block and landing pads can have physreg live ins");
669
670 bool LiveIn = isLiveIn(PhysReg);
674
675 // Look for an existing copy.
676 if (LiveIn)
677 for (;I != E && I->isCopy(); ++I)
678 if (I->getOperand(1).getReg() == PhysReg) {
679 Register VirtReg = I->getOperand(0).getReg();
680 if (!MRI.constrainRegClass(VirtReg, RC))
681 llvm_unreachable("Incompatible live-in register class.");
682 return VirtReg;
683 }
684
685 // No luck, create a virtual register.
686 Register VirtReg = MRI.createVirtualRegister(RC);
687 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
688 .addReg(PhysReg, RegState::Kill);
689 if (!LiveIn)
690 addLiveIn(PhysReg);
691 return VirtReg;
692}
693
694void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
695 getParent()->splice(NewAfter->getIterator(), getIterator());
696}
697
698void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
699 getParent()->splice(++NewBefore->getIterator(), getIterator());
700}
701
703 MachineBasicBlock::const_iterator TerminatorI = MBB.getFirstTerminator();
704 if (TerminatorI == MBB.end())
705 return -1;
706 const MachineInstr &Terminator = *TerminatorI;
707 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
708 return TII->getJumpTableIndex(Terminator);
709}
710
712 MachineBasicBlock *PreviousLayoutSuccessor) {
713 LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this)
714 << "\n");
715
717 // A block with no successors has no concerns with fall-through edges.
718 if (this->succ_empty())
719 return;
720
721 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
724 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
725 (void) B;
726 assert(!B && "UpdateTerminators requires analyzable predecessors!");
727 if (Cond.empty()) {
728 if (TBB) {
729 // The block has an unconditional branch. If its successor is now its
730 // layout successor, delete the branch.
732 TII->removeBranch(*this);
733 } else {
734 // The block has an unconditional fallthrough, or the end of the block is
735 // unreachable.
736
737 // Unfortunately, whether the end of the block is unreachable is not
738 // immediately obvious; we must fall back to checking the successor list,
739 // and assuming that if the passed in block is in the succesor list and
740 // not an EHPad, it must be the intended target.
741 if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) ||
742 PreviousLayoutSuccessor->isEHPad())
743 return;
744
745 // If the unconditional successor block is not the current layout
746 // successor, insert a branch to jump to it.
747 if (!isLayoutSuccessor(PreviousLayoutSuccessor))
748 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
749 }
750 return;
751 }
752
753 if (FBB) {
754 // The block has a non-fallthrough conditional branch. If one of its
755 // successors is its layout successor, rewrite it to a fallthrough
756 // conditional branch.
757 if (isLayoutSuccessor(TBB)) {
758 if (TII->reverseBranchCondition(Cond))
759 return;
760 TII->removeBranch(*this);
761 TII->insertBranch(*this, FBB, nullptr, Cond, DL);
762 } else if (isLayoutSuccessor(FBB)) {
763 TII->removeBranch(*this);
764 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
765 }
766 return;
767 }
768
769 // We now know we're going to fallthrough to PreviousLayoutSuccessor.
770 assert(PreviousLayoutSuccessor);
771 assert(!PreviousLayoutSuccessor->isEHPad());
772 assert(isSuccessor(PreviousLayoutSuccessor));
773
774 if (PreviousLayoutSuccessor == TBB) {
775 // We had a fallthrough to the same basic block as the conditional jump
776 // targets. Remove the conditional jump, leaving an unconditional
777 // fallthrough or an unconditional jump.
778 TII->removeBranch(*this);
779 if (!isLayoutSuccessor(TBB)) {
780 Cond.clear();
781 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
782 }
783 return;
784 }
785
786 // The block has a fallthrough conditional branch.
787 if (isLayoutSuccessor(TBB)) {
788 if (TII->reverseBranchCondition(Cond)) {
789 // We can't reverse the condition, add an unconditional branch.
790 Cond.clear();
791 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
792 return;
793 }
794 TII->removeBranch(*this);
795 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
796 } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) {
797 TII->removeBranch(*this);
798 TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL);
799 }
800}
801
803#ifndef NDEBUG
804 int64_t Sum = 0;
805 for (auto Prob : Probs)
806 Sum += Prob.getNumerator();
807 // Due to precision issue, we assume that the sum of probabilities is one if
808 // the difference between the sum of their numerators and the denominator is
809 // no greater than the number of successors.
811 Probs.size() &&
812 "The sum of successors's probabilities exceeds one.");
813#endif // NDEBUG
814}
815
816void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
817 BranchProbability Prob) {
818 // Probability list is either empty (if successor list isn't empty, this means
819 // disabled optimization) or has the same size as successor list.
820 if (!(Probs.empty() && !Successors.empty()))
821 Probs.push_back(Prob);
822 Successors.push_back(Succ);
823 Succ->addPredecessor(this);
824}
825
826void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
827 // We need to make sure probability list is either empty or has the same size
828 // of successor list. When this function is called, we can safely delete all
829 // probability in the list.
830 Probs.clear();
831 Successors.push_back(Succ);
832 Succ->addPredecessor(this);
833}
834
835void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
836 MachineBasicBlock *New,
837 bool NormalizeSuccProbs) {
838 succ_iterator OldI = llvm::find(successors(), Old);
839 assert(OldI != succ_end() && "Old is not a successor of this block!");
841 "New is already a successor of this block!");
842
843 // Add a new successor with equal probability as the original one. Note
844 // that we directly copy the probability using the iterator rather than
845 // getting a potentially synthetic probability computed when unknown. This
846 // preserves the probabilities as-is and then we can renormalize them and
847 // query them effectively afterward.
848 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
849 : *getProbabilityIterator(OldI));
850 if (NormalizeSuccProbs)
852}
853
854void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
855 bool NormalizeSuccProbs) {
856 succ_iterator I = find(Successors, Succ);
857 removeSuccessor(I, NormalizeSuccProbs);
858}
859
862 assert(I != Successors.end() && "Not a current successor!");
863
864 // If probability list is empty it means we don't use it (disabled
865 // optimization).
866 if (!Probs.empty()) {
867 probability_iterator WI = getProbabilityIterator(I);
868 Probs.erase(WI);
869 if (NormalizeSuccProbs)
871 }
872
873 (*I)->removePredecessor(this);
874 return Successors.erase(I);
875}
876
877void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
878 MachineBasicBlock *New) {
879 if (Old == New)
880 return;
881
883 succ_iterator NewI = E;
884 succ_iterator OldI = E;
885 for (succ_iterator I = succ_begin(); I != E; ++I) {
886 if (*I == Old) {
887 OldI = I;
888 if (NewI != E)
889 break;
890 }
891 if (*I == New) {
892 NewI = I;
893 if (OldI != E)
894 break;
895 }
896 }
897 assert(OldI != E && "Old is not a successor of this block");
898
899 // If New isn't already a successor, let it take Old's place.
900 if (NewI == E) {
901 Old->removePredecessor(this);
902 New->addPredecessor(this);
903 *OldI = New;
904 return;
905 }
906
907 // New is already a successor.
908 // Update its probability instead of adding a duplicate edge.
