64#define DEBUG_TYPE "memcpyopt"
67 "enable-memcpyopt-without-libcalls",
cl::Hidden,
68 cl::desc(
"Enable memcpyopt even when libcalls are disabled"));
70STATISTIC(NumMemCpyInstr,
"Number of memcpy instructions deleted");
71STATISTIC(NumMemMoveInstr,
"Number of memmove instructions deleted");
72STATISTIC(NumMemSetInfer,
"Number of memsets inferred");
73STATISTIC(NumMoveToCpy,
"Number of memmoves converted to memcpy");
74STATISTIC(NumCpyToSet,
"Number of memcpys converted to memset");
75STATISTIC(NumCallSlot,
"Number of call slot optimizations performed");
76STATISTIC(NumStackMove,
"Number of stack-move optimizations performed");
105 bool isProfitableToUseMemset(
const DataLayout &
DL)
const;
113bool MemsetRange::isProfitableToUseMemset(
const DataLayout &
DL)
const {
115 if (TheStores.
size() >= 4 || End - Start >= 16)
119 if (TheStores.
size() < 2)
124 for (Instruction *SI : TheStores)
130 if (TheStores.size() == 2)
143 unsigned Bytes = unsigned(End - Start);
144 unsigned MaxIntSize =
DL.getLargestLegalIntTypeSizeInBits() / 8;
147 unsigned NumPointerStores = Bytes / MaxIntSize;
150 unsigned NumByteStores = Bytes % MaxIntSize;
155 return TheStores.size() > NumPointerStores + NumByteStores;
166 const DataLayout &
DL;
169 MemsetRanges(
const DataLayout &
DL) :
DL(
DL) {}
173 const_iterator
begin()
const {
return Ranges.begin(); }
174 const_iterator
end()
const {
return Ranges.end(); }
177 void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
179 addStore(OffsetFromFirst, SI);
184 void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
185 TypeSize StoreSize =
DL.getTypeStoreSize(
SI->getOperand(0)->getType());
188 SI->getPointerOperand(),
SI->getAlign(), SI);
191 void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
205void MemsetRanges::addRange(int64_t Start, int64_t
Size,
Value *
Ptr,
206 MaybeAlign Alignment, Instruction *Inst) {
210 Ranges, [=](
const MemsetRange &O) {
return O.End <
Start; });
215 if (
I ==
Ranges.end() || End < I->Start) {
216 MemsetRange &
R = *
Ranges.insert(
I, MemsetRange());
220 R.Alignment = Alignment;
221 R.TheStores.push_back(Inst);
226 I->TheStores.push_back(Inst);
230 if (
I->Start <= Start &&
I->End >= End)
239 if (Start < I->Start) {
242 I->Alignment = Alignment;
250 range_iterator NextI =
I;
251 while (++NextI !=
Ranges.end() && End >= NextI->Start) {
253 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
254 if (NextI->End >
I->End)
270 assert(Start->getParent() == End->
getParent() &&
"Must be in same block");
272 if (Start->getFunction()->doesNotThrow())
277 bool RequiresNoCaptureBeforeUnwind;
279 RequiresNoCaptureBeforeUnwind) &&
280 !RequiresNoCaptureBeforeUnwind)
288void MemCpyOptPass::eraseInstruction(Instruction *
I) {
289 MSSAU->removeMemoryAccess(
I);
290 EEA->removeInstruction(
I);
291 I->eraseFromParent();
302 assert(Start->getBlock() == End->
getBlock() &&
"Only local supported");
308 if (
II &&
II->getIntrinsicID() == Intrinsic::lifetime_start &&
309 SkippedLifetimeStart && !*SkippedLifetimeStart) {
310 *SkippedLifetimeStart =
I;
329 return Start->getBlock() != End->
getBlock() ||
333 if (isa<MemoryUse>(&Acc))
335 Instruction *AccInst =
336 cast<MemoryUseOrDef>(&Acc)->getMemoryInst();
337 return isModSet(AA.getModRefInfo(AccInst, Loc));
351Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
358 if (
DL.getTypeStoreSize(
SI->getOperand(0)->getType()).isScalable())
372 MemoryUseOrDef *MemInsertPoint =
nullptr;
373 for (++BI; !BI->isTerminator(); ++BI) {
377 MemInsertPoint = CurrentAcc;
382 if (CB->onlyAccessesInaccessibleMemory())
390 if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
397 if (!NextStore->isSimple())
400 Value *StoredVal = NextStore->getValueOperand();
408 if (
DL.getTypeStoreSize(StoredVal->
getType()).isScalable())
414 ByteVal = StoredByte;
415 if (ByteVal != StoredByte)
419 std::optional<int64_t>
Offset =
428 if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
433 std::optional<int64_t>
Offset =
434 MSI->getDest()->getPointerOffsetFrom(StartPtr,
DL);
450 Ranges.addInst(0, StartInst);
460 for (
const MemsetRange &
Range : Ranges) {
461 if (
Range.TheStores.size() == 1)
465 if (!
