50#include "llvm/IR/IntrinsicsNVPTX.h"
76#define DEBUG_TYPE "nvptx-lower"
86 cl::desc(
"NVPTX Specific: FMA contraction (0: don't do it"
87 " 1: do it 2: do it aggressively"),
93 "NVPTX Specific: Override the precision of the lowering for f32 fdiv"),
98 "Use IEEE Compliant F32 div.rnd if available (default)"),
100 "Use IEEE Compliant F32 div.rnd if available, no FTZ")),
105 cl::desc(
"NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."),
111 "nvptx-approx-log2f32",
112 cl::desc(
"NVPTX Specific: whether to use lg2.approx for log2"),
116 "nvptx-force-min-byval-param-align",
cl::Hidden,
117 cl::desc(
"NVPTX Specific: force 4-byte minimal alignment for byval"
118 " params of device functions."),
129 if (Flags.hasApproximateFuncs())
142 if (Flags.hasApproximateFuncs())
198static std::optional<std::pair<unsigned int, MVT>>
205 return {{4, MVT::i64}};
212 if (VectorVT == MVT::i128 || VectorVT == MVT::f128)
213 return {{2, MVT::i64}};
221 unsigned PackRegSize;
234 if (!CanLowerTo256Bit)
243 return std::pair(NumElts, EltVT);
250 if (!CanLowerTo256Bit)
268 if (!CanLowerTo256Bit)
274 return std::pair(NumElts, EltVT);
284 const unsigned NPerReg = PackRegSize / EltVT.
getSizeInBits();
305 for (
const auto [VT, Off] :
zip(TempVTs, TempOffsets)) {
311 if (VT.getScalarType() == MVT::i8) {
312 if (RegisterVT == MVT::i16)
313 RegisterVT = MVT::i8;
314 else if (RegisterVT == MVT::v2i16)
315 RegisterVT = MVT::v2i8;
317 assert(RegisterVT == MVT::v4i8 &&
318 "Expected v4i8, v2i16, or i16 for i8 RegisterVT");
325 for (
unsigned I :
seq(NumRegs)) {
346 if (V.getValueType() == VT) {
347 assert(
I == 0 &&
"Index must be 0 for scalar value");
364 return GetElement(0);
390 "Promotion is not suitable for scalars of size larger than 64-bits");
424 if (ParamAlignment < AccessSize)
427 if (Offsets[Idx] & (AccessSize - 1))
430 EVT EltVT = ValueVTs[Idx];
434 if (EltSize >= AccessSize)
437 unsigned NumElts = AccessSize / EltSize;
439 if (AccessSize != EltSize * NumElts)
443 if (Idx + NumElts > ValueVTs.
size())
447 if (NumElts != 4 && NumElts != 2)
450 for (
unsigned j = Idx + 1; j < Idx + NumElts; ++j) {
452 if (ValueVTs[j] != EltVT)
456 if (Offsets[j] - Offsets[j - 1] != EltSize)
475 bool IsVAArg =
false) {
484 const auto GetNumElts = [&](
unsigned I) ->
unsigned {
485 for (
const unsigned AccessSize : {16, 8, 4, 2}) {
487 I, AccessSize, ValueVTs, Offsets, ParamAlignment);
488 assert((NumElts == 1 || NumElts == 2 || NumElts == 4) &&
489 "Unexpected vectorization size");
497 for (
unsigned I = 0,
E = ValueVTs.
size();
I !=
E;) {
498 const unsigned NumElts = GetNumElts(
I);
499 VectorInfo.push_back(NumElts);
502 assert(std::accumulate(VectorInfo.begin(), VectorInfo.end(), 0u) ==
537 bool IsOpSupported = STI.allowFP16Math();
542 case ISD::FMAXNUM_IEEE:
543 case ISD::FMINNUM_IEEE:
546 case ISD::FMAXIMUMNUM:
547 case ISD::FMINIMUMNUM:
548 IsOpSupported &= STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70;
551 IsOpSupported &= STI.getSmVersion() >= 75 && STI.getPTXVersion() >= 70;
559 bool IsOpSupported = STI.hasNativeBF16Support(
Op);
561 Op, VT, IsOpSupported ? Action : NoBF16Action);
566 bool IsOpSupported =
false;
574 IsOpSupported = STI.getSmVersion() >= 90 && STI.getPTXVersion() >= 80;
593 if (STI.hasF32x2Instructions())
603 if (STI.getSmVersion() >= 30 && STI.getPTXVersion() > 31)
635 if (STI.hasF32x2Instructions())
662 for (
MVT VT : {MVT::bf16, MVT::f16, MVT::v2bf16, MVT::v2f16, MVT::f32,
663 MVT::v2f32, MVT::f64, MVT::i1, MVT::i8, MVT::i16, MVT::v2i16,
664 MVT::v4i8, MVT::i32, MVT::i64}) {
693 {MVT::i8, MVT::i16, MVT::v2i16, MVT::i32, MVT::i64},
696 if (STI.hasHWROT32()) {
714 for (
MVT ValVT : FloatVTs) {
715 for (
MVT MemVT : FloatVTs) {
727 for (
MVT ValVT : IntVTs)
728 for (
MVT MemVT : IntVTs)
755 if (!