909 if (!Probs.empty()) {
910 auto ProbIter = getProbabilityIterator(NewI);
911 if (!ProbIter->isUnknown())
912 *ProbIter += *getProbabilityIterator(OldI);
913 }
914 removeSuccessor(OldI);
915}
916
917void MachineBasicBlock::copySuccessor(const MachineBasicBlock *Orig,
919 if (!Orig->Probs.empty())
921 else
923}
924
925void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
926 Predecessors.push_back(Pred);
927}
928
929void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
930 pred_iterator I = find(Predecessors, Pred);
931 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
932 Predecessors.erase(I);
933}
934
935void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
936 if (this == FromMBB)
937 return;
938
939 while (!FromMBB->succ_empty()) {
940 MachineBasicBlock *Succ = *FromMBB->succ_begin();
941
942 // If probability list is empty it means we don't use it (disabled
943 // optimization).
944 if (!FromMBB->Probs.empty()) {
945 auto Prob = *FromMBB->Probs.begin();
946 addSuccessor(Succ, Prob);
947 } else
949
950 FromMBB->removeSuccessor(Succ);
951 }
952}
953
954void
956 if (this == FromMBB)
957 return;
958
959 while (!FromMBB->succ_empty()) {
960 MachineBasicBlock *Succ = *FromMBB->succ_begin();
961 if (!FromMBB->Probs.empty()) {
962 auto Prob = *FromMBB->Probs.begin();
963 addSuccessor(Succ, Prob);
964 } else
966 FromMBB->removeSuccessor(Succ);
967
968 // Fix up any PHI nodes in the successor.
969 Succ->replacePhiUsesWith(FromMBB, this);
970 }
972}
973
974bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
975 return is_contained(predecessors(), MBB);
976}
977
978bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
979 return is_contained(successors(), MBB);
980}
981
982bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
984 return std::next(I) == MachineFunction::const_iterator(MBB);
985}
986
987const MachineBasicBlock *MachineBasicBlock::getSingleSuccessor() const {
988 return Successors.size() == 1 ? Successors[0] : nullptr;
989}
990
991const MachineBasicBlock *MachineBasicBlock::getSinglePredecessor() const {
992 return Predecessors.size() == 1 ? Predecessors[0] : nullptr;
993}
994
995MachineBasicBlock *MachineBasicBlock::getFallThrough(bool JumpToFallThrough) {
997 ++Fallthrough;
998 // If FallthroughBlock is off the end of the function, it can't fall through.
999 if (Fallthrough == getParent()->end())
1000 return nullptr;
1001
1002 // If FallthroughBlock isn't a successor, no fallthrough is possible.
1003 if (!isSuccessor(&*Fallthrough))
1004 return nullptr;
1005
1006 // Analyze the branches, if any, at the end of the block.
1007 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1010 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
1011 // If we couldn't analyze the branch, examine the last instruction.
1012 // If the block doesn't end in a known control barrier, assume fallthrough
1013 // is possible. The isPredicated check is needed because this code can be
1014 // called during IfConversion, where an instruction which is normally a
1015 // Barrier is predicated and thus no longer an actual control barrier.
1016 return (empty() || !back().isBarrier() || TII->isPredicated(back()))
1017 ? &*Fallthrough
1018 : nullptr;
1019 }
1020
1021 // If there is no branch, control always falls through.
1022 if (!TBB) return &*Fallthrough;
1023
1024 // If there is some explicit branch to the fallthrough block, it can obviously
1025 // reach, even though the branch should get folded to fall through implicitly.
1026 if (JumpToFallThrough && (MachineFunction::iterator(TBB) == Fallthrough ||
1027 MachineFunction::iterator(FBB) == Fallthrough))
1028 return &*Fallthrough;
1029
1030 // If it's an unconditional branch to some block not the fall through, it
1031 // doesn't fall through.
1032 if (Cond.empty()) return nullptr;
1033
1034 // Otherwise, if it is conditional and has no explicit false block, it falls
1035 // through.
1036 return (FBB == nullptr) ? &*Fallthrough : nullptr;
1037}
1038
1040 return getFallThrough() != nullptr;
1041}
1042
1044 bool UpdateLiveIns,
1045 LiveIntervals *LIS) {
1046 MachineBasicBlock::iterator SplitPoint(&MI);
1047 ++SplitPoint;
1048
1049 if (SplitPoint == end()) {
1050 // Don't bother with a new block.
1051 return this;
1052 }
1053
1054 MachineFunction *MF = getParent();
1055
1057 if (UpdateLiveIns) {
1058 // Make sure we add any physregs we define in the block as liveins to the
1059 // new block.
1061 LiveRegs.init(*MF->getSubtarget().getRegisterInfo());
1062 LiveRegs.addLiveOuts(*this);
1063 for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I)
1064 LiveRegs.stepBackward(*I);
1065 }
1066
1067 MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock());
1068
1069 MF->insert(++MachineFunction::iterator(this), SplitBB);
1070 SplitBB->splice(SplitBB->begin(), this, SplitPoint, end());
1071
1072 SplitBB->transferSuccessorsAndUpdatePHIs(this);
1073 addSuccessor(SplitBB);
1074
1075 if (UpdateLiveIns)
1076 addLiveIns(*SplitBB, LiveRegs);
1077
1078 if (LIS)
1079 LIS->insertMBBInMaps(SplitBB);
1080
1081 return SplitBB;
1082}
1083
1084// Returns `true` if there are possibly other users of the jump table at
1085// `JumpTableIndex` except for the ones in `IgnoreMBB`.
1087 const MachineBasicBlock &IgnoreMBB,
1088 int JumpTableIndex) {
1089 assert(JumpTableIndex >= 0 && "need valid index");
1090 const MachineJumpTableInfo &MJTI = *MF.getJumpTableInfo();
1091 const MachineJumpTableEntry &MJTE = MJTI.getJumpTables()[JumpTableIndex];
1092 // Take any basic block from the table; every user of the jump table must
1093 // show up in the predecessor list.
1094 const MachineBasicBlock *MBB = nullptr;
1095 for (MachineBasicBlock *B : MJTE.MBBs) {
1096 if (B != nullptr) {
1097 MBB = B;
1098 break;
1099 }
1100 }
1101 if (MBB == nullptr)
1102 return true; // can't rule out other users if there isn't any block.
1105 for (MachineBasicBlock *Pred : MBB->predecessors()) {
1106 if (Pred == &IgnoreMBB)
1107 continue;
1108 MachineBasicBlock *DummyT = nullptr;
1109 MachineBasicBlock *DummyF = nullptr;
1110 Cond.clear();
1111 if (!TII.analyzeBranch(*Pred, DummyT, DummyF, Cond,
1112 /*AllowModify=*/false)) {
1113 // analyzable direct jump
1114 continue;
1115 }
1116 int PredJTI = findJumpTableIndex(*Pred);
1117 if (PredJTI >= 0) {
1118 if (PredJTI == JumpTableIndex)
1119 return true;
1120 continue;
1121 }
1122 // Be conservative for unanalyzable jumps.
1123 return true;
1124 }
1125 return false;
1126}
1127
1129private:
1130 MachineFunction &MF;
1131 SlotIndexes *Indexes;
1133
1134public:
1136 : MF(MF), Indexes(Indexes) {
1137 MF.setDelegate(this);
1138 }
1139
1141 MF.resetDelegate(this);
1142 for (auto MI : Insertions)
1143 Indexes->insertMachineInstrInMaps(*MI);
1144 }
1145
1147 // This is called before MI is inserted into block so defer index update.