Range.isProfitableToUseMemset(
DL))
470 StartPtr =
Range.StartPtr;
472 AMemSet = Builder.CreateMemSet(StartPtr, ByteVal,
Range.End -
Range.Start,
479 dbgs() <<
"With: " << *AMemSet <<
'\n');
480 if (!
Range.TheStores.empty())
485 ? MSSAU->createMemoryAccessBefore(AMemSet,
nullptr, MemInsertPoint)
486 : MSSAU->createMemoryAccessAfter(AMemSet,
nullptr, MemInsertPoint));
487 MSSAU->insertDef(NewDef,
true);
488 MemInsertPoint = NewDef;
491 for (Instruction *SI :
Range.TheStores)
504bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *
P,
const LoadInst *LI) {
512 DenseSet<Instruction *>
Args;
513 auto AddArg = [&](
Value *Arg) {
515 if (
I &&
I->getParent() ==
SI->getParent()) {
523 if (!AddArg(
SI->getPointerOperand()))
527 SmallVector<Instruction *, 8> ToLift{
SI};
537 for (
auto I = --
SI->getIterator(),
E =
P->getIterator();
I !=
E; --
I) {
545 bool MayAlias =
isModOrRefSet(AA->getModRefInfo(
C, std::nullopt));
547 bool NeedLift =
false;
567 if (
isModSet(AA->getModRefInfo(
C, LoadLoc)))
600 MemoryUseOrDef *MemInsertPoint =
nullptr;
601 if (MemoryUseOrDef *MA = MSSA->getMemoryAccess(
P)) {
607 if (MemoryUseOrDef *MA = MSSA->getMemoryAccess(&
I)) {
617 I->moveBefore(
P->getIterator());
618 assert(MemInsertPoint &&
"Must have found insert point");
619 if (MemoryUseOrDef *MA = MSSA->getMemoryAccess(
I)) {
620 MSSAU->moveAfter(MA, MemInsertPoint);
628bool MemCpyOptPass::processStoreOfLoad(StoreInst *SI, LoadInst *LI,
629 const DataLayout &
DL,
634 BatchAAResults BAA(*AA, EEA);
640 if (
T->isAggregateType() &&
642 (TLI->has(LibFunc_memcpy) && TLI->has(LibFunc_memmove)))) {
652 if (
isModSet(BAA.getModRefInfo(&
I, LoadLoc))) {
662 if (
P == SI || moveUp(SI,
P, LI)) {
667 bool UseMemMove =
false;
668 if (
isModSet(AA->getModRefInfo(SI, LoadLoc)))
673 Builder.CreateTypeSize(Builder.getInt64Ty(),
DL.getTypeStoreSize(
T));
676 M = Builder.CreateMemMove(
SI->getPointerOperand(),
SI->getAlign(),
680 M = Builder.CreateMemCpy(
SI->getPointerOperand(),
SI->getAlign(),
682 M->copyMetadata(*SI, LLVMContext::MD_DIAssignID);
684 LLVM_DEBUG(
dbgs() <<
"Promoting " << *LI <<
" to " << *SI <<
" => " << *M
688 auto *NewAccess = MSSAU->createMemoryAccessAfter(M,
nullptr, LastDef);
696 BBI =
M->getIterator();
704 auto GetCall = [&]() -> CallInst * {
708 MSSA->getWalker()->getClobberingMemoryAccess(LI, BAA)))
713 bool Changed = performCallSlotOptzn(
714 LI, SI,
SI->getPointerOperand()->stripPointerCasts(),
716 DL.getTypeStoreSize(
SI->getOperand(0)->getType()),
717 std::min(
SI->getAlign(), LI->
getAlign()), BAA, GetCall);
730 if (performStackMoveOptzn(LI, SI, DestAlloca, SrcAlloca,
731 DL.getTypeStoreSize(
T), BAA)) {
733 BBI =
SI->getNextNode()->getIterator();
755 if (
SI->getMetadata(LLVMContext::MD_nontemporal))
758 const DataLayout &
DL =
SI->getDataLayout();
760 Value *StoredVal =
SI->getValueOperand();
769 return processStoreOfLoad(SI, LI,
DL, BBI);
790 tryMergingIntoMemset(SI,
SI->getPointerOperand(), ByteVal)) {
791 BBI =
I->getIterator();
798 auto *
T =
V->getType();
799 if (!
T->isAggregateType())
802 TypeSize
Size =
DL.getTypeStoreSize(
T);
803 if (
Size.isScalable())
807 auto *
M = Builder.CreateMemSet(
SI->getPointerOperand(), ByteVal,
Size,
809 M->copyMetadata(*SI, LLVMContext::MD_DIAssignID);
811 LLVM_DEBUG(
dbgs() <<
"Promoting " << *SI <<
" to " << *M <<
"\n");
816 auto *NewAccess = MSSAU->createMemoryAccessBefore(M,
nullptr, StoreDef);
823 BBI =
M->getIterator();
833 BBI =
I->getIterator();
842bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad,
843 Instruction *cpyStore,
Value *cpyDest,
844 Value *cpySrc, TypeSize cpySize,
847 std::function<CallInst *()> GetC) {
876 TypeSize SrcAllocaSize =
DL.getTypeAllocSize(srcAlloca->getAllocatedType());
880 uint64_t srcSize = SrcAllocaSize * srcArraySize->
getZExtValue();
882 if (cpySize < srcSize)
885 CallInst *
C = GetC();
890 if (Function *
F =
C->getCalledFunction())
891 if (
F->isIntrinsic() &&
F->getIntrinsicID() == Intrinsic::lifetime_start)
894 if (
C->getParent() != cpyStore->
getParent()) {
899 MemoryLocation DestLoc =
902 : MemoryLocation::getForDest(
cast<MemCpyInst>(cpyStore));
908 MSSA->getMemoryAccess(cpyStore), &SkippedLifetimeStart)) {
909 LLVM_DEBUG(dbgs() <<
"Call Slot: Dest pointer modified after call\n");
916 if (SkippedLifetimeStart) {
919 if (LifetimeArg && LifetimeArg->getParent() ==
C->getParent() &&
920 C->comesBefore(LifetimeArg))
926 bool ExplicitlyDereferenceableOnly;
928 ExplicitlyDereferenceableOnly) ||
931 LLVM_DEBUG(
dbgs() <<
"Call Slot: Dest pointer not dereferenceable\n");
950 LLVM_DEBUG(
dbgs() <<
"Call Slot: Dest may be visible through unwinding\n");
955 Align srcAlign = srcAlloca->getAlign();
956 bool isDestSufficientlyAligned = srcAlign <= cpyDestAlign;
960 LLVM_DEBUG(
dbgs() <<
"Call Slot: Dest not sufficiently aligned\n");
969 while (!srcUseList.empty()) {
970 User *
U = srcUseList.pop_back_val();
979 if (U !=
C && U != cpyLoad) {
980 LLVM_DEBUG(
dbgs() <<
"Call slot: Source accessed by " << *U <<
"\n");
987 bool SrcIsCaptured =
any_of(
C->args(), [&](Use &U) {
988 return U->stripPointerCasts() == cpySrc &&
989 !C->doesNotCapture(C->getArgOperandNo(&U));
1006 MemoryLocation SrcLoc =
1008 for (Instruction &
I :
1009 make_range(++
C->getIterator(),
C->getParent()->end())) {
1012 if (
II->getIntrinsicID() == Intrinsic::lifetime_end &&
1013 II->getArgOperand(0) == srcAlloca)
1036 bool NeedMoveGEP =
false;
1037 if (!DT->dominates(cpyDest,
C)) {
1040 if (
GEP &&
GEP->hasAllConstantIndices() &&
1041 DT->dominates(
GEP->getPointerOperand(),
C))
1063 for (
unsigned ArgI = 0; ArgI <
C->arg_size(); ++ArgI)
1064 if (
C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc &&
1065 cpySrc->
getType() !=
C->getArgOperand(ArgI)->getType())
1069 bool changedArgument =
false;
1070 for (
unsigned ArgI = 0; ArgI <
C->arg_size(); ++ArgI)
1071 if (
C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) {
1072 changedArgument =
true;
1073 C->setArgOperand(ArgI, cpyDest);
1076 if (!changedArgument)
1080 if (!isDestSufficientlyAligned) {
1087 GEP->moveBefore(
C->getIterator());
1090 if (SkippedLifetimeStart) {
1091 SkippedLifetimeStart->
moveBefore(
C->getIterator());
1092 MSSAU->moveBefore(MSSA->getMemoryAccess(SkippedLifetimeStart),
1093 MSSA->getMemoryAccess(
C));
1097 if (cpyLoad != cpyStore)
1106bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
1108 BatchAAResults &BAA) {
1122 int64_t MForwardOffset = 0;
1123 const DataLayout &
DL =
M->getModule()->getDataLayout();
1126 if (
M->getSource() != MDep->
getDest()) {
1127 std::optional<int64_t>
Offset =
1128 M->getSource()->getPointerOffsetFrom(MDep->
getDest(),
DL);
1131 MForwardOffset = *
Offset;
1134 Value *CopyLength =
M->getLength();
1139 if (MForwardOffset != 0 || MDep->
getLength() != CopyLength) {
1145 if (!MDepLen || !MLen)
1147 if (MDepLen->getZExtValue() < MLen->getZExtValue() + MForwardOffset) {