1148 if (Indexes)
1149 Insertions.insert(&MI);
1150 }
1151
1153 if (Indexes && !Insertions.remove(&MI))
1154 Indexes->removeMachineInstrFromMaps(MI);
1155 }
1156};
1157
1159 MachineBasicBlock *Succ, Pass *P, MachineFunctionAnalysisManager *MFAM,
1160 std::vector<SparseBitVector<>> *LiveInSets, MachineDomTreeUpdater *MDTU) {
1161#define GET_RESULT(RESULT, GETTER, INFIX) \
1162 [MF, P, MFAM]() { \
1163 if (P) { \
1164 auto *Wrapper = P->getAnalysisIfAvailable<RESULT##INFIX##WrapperPass>(); \
1165 return Wrapper ? &Wrapper->GETTER() : nullptr; \
1166 } \
1167 return MFAM->getCachedResult<RESULT##Analysis>(*MF); \
1168 }()
1169
1170 assert((P || MFAM) && "Need a way to get analysis results!");
1171 MachineFunction *MF = getParent();
1172 LiveIntervals *LIS = GET_RESULT(LiveIntervals, getLIS, );
1173 SlotIndexes *Indexes = GET_RESULT(SlotIndexes, getSI, );
1174 LiveVariables *LV = GET_RESULT(LiveVariables, getLV, );
1175 MachineLoopInfo *MLI = GET_RESULT(MachineLoop, getLI, Info);
1176 return SplitCriticalEdge(Succ, {LIS, Indexes, LV, MLI}, LiveInSets, MDTU);
1177#undef GET_RESULT
1178}
1179
1181 MachineBasicBlock *Succ, const SplitCriticalEdgeAnalyses &Analyses,
1182 std::vector<SparseBitVector<>> *LiveInSets, MachineDomTreeUpdater *MDTU) {
1183 if (!canSplitCriticalEdge(Succ, Analyses.MLI))
1184 return nullptr;
1185
1186 MachineFunction *MF = getParent();
1187 MachineBasicBlock *PrevFallthrough = getNextNode();
1188
1189 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
1190 NMBB->setCallFrameSize(Succ->getCallFrameSize());
1191
1192 // Is there an indirect jump with jump table?
1193 bool ChangedIndirectJump = false;
1194 int JTI = findJumpTableIndex(*this);
1195 if (JTI >= 0) {
1197 MJTI.ReplaceMBBInJumpTable(JTI, Succ, NMBB);
1198 ChangedIndirectJump = true;
1199 }
1200
1201 MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
1202 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
1203 << " -- " << printMBBReference(*NMBB) << " -- "
1204 << printMBBReference(*Succ) << '\n');
1205 auto *LIS = Analyses.LIS;
1206 if (LIS)
1207 LIS->insertMBBInMaps(NMBB);
1208 else if (Analyses.SI)
1209 Analyses.SI->insertMBBInMaps(NMBB);
1210
1211 // On some targets like Mips, branches may kill virtual registers. Make sure
1212 // that LiveVariables is properly updated after updateTerminator replaces the
1213 // terminators.
1214 auto *LV = Analyses.LV;
1215 // Collect a list of virtual registers killed by the terminators.
1216 SmallVector<Register, 4> KilledRegs;
1217 if (LV)
1218 for (MachineInstr &MI :
1220 for (MachineOperand &MO : MI.all_uses()) {
1221 if (MO.getReg() == 0 || !MO.isKill() || MO.isUndef())
1222 continue;
1223 Register Reg = MO.getReg();
1224 if (Reg.isPhysical() || LV->getVarInfo(Reg).removeKill(MI)) {
1225 KilledRegs.push_back(Reg);
1226 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << MI);
1227 MO.setIsKill(false);
1228 }
1229 }
1230 }
1231
1232 SmallVector<Register, 4> UsedRegs;
1233 if (LIS) {
1234 for (MachineInstr &MI :
1236 for (const MachineOperand &MO : MI.operands()) {
1237 if (!MO.isReg() || MO.getReg() == 0)
1238 continue;
1239
1240 Register Reg = MO.getReg();
1241 if (!is_contained(UsedRegs, Reg))
1242 UsedRegs.push_back(Reg);
1243 }
1244 }
1245 }
1246
1247 ReplaceUsesOfBlockWith(Succ, NMBB);
1248
1249 // Since we replaced all uses of Succ with NMBB, that should also be treated
1250 // as the fallthrough successor
1251 if (Succ == PrevFallthrough)
1252 PrevFallthrough = NMBB;
1253 auto *Indexes = Analyses.SI;
1254 if (!ChangedIndirectJump) {
1255 SlotIndexUpdateDelegate SlotUpdater(*MF, Indexes);
1256 updateTerminator(PrevFallthrough);
1257 }
1258
1259 // Insert unconditional "jump Succ" instruction in NMBB if necessary.
1260 NMBB->addSuccessor(Succ);
1261 if (!NMBB->isLayoutSuccessor(Succ)) {
1262 SlotIndexUpdateDelegate SlotUpdater(*MF, Indexes);
1265
1266 // In original 'this' BB, there must be a branch instruction targeting at
1267 // Succ. We can not find it out since currently getBranchDestBlock was not
1268 // implemented for all targets. However, if the merged DL has column or line
1269 // number, the scope and non-zero column and line number is same with that
1270 // branch instruction so we can safely use it.
1271 DebugLoc DL, MergedDL = findBranchDebugLoc();
1272 if (MergedDL && (MergedDL.getLine() || MergedDL.getCol()))
1273 DL = MergedDL;
1274 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
1275 }
1276
1277 // Fix PHI nodes in Succ so they refer to NMBB instead of this.
1278 Succ->replacePhiUsesWith(this, NMBB);
1279
1280 // Inherit live-ins from the successor
1281 for (const auto &LI : Succ->liveins())
1282 NMBB->addLiveIn(LI);
1283
1284 // Update LiveVariables.
1286 if (LV) {
1287 // Restore kills of virtual registers that were killed by the terminators.
1288 while (!KilledRegs.empty()) {
1289 Register Reg = KilledRegs.pop_back_val();
1290 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
1291 if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
1292 continue;
1293 if (Reg.isVirtual())
1294 LV->getVarInfo(Reg).Kills.push_back(&*I);
1295 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1296 break;
1297 }
1298 }
1299 // Update relevant live-through information.
1300 if (LiveInSets != nullptr)
1301 LV->addNewBlock(NMBB, this, Succ, *LiveInSets);
1302 else
1303 LV->addNewBlock(NMBB, this, Succ);
1304 }
1305
1306 if (LIS) {
1307 // After splitting the edge and updating SlotIndexes, live intervals may be
1308 // in one of two situations, depending on whether this block was the last in
1309 // the function. If the original block was the last in the function, all
1310 // live intervals will end prior to the beginning of the new split block. If
1311 // the original block was not at the end of the function, all live intervals
1312 // will extend to the end of the new split block.
1313
1314 bool isLastMBB =
1315 std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1316
1317 SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1318 SlotIndex PrevIndex = StartIndex.getPrevSlot();
1319 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1320
1321 // Find the registers used from NMBB in PHIs in Succ.