1150 if (MDepLen->getZExtValue() <= (uint64_t)MForwardOffset)
1154 CopyLength = ConstantInt::get(CopyLength->
getType(),
1155 MDepLen->getZExtValue() - MForwardOffset);
1163 if (NewCopySource && NewCopySource->
use_empty())
1176 MCopyLoc = MCopyLoc.getWithNewSize(
1185 if (MForwardOffset > 0) {
1187 std::optional<int64_t> MDestOffset =
1189 if (MDestOffset == MForwardOffset)
1190 CopySource =
M->getDest();
1192 CopySource = Builder.CreateInBoundsPtrAdd(
1193 CopySource, Builder.getInt64(MForwardOffset));
1197 MCopyLoc = MCopyLoc.getWithNewPtr(CopySource);
1198 if (CopySourceAlign)
1211 if (
writtenBetween(MSSA, BAA, MCopyLoc, MSSA->getMemoryAccess(MDep),
1212 MSSA->getMemoryAccess(M)))
1228 bool UseMemMove =
false;
1233 if (
M->isForceInlined())
1239 LLVM_DEBUG(
dbgs() <<
"MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
1247 NewM = Builder.CreateMemMove(
M->getDest(),
M->getDestAlign(), CopySource,
1248 CopySourceAlign, CopyLength,
M->isVolatile());
1249 else if (
M->isForceInlined())
1253 NewM = Builder.CreateMemCpyInline(
M->getDest(),
M->getDestAlign(),
1254 CopySource, CopySourceAlign, CopyLength,
1257 NewM = Builder.CreateMemCpy(
M->getDest(),
M->getDestAlign(), CopySource,
1258 CopySourceAlign, CopyLength,
M->isVolatile());
1264 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM,
nullptr, LastDef);
1292bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
1294 BatchAAResults &BAA) {
1317 MSSA->getMemoryAccess(MemSet),
1318 MSSA->getMemoryAccess(MemCpy)))
1330 if (DestSize == SrcSize) {
1353 "Preserving debug location based on moving memset within BB.");
1354 Builder.SetCurrentDebugLocation(MemSet->
getDebugLoc());
1360 SrcSize = Builder.CreateZExt(SrcSize, DestSize->
getType());
1362 DestSize = Builder.CreateZExt(DestSize, SrcSize->
getType());
1365 Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
1366 Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
1367 Value *MemsetLen = Builder.CreateSelect(
1368 Ule, ConstantInt::getNullValue(DestSize->
getType()), SizeDiff);
1370 Builder.CreateMemSet(Builder.CreatePtrAdd(Dest, SrcSize),
1371 MemSet->
getOperand(1), MemsetLen, Alignment);
1374 "MemCpy must be a MemoryDef");
1379 MSSAU->createMemoryAccessBefore(NewMemSet,
nullptr, LastDef);
1394 if (
II->getIntrinsicID() == Intrinsic::lifetime_start)
1396 return II->getArgOperand(0) == Alloca;
1430bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
1432 BatchAAResults &BAA) {
1436 int64_t MOffset = 0;
1441 std::optional<int64_t>
Offset =
1448 if (MOffset != 0 || MemSetSize != CopySize) {
1453 if (!CMemSetSize || !CCopySize ||
1454 CCopySize->getZExtValue() + MOffset > CMemSetSize->getZExtValue()) {
1458 if (CMemSetSize && CCopySize) {
1461 assert(CCopySize->getZExtValue() + MOffset >
1462 CMemSetSize->getZExtValue());
1464 CopySize = MemSetSize;
1467 ConstantInt::get(CopySize->
getType(),
1468 CMemSetSize->getZExtValue() <= (uint64_t)MOffset
1470 : CMemSetSize->getZExtValue() - MOffset);
1480 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM,
nullptr, LastDef);
1498bool MemCpyOptPass::performStackMoveOptzn(Instruction *Load, Instruction *Store,
1499 AllocaInst *DestAlloca,
1500 AllocaInst *SrcAlloca, TypeSize
Size,
1501 BatchAAResults &BAA) {
1514 if (!SrcSize ||
Size != *SrcSize) {
1515 LLVM_DEBUG(
dbgs() <<
"Stack Move: Source alloca size mismatch\n");
1519 if (!DestSize ||
Size != *DestSize) {
1520 LLVM_DEBUG(
dbgs() <<
"Stack Move: Destination alloca size mismatch\n");
1532 SmallVector<Instruction *, 4> LifetimeMarkers;
1533 SmallPtrSet<Instruction *, 4> AAMetadataInstrs;
1534 bool SrcNotDom =
false;
1536 auto CaptureTrackingWithModRef =
1538 function_ref<bool(Instruction *)> ModRefCallback) ->
bool {
1539 SmallVector<Instruction *, 8> Worklist;
1542 Worklist.
reserve(MaxUsesToExplore);
1543 SmallPtrSet<const Use *, 20> Visited;
1544 while (!Worklist.
empty()) {
1546 for (
const Use &U :
I->uses()) {
1550 if (!DT->dominates(SrcAlloca, UI))
1553 if (Visited.
size() >= MaxUsesToExplore) {
1556 <<
"Stack Move: Exceeded max uses to see ModRef, bailing\n");
1559 if (!Visited.
insert(&U).second)
1565 if (UI->mayReadOrWriteMemory()) {
1566 if (UI->isLifetimeStartOrEnd()) {
1575 AAMetadataInstrs.
insert(UI);
1577 if (!ModRefCallback(UI))
1592 ModRefInfo DestModRef = ModRefInfo::NoModRef;
1594 SmallVector<BasicBlock *, 8> ReachabilityWorklist;
1595 auto DestModRefCallback = [&](
Instruction *UI) ->
bool {
1605 if (UI->getParent() ==
Store->getParent()) {
1614 if (UI->comesBefore(Store))
1624 ReachabilityWorklist.
push_back(UI->getParent());
1630 if (!CaptureTrackingWithModRef(DestAlloca, DestModRefCallback))
1633 if (!ReachabilityWorklist.
empty() &&
1635 nullptr, DT,
nullptr))
1643 auto SrcModRefCallback = [&](
Instruction *UI) ->
bool {
1646 if (PDT->dominates(Load, UI) || UI == Load || UI == Store)
1656 if (!CaptureTrackingWithModRef(SrcAlloca, SrcModRefCallback))
1663 SrcAlloca->
getParent()->getFirstInsertionPt());
1678 if (!LifetimeMarkers.
empty()) {
1679 for (Instruction *
I : LifetimeMarkers)
1688 for (Instruction *
I : AAMetadataInstrs) {
1689 I->setMetadata(LLVMContext::MD_alias_scope,
nullptr);
1690 I->setMetadata(LLVMContext::MD_noalias,
nullptr);
1691 I->setMetadata(LLVMContext::MD_tbaa,
nullptr);
1692 I->setMetadata(LLVMContext::MD_tbaa_struct,
nullptr);
1695 LLVM_DEBUG(
dbgs() <<
"Stack Move: Performed staack-move optimization\n");
1717 if (
M->isVolatile())
1721 if (
M->getSource() ==
M->getDest()) {
1734 MemoryUseOrDef *MA = MSSA->getMemoryAccess(M);
1741 if (GV->isConstant() && GV->hasDefinitiveInitializer())
1743 M->getDataLayout())) {
1746 M->getRawDest(), ByteVal,
M->getLength(),
M->getDestAlign(),
false);
1749 MSSAU->createMemoryAccessAfter(NewM,
nullptr, LastDef);
1757 BatchAAResults BAA(*AA, EEA);
1761 const MemoryAccess *DestClobber =
1762 MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc, BAA);
1770 if (DestClobber->
getBlock() ==
M->getParent())
1771 if (processMemSetMemCpyDependence(M, MDep, BAA))
1774 MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess(
1786 if (Instruction *
MI = MD->getMemoryInst()) {
1789 if (performCallSlotOptzn(M, M,
M->getDest(),
M->getSource(),
1791 M->getDestAlign().valueOrOne(), BAA,
1792 [
C]() -> CallInst * { return C; })) {
1794 <<
" call: " << *
C <<
"\n"
1795 <<
" memcpy: " << *M <<
"\n");
1803 if (processMemCpyMemCpyDependence(M, MDep, BAA))
1806 if (performMemCpyToMemSetOptzn(M, MDep, BAA)) {
1835 if (performStackMoveOptzn(M, M, DestAlloca, SrcAlloca,
1838 BBI =
M->getNextNode()->getIterator();
1849bool MemCpyOptPass::isMemMoveMemSetDependency(MemMoveInst *M) {
1850 const auto &
DL =
M->getDataLayout();
1851 MemoryUseOrDef *MemMoveAccess = MSSA->getMemoryAccess(M);
1857 auto *MemMoveSourceOp =
M->getSource();
1863 LocationSize MemMoveLocSize = SourceLoc.
Size;
1864 if (
Source->getPointerOperand() !=
M->getDest() ||
1870 uint64_t MemMoveSize = MemMoveLocSize.
getValue();
1871 LocationSize TotalSize =
1873 MemoryLocation CombinedLoc(
M->getDest(), TotalSize);
1877 BatchAAResults BAA(*AA);
1880 MSSA->getWalker()->getClobberingMemoryAccess(FirstDef, CombinedLoc, BAA));
1890 if (!MemSetLength || MemSetLength->getZExtValue() < MemMoveSize)
1907 if (!