1322 SmallSet<Register, 8> PHISrcRegs;
1324 I = Succ->instr_begin(), E = Succ->instr_end();
1325 I != E && I->isPHI(); ++I) {
1326 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1327 if (I->getOperand(ni+1).getMBB() == NMBB) {
1328 MachineOperand &MO = I->getOperand(ni);
1329 Register Reg = MO.getReg();
1330 PHISrcRegs.insert(Reg);
1331 if (MO.isUndef())
1332 continue;
1333
1334 LiveInterval &LI = LIS->getInterval(Reg);
1335 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1336 assert(VNI &&
1337 "PHI sources should be live out of their predecessors.");
1338 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1339 for (auto &SR : LI.subranges())
1340 SR.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1341 }
1342 }
1343 }
1344
1346 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1348 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1349 continue;
1350
1351 LiveInterval &LI = LIS->getInterval(Reg);
1352 if (!LI.liveAt(PrevIndex))
1353 continue;
1354
1355 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1356 if (isLiveOut && isLastMBB) {
1357 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1358 assert(VNI && "LiveInterval should have VNInfo where it is live.");
1359 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1360 // Update subranges with live values
1361 for (auto &SR : LI.subranges()) {
1362 VNInfo *VNI = SR.getVNInfoAt(PrevIndex);
1363 if (VNI)
1364 SR.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1365 }
1366 } else if (!isLiveOut && !isLastMBB) {
1367 LI.removeSegment(StartIndex, EndIndex);
1368 for (auto &SR : LI.subranges())
1369 SR.removeSegment(StartIndex, EndIndex);
1370 }
1371 }
1372
1373 // Update all intervals for registers whose uses may have been modified by
1374 // updateTerminator().
1375 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1376 }
1377
1378 if (MDTU)
1379 MDTU->splitCriticalEdge(this, Succ, NMBB);
1380
1381 if (MachineLoopInfo *MLI = Analyses.MLI)
1382 if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1383 // If one or the other blocks were not in a loop, the new block is not
1384 // either, and thus LI doesn't need to be updated.
1385 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1386 if (TIL == DestLoop) {
1387 // Both in the same loop, the NMBB joins loop.
1388 DestLoop->addBasicBlockToLoop(NMBB, *MLI);
1389 } else if (TIL->contains(DestLoop)) {
1390 // Edge from an outer loop to an inner loop. Add to the outer loop.
1391 TIL->addBasicBlockToLoop(NMBB, *MLI);
1392 } else if (DestLoop->contains(TIL)) {
1393 // Edge from an inner loop to an outer loop. Add to the outer loop.
1394 DestLoop->addBasicBlockToLoop(NMBB, *MLI);
1395 } else {
1396 // Edge from two loops with no containment relation. Because these
1397 // are natural loops, we know that the destination block must be the
1398 // header of its loop (adding a branch into a loop elsewhere would
1399 // create an irreducible loop).
1400 assert(DestLoop->getHeader() == Succ &&
1401 "Should not create irreducible loops!");
1402 if (MachineLoop *P = DestLoop->getParentLoop())
1403 P->addBasicBlockToLoop(NMBB, *MLI);
1404 }
1405 }
1406 }
1407
1408 return NMBB;
1409}
1410
1411bool MachineBasicBlock::canSplitCriticalEdge(const MachineBasicBlock *Succ,
1412 const MachineLoopInfo *MLI) const {
1413 // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1414 // it in this generic function.
1415 if (Succ->isEHPad())
1416 return false;
1417
1418 // Splitting the critical edge to a callbr's indirect block isn't advised.
1419 // Don't do it in this generic function.
1420 if (Succ->isInlineAsmBrIndirectTarget())
1421 return false;
1422
1423 const MachineFunction *MF = getParent();
1424 // Performance might be harmed on HW that implements branching using exec mask
1425 // where both sides of the branches are always executed.
1426
1427 if (MF->getTarget().requiresStructuredCFG()) {
1428 // If `Succ` is a loop header, splitting the critical edge will not
1429 // break structured CFG.
1430 if (MLI) {
1431 const MachineLoop *L = MLI->getLoopFor(Succ);
1432 return L && L->getHeader() == Succ;
1433 }
1434
1435 return false;
1436 }
1437
1438 // Do we have an Indirect jump with a jumptable that we can rewrite?
1439 int JTI = findJumpTableIndex(*this);
1440 if (JTI >= 0 && !jumpTableHasOtherUses(*MF, *this, JTI))
1441 return true;
1442
1443 // We may need to update this's terminator, but we can't do that if
1444 // analyzeBranch fails.
1446 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1448 // AnalyzeBanch should modify this, since we did not allow modification.
1449 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1450 /*AllowModify*/ false))
1451 return false;
1452
1453 // Avoid bugpoint weirdness: A block may end with a conditional branch but
1454 // jumps to the same MBB is either case. We have duplicate CFG edges in that
1455 // case that we can't handle. Since this never happens in properly optimized
1456 // code, just skip those edges.
1457 if (TBB && TBB == FBB) {
1458 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1459 << printMBBReference(*this) << '\n');
1460 return false;
1461 }
1462 return true;
1463}
1464
1465/// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1466/// neighboring instructions so the bundle won't be broken by removing MI.
1468 // Removing the first instruction in a bundle.
1469 if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1470 MI->unbundleFromSucc();
1471 // Removing the last instruction in a bundle.
1472 if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1473 MI->unbundleFromPred();
1474 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1475 // are already fine.
1476}
1477
1483
1486 MI->clearFlag(MachineInstr::BundledPred);
1487 MI->clearFlag(MachineInstr::BundledSucc);
1488 return Insts.remove(MI);
1489}
1490
1493 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1494 "Cannot insert instruction with bundle flags");
1495 // Set the bundle flags when inserting inside a bundle.
1496 if (I != instr_end() && I->isBundledWithPred()) {
1497 MI->setFlag(MachineInstr::BundledPred);
1498 MI->setFlag(MachineInstr::BundledSucc);
1499 }
1500 return Insts.insert(I, MI);
1501}
1502
1503/// This method unlinks 'this' from the containing function, and returns it, but
1504/// does not delete it.
1506 assert(getParent() && "Not embedded in a function!");
1507 getParent()->remove(this);
1508 return this;
1509}
1510
1511/// This method unlinks 'this' from the containing function, and deletes it.
1513 assert(getParent() && "Not embedded in a function!");
1514 getParent()->erase(this);
1515}
1516
1517/// Given a machine basic block that branched to 'Old', change the code and CFG
1518/// so that it branches to 'New' instead.
1520 MachineBasicBlock *New) {
1521 assert(Old != New && "Cannot replace self with self!");
1522
1524 while (I != instr_begin()) {
1525 --I;
1526 if (!I->isTerminator()) break;
1527
1528 // Scan the operands of this machine instruction, replacing any uses of Old
1529 // with New.
1530 for (MachineOperand &MO : I->operands())
1531 if (MO.isMBB() && MO.getMBB() == Old)
1532 MO.setMBB(New);
1533 }
1534
1535 // Update the successor information.
1536 replaceSuccessor(Old, New);
1537}
1538
1539void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
1540 MachineBasicBlock *New) {
1541 for (MachineInstr &MI : phis())
1542 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
1543 MachineOperand &MO = MI.getOperand(i);
1544 if (MO.getMBB() == Old)
1545 MO.setMBB(New);
1546 }
1547}
1548
1549/// Find the next valid DebugLoc starting at MBBI, skipping any debug
1550/// instructions. Return UnknownLoc if there is none.
1553 // Skip debug declarations, we don't want a DebugLoc from them.
1555 if (MBBI != instr_end())
1556 return MBBI->getDebugLoc();
1557 return {};
1558}
1559
1561 if (MBBI == instr_rend())
1562 return findDebugLoc(instr_begin());
1563 // Skip debug declarations, we don't want a DebugLoc from them.
1565 if (!MBBI->isDebugInstr())
1566 return MBBI->getDebugLoc();
1567 return {};
1568}
1569
1570/// Find the previous valid DebugLoc preceding MBBI, skipping any debug
1571/// instructions. Return UnknownLoc if there is none.
1573 if (MBBI == instr_begin())
1574 return {};
1575 // Skip debug instructions, we don't want a DebugLoc from them.
1577 if (!MBBI->isDebugInstr())
1578 return MBBI->getDebugLoc();
1579 return {};
1580}
1581
1583 if (MBBI == instr_rend())
1584 return {};
1585 // Skip debug declarations, we don't want a DebugLoc from them.
1587 if (MBBI != instr_rend())
1588 return MBBI->getDebugLoc();
1589 return {};
1590}
1591
1592/// Find and return the merged DebugLoc of the branch instructions of the block.
1593/// Return UnknownLoc if there is none.
1596 DebugLoc DL;
1597 auto TI = getFirstTerminator();
1598 while (TI != end() && !TI->isBranch())
1599 ++TI;
1600
1601 if (TI != end()) {
1602 DL = TI->getDebugLoc();
1603 for (++TI ; TI != end() ; ++TI)
1604 if (TI->isBranch())
1605 DL = DebugLoc::getMergedLocation(DL, TI->getDebugLoc());
1606 }
1607 return DL;
1608}
1609
1610/// Return probability of the edge from this block to MBB.
1613 if (Probs.empty())
1614 return BranchProbability(1, succ_size());
1615
1616 const auto &Prob = *getProbabilityIterator(Succ);
1617 if (!Prob.isUnknown())
1618 return Prob;
1619 // For unknown probabilities, collect the sum of all known ones, and evenly
1620 // ditribute the complemental of the sum to each unknown probability.
1621 unsigned KnownProbNum = 0;
1622 auto Sum = BranchProbability::getZero();
1623 for (const auto &P : Probs) {
1624 if (!P.isUnknown()) {
1625 Sum += P;
1626 KnownProbNum++;
1627 }
1628 }
1629 return Sum.getCompl() / (Probs.size() - KnownProbNum);
1630}
1631
1633 if (succ_size() <= 1)
1634 return true;
1636 return true;
1637
1638 SmallVector<BranchProbability, 8> Normalized(Probs.begin(), Probs.end());
1640
1641 // Normalize assuming unknown probabilities. This will assign equal
1642 // probabilities to all successors.
1643 SmallVector<BranchProbability, 8> Equal(Normalized.size());
1645
1646 return llvm::equal(Normalized, Equal);
1647}
1648
1649/// Set successor probability of a given iterator.
1651 BranchProbability Prob) {
1652 assert(!Prob.isUnknown());
1653 if (Probs.empty())
1654 return;
1655 *getProbabilityIterator(I) = Prob;
1656}
1657
1658/// Return probability iterator corresonding to the I successor iterator
1659MachineBasicBlock::const_probability_iterator
1660MachineBasicBlock::getProbabilityIterator(
1662 assert(Probs.size() == Successors.size() && "Async probability list!");
1663 const size_t index = std::distance(Successors.begin(), I);
1664 assert(index < Probs.size() && "Not a current successor!");
1665 return Probs.begin() + index;
1666}
1667
1668/// Return probability iterator corresonding to the I successor iterator.
1669MachineBasicBlock::probability_iterator
1670MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1671 assert(Probs.size() == Successors.size() && "Async probability list!");
1672 const size_t index = std::distance(Successors.begin(), I);
1673 assert(index < Probs.size() && "Not a current successor!");
1674 return Probs.begin() + index;
1675}
1676
1677/// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1678/// as of just before "MI".
1679///
1680/// Search is localised to a neighborhood of
1681/// Neighborhood instructions before (searching for defs or kills) and N
1682/// instructions after (searching just for defs) MI.
1685 MCRegister Reg, const_iterator Before,
1686 unsigned Neighborhood) const {
1687 unsigned N = Neighborhood;
1688
1689 // Try searching forwards from Before, looking for reads or defs.
1690 const_iterator I(Before);
1691 for (; I != end() && N > 0; ++I) {
1692 if (I->isDebugOrPseudoInstr())
1693 continue;
1694
1695 --N;
1696
1697 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1698
1699 // Register is live when we read it here.
1700 if (Info.Read)
1701 return LQR_Live;
1702 // Register is dead if we can fully overwrite or clobber it here.
1703 if (Info.FullyDefined || Info.Clobbered)
1704 return LQR_Dead;
1705 }
1706
1707 // If we reached the end, it is safe to clobber Reg at the end of a block of
1708 // no successor has it live in.
1709 if (I == end()) {
1710 for (MachineBasicBlock *S : successors()) {
1711 for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1712 if (TRI->regsOverlap(LI.PhysReg, Reg))
1713 return LQR_Live;
1714 }
1715 }
1716
1717 return LQR_Dead;
1718 }
1719
1720
1721 N = Neighborhood;
1722
1723 // Start by searching backwards from Before, looking for kills, reads or defs.
1724 I = const_iterator(Before);
1725 // If this is the first insn in the block, don't search backwards.
1726 if (I != begin()) {
1727 do {
1728 --I;
1729
1730 if (I->isDebugOrPseudoInstr())
1731 continue;
1732
1733 --N;
1734
1735 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1736
1737 // Defs happen after uses so they take precedence if both are present.
1738
1739 // Register is dead after a dead def of the full register.
1740 if (Info.DeadDef)
1741 return LQR_Dead;
1742 // Register is (at least partially) live after a def.
1743 if (Info.Defined) {
1744 if (!Info.PartialDeadDef)
1745 return LQR_Live;
1746 // As soon as we saw a partial definition (dead or not),
1747 // we cannot tell if the value is partial live without
1748 // tracking the lanemasks. We are not going to do this,
1749 // so fall back on the remaining of the analysis.
1750 break;
1751 }
1752 // Register is dead after a full kill or clobber and no def.
1753 if (Info.Killed || Info.Clobbered)
1754 return LQR_Dead;
1755 // Register must be live if we read it.
1756 if (Info.Read)
1757 return LQR_Live;
1758
1759 } while (I != begin() && N > 0);
1760 }
1761
1762 // If all the instructions before this in the block are debug instructions,
1763 // skip over them.
1764 while (I != begin() && std::prev(I)->isDebugOrPseudoInstr())
1765 --I;
1766
1767 // Did we get to the start of the block?
1768 if (I == begin()) {
1769 // If so, the register's state is definitely defined by the live-in state.
1771 if (TRI->regsOverlap(LI.PhysReg, Reg))
1772 return LQR_Live;
1773
1774 return LQR_Dead;
1775 }
1776
1777 // At this point we have no idea of the liveness of the register.
1778 return LQR_Unknown;
1779}
1780
1781const uint32_t *
1783 // EH funclet entry does not preserve any registers.
1784 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1785}
1786
1787const uint32_t *
1789 // If we see a return block with successors, this must be a funclet return,
1790 // which does not preserve any registers. If there are no successors, we don't
1791 // care what kind of return it is, putting a mask after it is a no-op.
1792 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1793}
1794
1796 LiveIns.clear();
1797}
1798
1800 std::vector<RegisterMaskPair> &OldLiveIns) {
1801 assert(OldLiveIns.empty() && "Vector must be empty");
1802 std::swap(LiveIns, OldLiveIns);
1803}
1804
1806 assert(getParent()->getProperties().hasTracksLiveness() &&
1807 "Liveness information is accurate");
1808 return LiveIns.begin();
1809}
1810
1812 const MachineFunction &MF = *getParent();
1813 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
1814 MCRegister ExceptionPointer, ExceptionSelector;
1815 if (MF.getFunction().hasPersonalityFn()) {
1816 auto PersonalityFn = MF.getFunction().getPersonalityFn();
1817 ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn);
1818 ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn);
1819 }
1820
1821 return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false);
1822}
1823
1825 unsigned Cntr = 0;
1826 auto R = instructionsWithoutDebug(begin(), end());
1827 for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1828 if (++Cntr > Limit)
1829 return true;
1830 }
1831 return false;
1832}
1833
1835 const MachineBasicBlock &PredMBB) {
1836 for (MachineInstr &Phi : phis())
1837 Phi.removePHIIncomingValueFor(PredMBB);
1838}
1839
1841const MBBSectionID
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition Compiler.h:638
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
This file implements the LivePhysRegs utility for tracking liveness of physical registers.