M->isVolatile() && isMemMoveMemSetDependency(M)) {
1917 LLVM_DEBUG(
dbgs() <<
"MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
1921 Type *ArgTys[3] = {
M->getRawDest()->getType(),
M->getRawSource()->getType(),
1922 M->getLength()->getType()};
1924 M->getModule(), Intrinsic::memcpy, ArgTys));
1934bool MemCpyOptPass::processByValArgument(CallBase &CB,
unsigned ArgNo) {
1939 TypeSize ByValSize =
DL.getTypeAllocSize(ByValTy);
1941 MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB);
1944 MemCpyInst *MDep =
nullptr;
1945 BatchAAResults BAA(*AA, EEA);
1946 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
1960 if (!C1 || !TypeSize::isKnownGE(
1973 if ((!MemDepAlign || *MemDepAlign < *ByValAlign) &&
1989 MSSA->getMemoryAccess(MDep), CallAccess))
1992 LLVM_DEBUG(
dbgs() <<
"MemCpyOptPass: Forwarding memcpy to byval:\n"
1993 <<
" " << *MDep <<
"\n"
1994 <<
" " << CB <<
"\n");
2017bool MemCpyOptPass::processImmutArgument(CallBase &CB,
unsigned ArgNo) {
2018 BatchAAResults BAA(*AA, EEA);
2042 std::optional<TypeSize> AllocaSize = AI->getAllocationSize(
DL);
2045 if (!AllocaSize || AllocaSize->isScalable())
2048 MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB);
2052 MemCpyInst *MDep =
nullptr;
2053 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
2069 if (!MDepLen || AllocaSize != MDepLen->getValue())
2076 Align AllocaAlign = AI->getAlign();
2077 if (MemDepAlign < AllocaAlign &&
2089 MSSA->getMemoryAccess(MDep), CallAccess))
2096 LLVM_DEBUG(
dbgs() <<
"MemCpyOptPass: Forwarding memcpy to Immut src:\n"
2097 <<
" " << *MDep <<
"\n"
2098 <<
" " << CB <<
"\n");
2108bool MemCpyOptPass::iterateOnFunction(Function &
F) {
2109 bool MadeChange =
false;
2112 for (BasicBlock &BB :
F) {
2117 if (!DT->isReachableFromEntry(&BB))
2124 bool RepeatInstruction =
false;
2127 MadeChange |= processStore(SI, BI);
2129 RepeatInstruction = processMemSet(M, BI);
2131 RepeatInstruction = processMemCpy(M, BI);
2133 RepeatInstruction = processMemMove(M, BI);
2135 for (
unsigned i = 0, e = CB->
arg_size(); i != e; ++i) {
2137 MadeChange |= processByValArgument(*CB, i);
2139 MadeChange |= processImmutArgument(*CB, i);
2144 if (RepeatInstruction) {
2145 if (BI != BB.
begin())
2163 bool MadeChange =
runImpl(
F, &TLI, AA, AC, DT, PDT, &MSSA->getMSSA());
2177 bool MadeChange =
false;
2190 if (!iterateOnFunction(
F))
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseSet and SmallDenseSet classes.
static bool runImpl(Function &F, const TargetLowering &TLI, AssumptionCache *AC)
This is the interface for a simple mod/ref and alias analysis over globals.
Module.h This file contains the declarations for the Module class.
This header defines various interfaces for pass management in LLVM.
static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU)
static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start, Instruction *End)
static bool isZeroSize(Value *Size)
static bool hasUndefContents(MemorySSA *MSSA, BatchAAResults &AA, Value *V, MemoryDef *Def)
Determine whether the pointer V had only undefined content (due to Def), either because it was freshl...
static bool accessedBetween(BatchAAResults &AA, MemoryLocation Loc, const MemoryUseOrDef *Start, const MemoryUseOrDef *End, Instruction **SkippedLifetimeStart=nullptr)
static bool overreadUndefContents(MemorySSA *MSSA, MemCpyInst *MemCpy, MemIntrinsic *MemSrc, BatchAAResults &BAA)
static cl::opt< bool > EnableMemCpyOptWithoutLibcalls("enable-memcpyopt-without-libcalls", cl::Hidden, cl::desc("Enable memcpyopt even when libcalls are disabled"))
static bool writtenBetween(MemorySSA *MSSA, BatchAAResults &AA, MemoryLocation Loc, const MemoryUseOrDef *Start, const MemoryUseOrDef *End)
This file provides utility analysis objects describing memory locations.
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
A manager for alias analyses.
LLVM_ABI bool isStaticAlloca() const
Return true if this alloca is in the entry block of the function and is a constant size.
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
unsigned getAddressSpace() const
Return the address space for the allocation.
LLVM_ABI std::optional< TypeSize > getAllocationSize(const DataLayout &DL) const
Get allocation size in bytes.
void setAlignment(Align Align)
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
iterator begin()
Instruction iterator methods.
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
InstListType::iterator iterator
Instruction iterators...
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB)
ModRefInfo getModRefInfo(const Instruction *I, const std::optional< MemoryLocation > &OptLoc)
ModRefInfo callCapturesBefore(const Instruction *I, const MemoryLocation &MemLoc, DominatorTree *DT)
Represents analyses that only rely on functions' control flow.
bool doesNotCapture(unsigned OpNo) const
Determine whether this data operand is not captured.
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
bool isByValArgument(unsigned ArgNo) const
Determine whether this argument is passed by value.
MaybeAlign getParamAlign(unsigned ArgNo) const
Extract the alignment for a call or parameter (0=unknown).
bool onlyReadsMemory(unsigned OpNo) const
Type * getParamByValType(unsigned ArgNo) const
Extract the byval type for a call or parameter.
Value * getArgOperand(unsigned i) const
void setArgOperand(unsigned i, Value *v)
unsigned arg_size() const
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
A parsed version of the target data layout string in and methods for querying it.
Analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Context-sensitive CaptureAnalysis provider, which computes and caches the earliest common dominator c...
LLVM_ABI void mergeDIAssignID(ArrayRef< const Instruction * > SourceInstructions)
Merge the DIAssignID metadata from this instruction and those attached to instructions in SourceInstr...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI void dropUnknownNonDebugMetadata(ArrayRef< unsigned > KnownIDs={})
Drop all unknown metadata except for debug locations.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
LLVM_ABI void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
Value * getPointerOperand()
Align getAlign() const
Return the alignment of the access that is being performed.
static LocationSize precise(uint64_t Value)
TypeSize getValue() const
This class wraps the llvm.memcpy intrinsic.
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
bool runImpl(Function &F, TargetLibraryInfo *TLI, AAResults *AA, AssumptionCache *AC, DominatorTree *DT, PostDominatorTree *PDT, MemorySSA *MSSA)
Value * getLength() const
Value * getRawDest() const
Value * getDest() const
This is just like getRawDest, but it strips off any cast instructions (including addrspacecast) that ...
MaybeAlign getDestAlign() const
This is the common base class for memset/memcpy/memmove.
Value * getRawSource() const
Return the arguments to the instruction.
MaybeAlign getSourceAlign() const
Value * getSource() const
This is just like getRawSource, but it strips off any cast instructions that feed it,...
BasicBlock * getBlock() const
AllAccessType::self_iterator getIterator()
Get the iterators for the all access list and the defs only list We default to the all access list.
Represents a read-write access to memory, whether it is a must-alias, or a may-alias.
Representation for a specific memory location.
static LLVM_ABI MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
static LLVM_ABI MemoryLocation getForSource(const MemTransferInst *MTI)
Return a location representing the source of a memory transfer.
LocationSize Size
The maximum size of the location, in address-units, or UnknownSize if the size is not known.
static MemoryLocation getBeforeOrAfter(const Value *Ptr, const AAMDNodes &AATags=AAMDNodes())
Return a location that may access any location before or after Ptr, while remaining within the underl...
static LLVM_ABI MemoryLocation getForDest(const MemIntrinsic *MI)
Return a location representing the destination of a memory set or transfer.
An analysis that produces MemorySSA for a function.
MemoryAccess * getClobberingMemoryAccess(const Instruction *I, BatchAAResults &AA)
Given a memory Mod/Ref/ModRef'ing instruction, calling this will give you the nearest dominating Memo...
Encapsulates MemorySSA, including all data associated with memory accesses.
LLVM_ABI bool dominates(const MemoryAccess *A, const MemoryAccess *B) const
Given two memory accesses in potentially different blocks, determine whether MemoryAccess A dominates...
LLVM_ABI void verifyMemorySSA(VerificationLevel=VerificationLevel::Fast) const
Verify that MemorySSA is self consistent (IE definitions dominate all uses, uses appear in the right ...
LLVM_ABI MemorySSAWalker * getWalker()
MemoryUseOrDef * getMemoryAccess(const Instruction *I) const
Given a memory Mod/Ref'ing instruction, get the MemorySSA access associated with it.
bool isLiveOnEntryDef(const MemoryAccess *MA) const
Return true if MA represents the live on entry value.