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
#define GET_RESULT(RESULT, GETTER, INFIX)
static bool jumpTableHasOtherUses(const MachineFunction &MF, const MachineBasicBlock &IgnoreMBB, int JumpTableIndex)
static void unbundleSingleMI(MachineInstr *MI)
Prepare MI to be removed from its bundle.
static int findJumpTableIndex(const MachineBasicBlock &MBB)
static cl::opt< bool > PrintSlotIndexes("print-slotindexes", cl::desc("When printing machine IR, annotate instructions and blocks with " "SlotIndexes when available"), cl::init(true), cl::Hidden)
Register const TargetRegisterInfo * TRI
uint64_t IntrinsicInst * II
#define P(N)
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
const SmallVectorImpl< MachineOperand > & Cond
static bool isLiveOut(const MachineBasicBlock &MBB, unsigned Reg)
This file contains some templates that are useful if you are working with the STL at all.
This file contains some functions that are useful when dealing with strings.
#define LLVM_DEBUG(...)
Definition Debug.h:114
This file describes how to lower LLVM code to machine code.
SlotIndexUpdateDelegate(MachineFunction &MF, SlotIndexes *Indexes)
void MF_HandleRemoval(MachineInstr &MI) override
Callback before a removal. This should not modify the MI directly.
void MF_HandleInsertion(MachineInstr &MI) override
Callback after an insertion. This should not modify the MI directly.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
static uint32_t getDenominator()
static BranchProbability getUnknown()
uint32_t getNumerator() const
static BranchProbability getZero()
static void normalizeProbabilities(ProbabilityIter Begin, ProbabilityIter End)
A debug info location.
Definition DebugLoc.h:124
LLVM_ABI unsigned getLine() const
Definition DebugLoc.cpp:54
static LLVM_ABI DebugLoc getMergedLocation(DebugLoc LocA, DebugLoc LocB)
When two instructions are combined into a single instruction we also need to combine the original loc...
Definition DebugLoc.cpp:183
LLVM_ABI unsigned getCol() const
Definition DebugLoc.cpp:59
bool hasPersonalityFn() const
Check whether this function has a personality function.
Definition Function.h:903
Constant * getPersonalityFn() const
Get the personality function associated with this function.
void splitCriticalEdge(BasicBlockT *FromBB, BasicBlockT *ToBB, BasicBlockT *NewBB)
Apply updates that the critical edge (FromBB, ToBB) has been split with NewBB.
A helper class to return the specified delimiter string after the first invocation of operator String...
LiveInterval - This class represents the liveness of a register, or stack slot.
iterator_range< subrange_iterator > subranges()
void insertMBBInMaps(MachineBasicBlock *MBB)
A set of physical registers with utility functions to track liveness when walking backward/forward th...
LLVM_ABI iterator addSegment(Segment S)
Add the specified Segment to this range, merging segments as appropriate.
bool liveAt(SlotIndex index) const
LLVM_ABI void removeSegment(SlotIndex Start, SlotIndex End, bool RemoveDeadValNo=false)
Remove the specified interval from this live range.
VNInfo * getVNInfoAt(SlotIndex Idx) const
getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
Context object for machine code objects.
Definition MCContext.h:83
LLVM_ABI MCSymbol * createBlockSymbol(const Twine &Name, bool AlwaysEmit=false)
Get or create a symbol for a basic block.
LLVM_ABI MCSymbol * getOrCreateSymbol(const Twine &Name)
Lookup the symbol inside with the specified Name.
Wrapper class representing physical registers. Should be passed by value.
Definition MCRegister.h:33
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition MCRegister.h:64
Iterator that enumerates the sub-registers of a Reg and the associated sub-register indices.
bool isValid() const
Returns true if this iterator is not yet at the end.
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition MCSymbol.h:42
bool isInlineAsmBrIndirectTarget() const
Returns true if this is the indirect dest of an INLINEASM_BR.
LLVM_ABI DebugLoc rfindPrevDebugLoc(reverse_instr_iterator MBBI)
Has exact same behavior as findPrevDebugLoc (it also searches towards the beginning of this MBB) exce...
LLVM_ABI void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
LLVM_ABI bool hasEHPadSuccessor() const
void normalizeSuccProbs()
Normalize probabilities of all successors so that the sum of them becomes one.
livein_iterator livein_end() const
LLVM_ABI iterator getFirstTerminatorForward()
Finds the first terminator in a block by scanning forward.
bool isEHPad() const
Returns true if the block is a landing pad.
LLVM_ABI void replacePhiUsesWith(MachineBasicBlock *Old, MachineBasicBlock *New)
Update all phi nodes in this basic block to refer to basic block New instead of basic block Old.
LLVM_ABI MachineInstr * remove_instr(MachineInstr *I)
Remove the possibly bundled instruction from the instruction list without deleting it.
MachineInstrBundleIterator< const MachineInstr > const_iterator
LLVM_ABI MCSymbol * getSymbol() const
Return the MCSymbol for this basic block.
LLVM_ABI void moveBefore(MachineBasicBlock *NewAfter)
Move 'this' block before or after the specified block.
LLVM_ABI void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New)
Replace successor OLD with NEW and update probability info.
LLVM_ABI MachineBasicBlock * getFallThrough(bool JumpToFallThrough=true)
Return the fallthrough block if the block can implicitly transfer control to the block after it by fa...
LLVM_ABI void transferSuccessors(MachineBasicBlock *FromMBB)
Transfers all the successors from MBB to this machine basic block (i.e., copies all the successors Fr...
MachineBasicBlock * SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P, std::vector< SparseBitVector<> > *LiveInSets=nullptr, MachineDomTreeUpdater *MDTU=nullptr)
bool hasLabelMustBeEmitted() const
Test whether this block must have its label emitted.
LLVM_ABI instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
LLVM_ABI BranchProbability getSuccProbability(const_succ_iterator Succ) const
Return probability of the edge from this block to MBB.
iterator_range< livein_iterator > liveins() const
iterator_range< iterator > phis()
Returns a range that iterates over the phis in the basic block.
reverse_instr_iterator instr_rbegin()
int getNumber() const
MachineBasicBlocks are uniquely numbered at the function level, unless they're not in a MachineFuncti...
LLVM_ABI iterator SkipPHIsAndLabels(iterator I)
Return the first instruction in MBB after I that is not a PHI or a label.
LLVM_ABI void addSuccessorWithoutProb(MachineBasicBlock *Succ)
Add Succ as a successor of this MachineBasicBlock.
SmallVectorImpl< MachineBasicBlock * >::const_iterator const_succ_iterator
LLVM_ABI bool hasName() const
Check if there is a name of corresponding LLVM basic block.
void setCallFrameSize(unsigned N)
Set the call frame size on entry to this basic block.
std::optional< UniqueBBID > getBBID() const
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
LLVM_ABI MCSymbol * getEHContSymbol() const
Return the Windows EH Continuation Symbol for this basic block.