Class that has the common methods + fields of memory uses/defs.
MemoryAccess * getDefiningAccess() const
Get the access that produces the memory state used by this Use.
Instruction * getMemoryInst() const
Get the instruction that this MemoryUse represents.
const DataLayout & getDataLayout() const
Get the data layout for the module's target platform.
Analysis pass which computes a PostDominatorTree.
PostDominatorTree Class - Concrete subclass of DominatorTree that is used to compute the post-dominat...
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
void reserve(size_type N)
typename SuperClass::const_iterator const_iterator
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
typename SuperClass::iterator iterator
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
LLVM_ABI unsigned getIntegerBitWidth() const
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVM_ABI std::optional< int64_t > getPointerOffsetFrom(const Value *Other, const DataLayout &DL) const
If this ptr is provably equal to Other plus a constant offset, return that offset in bytes.
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
const ParentTy * getParent() const
reverse_self_iterator getReverseIterator()
self_iterator getIterator()
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
Abstract Attribute helper functions.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
@ User
could "use" a pointer
friend class Instruction
Iterator for Instructions in a `BasicBlock.
LLVM_ABI iterator begin() const
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
LLVM_ABI bool isPotentiallyReachableFromMany(SmallVectorImpl< BasicBlock * > &Worklist, const BasicBlock *StopBB, const SmallPtrSetImpl< BasicBlock * > *ExclusionSet, const DominatorTree *DT=nullptr, const LoopInfo *LI=nullptr)
Determine whether there is at least one path from a block in 'Worklist' to 'StopBB' without passing t...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
auto partition_point(R &&Range, Predicate P)
Binary search for the first iterator in a range where a predicate is false.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
auto cast_or_null(const Y &Val)
LLVM_ABI unsigned getDefaultMaxUsesToExploreForCaptureTracking()
getDefaultMaxUsesToExploreForCaptureTracking - Return default value of the maximal number of uses to ...
LLVM_ABI bool PointerMayBeCapturedBefore(const Value *V, bool ReturnCaptures, const Instruction *I, const DominatorTree *DT, bool IncludeI=false, unsigned MaxUsesToExplore=0, const LoopInfo *LI=nullptr)
PointerMayBeCapturedBefore - Return true if this pointer value may be captured by the enclosing funct...
LLVM_ABI Value * simplifyInstruction(Instruction *I, const SimplifyQuery &Q)
See if we can compute a simplified version of this instruction.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
auto reverse(ContainerTy &&C)
LLVM_ABI Align getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, const DataLayout &DL, const Instruction *CxtI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr)
Try to ensure that the alignment of V is at least PrefAlign bytes.
bool isModSet(const ModRefInfo MRI)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool isModOrRefSet(const ModRefInfo MRI)
LLVM_ABI bool isNotVisibleOnUnwind(const Value *Object, bool &RequiresNoCaptureBeforeUnwind)
Return true if Object memory is not visible after an unwind, in the sense that program semantics cann...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
RNSuccIterator< NodeRef, BlockT, RegionT > succ_begin(NodeRef Node)
ModRefInfo
Flags indicating whether a memory access modifies or references memory.
IRBuilder(LLVMContext &, FolderTy, InserterTy, MDNode *, ArrayRef< OperandBundleDef >) -> IRBuilder< FolderTy, InserterTy >
LLVM_ABI bool VerifyMemorySSA
Enables verification of MemorySSA.
RNSuccIterator< NodeRef, BlockT, RegionT > succ_end(NodeRef Node)
DWARFExpression::Operation Op
LLVM_ABI bool isIdentifiedFunctionLocal(const Value *V)
Return true if V is umabigously identified at the function-level.
LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Value * isBytewiseValue(Value *V, const DataLayout &DL)
If the specified value can be set by repeating the same byte in memory, return the i8 value that it i...
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
LLVM_ABI void combineAAMetadata(Instruction *K, const Instruction *J)
Combine metadata of two instructions, where instruction J is a memory access that has been merged int...
bool capturesAnything(CaptureComponents CC)
LLVM_ABI UseCaptureInfo DetermineUseCaptureKind(const Use &U, const Value *Base)
Determine what kind of capture behaviour U may exhibit.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
AAResults AliasAnalysis
Temporary typedef for legacy code that uses a generic AliasAnalysis pointer or reference.
bool isRefSet(const ModRefInfo MRI)
LLVM_ABI bool isWritableObject(const Value *Object, bool &ExplicitlyDereferenceableOnly)
Return true if the Object is writable, in the sense that any location based on this pointer that can ...
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Align valueOrOne() const
For convenience, returns a valid alignment or 1 if undefined.
CaptureComponents UseCC
Components captured by this use.
CaptureComponents ResultCC
Components captured by the return value of the user of this Use.