LLVM_ABI void splitSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New, bool NormalizeSuccProbs=false)
Split the old successor into old plus new and updates the probability info.
@ PrintNameIr
Add IR name where available.
@ PrintNameAttributes
Print attributes.
LLVM_ABI void updateTerminator(MachineBasicBlock *PreviousLayoutSuccessor)
Update the terminator instructions in block to account for changes to block layout which may have bee...
LLVM_ABI const MachineBasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor.
LLVM_ABI iterator SkipPHIsLabelsAndDebug(iterator I, Register Reg=Register(), bool SkipPseudoOp=true)
Return the first instruction in MBB after I that is not a PHI, label or debug.
LLVM_ABI bool canFallThrough()
Return true if the block can implicitly transfer control to the block after it by falling off the end...
LLVM_ABI void setSuccProbability(succ_iterator I, BranchProbability Prob)
Set successor probability of a given iterator.
LLVM_ABI iterator getFirstNonDebugInstr(bool SkipPseudoOp=true)
Returns an iterator to the first non-debug instruction in the basic block, or end().
LLVM_ABI void removeLiveIn(MCRegister Reg, LaneBitmask LaneMask=LaneBitmask::getAll())
Remove the specified register from the live in set.
LLVM_ABI void printAsOperand(raw_ostream &OS, bool PrintType=true) const
LLVM_ABI void validateSuccProbs() const
Validate successors' probabilities and check if the sum of them is approximate one.
bool isIRBlockAddressTaken() const
Test whether this block is the target of an IR BlockAddress.
LiveInVector::const_iterator livein_iterator
LLVM_ABI MCSymbol * getEndSymbol() const
Returns the MCSymbol marking the end of this basic block.
LLVM_ABI void clearLiveIns()
Clear live in list.
bool isEHFuncletEntry() const
Returns true if this is the entry block of an EH funclet.
LLVM_ABI LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI, MCRegister Reg, const_iterator Before, unsigned Neighborhood=10) const
Return whether (physical) register Reg has been defined and not killed as of just before Before.
LLVM_ABI iterator getFirstTerminator()
Returns an iterator to the first terminator instruction of this basic block.
LLVM_ABI livein_iterator livein_begin() const
bool isReturnBlock() const
Convenience function that returns true if the block ends in a return instruction.
LLVM_ABI const uint32_t * getBeginClobberMask(const TargetRegisterInfo *TRI) const
Get the clobber mask for the start of this basic block.
LLVM_ABI void removePHIsIncomingValuesForPredecessor(const MachineBasicBlock &PredMBB)
Iterate over block PHI instructions and remove all incoming values for PredMBB.
MBBSectionID getSectionID() const
Returns the section ID of this basic block.
LLVM_ABI void dump() const
LLVM_ABI bool isEntryBlock() const
Returns true if this is the entry block of the function.
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
LLVM_ABI void copySuccessor(const MachineBasicBlock *Orig, succ_iterator I)
Copy a successor (and any probability info) from original block to this block's.
SmallVectorImpl< MachineBasicBlock * >::iterator succ_iterator
BasicBlock * getAddressTakenIRBlock() const
Retrieves the BasicBlock which corresponds to this MachineBasicBlock.
LLVM_ABI void sortUniqueLiveIns()
Sorts and uniques the LiveIns vector.
LLVM_ABI const MachineBasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI liveout_iterator liveout_begin() const
Iterator scanning successor basic blocks' liveins to determine the registers potentially live at the ...
LLVM_ABI void removeSuccessor(MachineBasicBlock *Succ, bool NormalizeSuccProbs=false)
Remove successor from the successors list of this MachineBasicBlock.
LLVM_ABI iterator getFirstNonPHI()
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI bool isPredecessor(const MachineBasicBlock *MBB) const
Return true if the specified MBB is a predecessor of this block.
bool hasSuccessorProbabilities() const
Return true if any of the successors have probabilities attached to them.
LLVM_ABI DebugLoc rfindDebugLoc(reverse_instr_iterator MBBI)
Has exact same behavior as findDebugLoc (it also searches towards the end of this MBB) except that th...
LLVM_ABI void print(raw_ostream &OS, const SlotIndexes *=nullptr, bool IsStandalone=true) const
reverse_instr_iterator instr_rend()
LLVM_ABI DebugLoc findDebugLoc(instr_iterator MBBI)
Find the next valid DebugLoc starting at MBBI, skipping any debug instructions.
Instructions::iterator instr_iterator
LLVM_ABI iterator getLastNonDebugInstr(bool SkipPseudoOp=true)
Returns an iterator to the last non-debug instruction in the basic block, or end().
LLVM_ABI void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New)
Given a machine basic block that branched to 'Old', change the code and CFG so that it branches to 'N...
LLVM_ABI bool isLayoutSuccessor(const MachineBasicBlock *MBB) const
Return true if the specified MBB will be emitted immediately after this block, such that if this bloc...
LLVM_ABI DebugLoc findPrevDebugLoc(instr_iterator MBBI)
Find the previous valid DebugLoc preceding MBBI, skipping any debug instructions.
LLVM_ABI MachineBasicBlock * splitAt(MachineInstr &SplitInst, bool UpdateLiveIns=true, LiveIntervals *LIS=nullptr)
Split a basic block into 2 pieces at SplitPoint.
LLVM_ABI bool canSplitCriticalEdge(const MachineBasicBlock *Succ, const MachineLoopInfo *MLI=nullptr) const
Check if the edge between this block and the given successor Succ, can be split.
LLVM_ABI void eraseFromParent()
This method unlinks 'this' from the containing function and deletes it.
LLVM_ABI void removeLiveInOverlappedWith(MCRegister Reg)
Remove the specified register from any overlapped live in.
void addLiveIn(MCRegister PhysReg, LaneBitmask LaneMask=LaneBitmask::getAll())
Adds the specified register as a live in.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
LLVM_ABI instr_iterator erase(instr_iterator I)
Remove an instruction from the instruction list and delete it.
LLVM_ABI std::string getFullName() const
Return a formatted string to identify this block and its parent function.
bool isBeginSection() const
Returns true if this block begins any section.
unsigned getCallFrameSize() const
Return the call frame size on entry to this basic block.
LLVM_ABI DebugLoc findBranchDebugLoc()
Find and return the merged DebugLoc of the branch instructions of the block.
iterator_range< succ_iterator > successors()
LLVM_ABI instr_iterator getFirstInstrTerminator()
Same getFirstTerminator but it ignores bundles and return an instr_iterator instead.
reverse_iterator rbegin()
bool isMachineBlockAddressTaken() const
Test whether this block is used as something other than the target of a terminator,...
LLVM_ABI void printName(raw_ostream &os, unsigned printNameFlags=PrintNameIr, ModuleSlotTracker *moduleSlotTracker=nullptr) const
Print the basic block's name as:
LLVM_ABI bool isSuccessor(const MachineBasicBlock *MBB) const
Return true if the specified MBB is a successor of this block.
iterator_range< pred_iterator > predecessors()
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
Align getAlignment() const
Return alignment of the basic block.
MachineInstrBundleIterator< MachineInstr > iterator
LLVM_ABI bool isLegalToHoistInto() const
Returns true if it is legal to hoist instructions into this block.
LLVM_ABI bool canPredictBranchProbabilities() const
LLVM_ABI StringRef getName() const
Return the name of the corresponding LLVM basic block, or an empty string.
LLVM_ABI bool mayHaveInlineAsmBr() const
Returns true if this block may have an INLINEASM_BR (overestimate, by checking if any of the successo...
LivenessQueryResult
Possible outcome of a register liveness query to computeRegisterLiveness()
@ LQR_Dead
Register is known to be fully dead.
@ LQR_Live
Register is known to be (at least partially) live.
@ LQR_Unknown
Register liveness not decidable from local neighborhood.
LLVM_ABI void moveAfter(MachineBasicBlock *NewBefore)
LLVM_ABI const uint32_t * getEndClobberMask(const TargetRegisterInfo *TRI) const
Get the clobber mask for the end of the basic block.
LLVM_ABI bool sizeWithoutDebugLargerThan(unsigned Limit) const
LLVM_ABI bool isLiveIn(MCRegister Reg, LaneBitmask LaneMask=LaneBitmask::getAll()) const
Return true if the specified register is in the live in set.
LLVM_ABI MachineBasicBlock * removeFromParent()
This method unlinks 'this' from the containing function, and returns it, but does not delete it.
Instructions::reverse_iterator reverse_instr_iterator
unsigned addToMBBNumbering(MachineBasicBlock *MBB)
Adds the MBB to the internal numbering.
unsigned getFunctionNumber() const
getFunctionNumber - Return a unique ID for the current function.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
bool hasBBSections() const
Returns true if this function has basic block sections enabled.
MCContext & getContext() const
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
void remove(iterator MBBI)
const MachineJumpTableInfo * getJumpTableInfo() const
getJumpTableInfo - Return the jump table info object for the current function.
void splice(iterator InsertPt, iterator MBBI)
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineInstr - Allocate a new MachineInstr.
void erase(iterator MBBI)
void insert(iterator MBBI, MachineBasicBlock *MBB)
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
BasicBlockListType::const_iterator const_iterator
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
reverse_iterator getReverse() const
Get a reverse iterator to the same node.
Representation of each machine instruction.
LLVM_ABI bool ReplaceMBBInJumpTable(unsigned Idx, MachineBasicBlock *Old, MachineBasicBlock *New)
ReplaceMBBInJumpTable - If Old is a target of the jump tables, update the jump table to branch to New...
const std::vector< MachineJumpTableEntry > & getJumpTables() const
MachineOperand class - Representation of each machine instruction operand.
MachineBasicBlock * getMBB() const
void setMBB(MachineBasicBlock *MBB)
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Manage lifetime of a slot tracker for printing IR.
int getLocalSlot(const Value *V)
Return the slot number of the specified local value.
void incorporateFunction(const Function &F)
Incorporate the given function.
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
Pass interface - Implemented by all 'passes'.
Definition Pass.h:99
Simple wrapper around std::function<void(raw_ostream&)>.
Definition Printable.h:38
Wrapper class representing virtual and physical registers.
Definition Register.h:19
static Register index2VirtReg(unsigned Index)
Convert a 0-based index to a virtual register number.
Definition Register.h:67
SlotIndex - An opaque wrapper around machine indexes.
Definition SlotIndexes.h:66
SlotIndex getPrevSlot() const
Returns the previous slot in the index list.
SlotIndexes pass.
void insertMBBInMaps(MachineBasicBlock *mbb)
Add the given MachineBasicBlock into the maps.
SlotIndex getInstructionIndex(const MachineInstr &MI, bool IgnoreBundle=false) const
Returns the base index for the given instruction.
SlotIndex getMBBStartIdx(unsigned Num) const
Returns the first index in the given basic block number.
bool hasIndex(const MachineInstr &instr) const
Returns true if the given machine instr is mapped to an index, otherwise returns false.
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:356
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition SmallSet.h:133
size_type count(const T &V) const
count - Return 1 if the element is in the set, 0 otherwise.
Definition SmallSet.h:175
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
Definition SmallSet.h:181
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition SmallString.h:26
iterator erase(const_iterator CI)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
TargetInstrInfo - Interface to description of machine instruction set.
virtual Register getExceptionPointerRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception address on entry to an ...
virtual Register getExceptionSelectorRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception typeid on entry to a la...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
bool requiresStructuredCFG() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetInstrInfo * getInstrInfo() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
virtual const TargetLowering * getTargetLowering() const
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
VNInfo - Value Number Information.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
raw_ostream & indent(unsigned NumSpaces)
indent - Insert 'NumSpaces' spaces.
A raw_ostream that writes to an SmallVector or SmallString.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Kill
The last use of a register.
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
IterT next_nodbg(IterT It, IterT End, bool SkipPseudoOp=true)
Increment It, then continue incrementing it while it points to a debug instruction.
auto find(R &&Range, const T &Val)
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1731
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI PhysRegInfo AnalyzePhysRegInBundle(const MachineInstr &MI, Register Reg, const TargetRegisterInfo *TRI)
AnalyzePhysRegInBundle - Analyze how the current instruction or bundle uses a physical register.
Printable PrintLaneMask(LaneBitmask LaneMask)
Create Printable object to print LaneBitmasks on a raw_ostream.
Definition LaneBitmask.h:92
AnalysisManager< MachineFunction > MachineFunctionAnalysisManager
IterT skipDebugInstructionsForward(IterT It, IterT End, bool SkipPseudoOp=true)
Increment It until it points to a non-debug instruction or to End and return the resulting iterator.
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1624
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
auto instructionsWithoutDebug(IterT It, IterT End, bool SkipPseudoOp=true)
Construct a range iterator which begins at It and moves forwards until End is reached,...
IterT skipDebugInstructionsBackward(IterT It, IterT Begin, bool SkipPseudoOp=true)
Decrement It until it points to a non-debug instruction or to Begin and return the resulting iterator...
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition Format.h:126
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
Definition ModRef.h:71
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
Definition MCRegister.h:21
PredIterator< BasicBlock, Value::user_iterator > pred_iterator
Definition CFG.h:105
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1738
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1877
bool equal(L &&LRange, R &&RRange)
Wrapper function around std::equal to detect if pair-wise elements between two ranges are the same.
Definition STLExtras.h:2068
IterT prev_nodbg(IterT It, IterT Begin, bool SkipPseudoOp=true)
Decrement It, then continue decrementing it while it points to a debug instruction.
LLVM_ABI Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
LLVM_ABI Printable printMBBReference(const MachineBasicBlock &MBB)
Prints a machine basic block reference.
void addLiveIns(MachineBasicBlock &MBB, const LivePhysRegs &LiveRegs)
Adds registers contained in LiveRegs to the block live-in list of MBB.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
Definition Alignment.h:77
This represents a simple continuous liveness interval for a value.
LLVM_ABI static const MBBSectionID ExceptionSectionID
LLVM_ABI static const MBBSectionID ColdSectionID
Pair of physical register and lane mask.
Split the critical edge from this block to the given successor block, and return the newly created bl...
MachineJumpTableEntry - One jump table in the jump table info.
std::vector< MachineBasicBlock * > MBBs
MBBs - The vector of basic blocks from which to create the jump table.
Information about how a physical register Reg is used by a set of operands.
static void deleteNode(NodeTy *V)
Definition ilist.h:42
void removeNodeFromList(NodeTy *)
Definition ilist.h:67
void addNodeToList(NodeTy *)
When an MBB is added to an MF, we need to update the parent pointer of the MBB, the MBB numbering,...
Definition ilist.h:66
void transferNodesFromList(ilist_callback_traits &OldList, Iterator, Iterator)
Callback before transferring nodes to this list.
Definition ilist.h:72
Template traits for intrusive list.
Definition ilist.h:90