isTypeLegal(VT) && VT.getStoreSizeInBits() <= 256)
792 {MVT::i16, MVT::i32, MVT::i64},
Legal);
824 if (STI.getPTXVersion() >= 43) {
847 ISD::FMAXIMUM, ISD::FMINIMUM, ISD::FMAXIMUMNUM,
855 if (STI.allowFP16Math() || STI.hasBF16Math())
862 if (EltVT == MVT::f32 || EltVT == MVT::f64) {
864 ISD::VECREDUCE_FMAXIMUM, ISD::VECREDUCE_FMINIMUM},
889 for (
const auto &VT : {MVT::bf16, MVT::v2bf16}) {
890 if (!STI.hasNativeBF16Support(
Op) && STI.hasNativeBF16Support(
ISD::FMA)) {
897 const bool IsFP16FP16x2NegAvailable = STI.getSmVersion() >= 53 &&
898 STI.getPTXVersion() >= 60 &&
900 for (
const auto &VT : {MVT::f16, MVT::v2f16})
904 setBF16OperationAction(ISD::FNEG, MVT::bf16,
Legal,
Expand);
905 setBF16OperationAction(ISD::FNEG, MVT::v2bf16,
Legal,
Expand);
910 for (
const auto &
Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT,
911 ISD::FROUNDEVEN, ISD::FTRUNC}) {
923 if (STI.getSmVersion() < 80 || STI.getPTXVersion() < 71) {
926 if (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78) {
927 for (
MVT VT : {MVT::bf16, MVT::f32, MVT::f64}) {
940 if (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78) {
941 for (
MVT VT : {MVT::i1, MVT::i16, MVT::i32, MVT::i64}) {
970 for (
const auto &
Op :
986 if (STI.getPTXVersion() >= 65) {
987 setFP16OperationAction(ISD::FABS, MVT::f16,
Legal,
Promote);
988 setFP16OperationAction(ISD::FABS, MVT::v2f16,
Legal,
Expand);
993 setBF16OperationAction(ISD::FABS, MVT::v2bf16,
Legal,
Expand);
994 setBF16OperationAction(ISD::FABS, MVT::bf16,
Legal,
Promote);
998 for (
const auto &
Op :
999 {ISD::FMINNUM, ISD::FMAXNUM, ISD::FMINIMUMNUM, ISD::FMAXIMUMNUM}) {
1010 bool SupportsF32MinMaxNaN =
1011 STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70;
1012 for (
const auto &
Op : {ISD::FMINIMUM, ISD::FMAXIMUM}) {
1032 setFP16OperationAction(ISD::FEXP2, MVT::f16,
Legal,
Promote);
1033 setFP16OperationAction(ISD::FEXP2, MVT::v2f16,
Legal,
Expand);
1034 setBF16OperationAction(ISD::FEXP2, MVT::bf16,
Legal,
Promote);
1035 setBF16OperationAction(ISD::FEXP2, MVT::v2bf16,
Legal,
Expand);
1067 {MVT::v2i32, MVT::v4i32, MVT::v8i32, MVT::v16i32,
1068 MVT::v32i32, MVT::v64i32, MVT::v128i32},
1073 {MVT::v2i32, MVT::v4i32, MVT::v8i32, MVT::v16i32,
1074 MVT::v32i32, MVT::v64i32, MVT::v128i32},
1087#define MAKE_CASE(V) \
1154 bool Reciprocal)
const {
1175 if (Reciprocal || ExtraSteps > 0) {
1177 return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f
1178 : Intrinsic::nvvm_rsqrt_approx_f);
1179 else if (VT == MVT::f64)
1180 return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d);
1185 return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f
1186 : Intrinsic::nvvm_sqrt_approx_f);
1194 DAG.
getConstant(Intrinsic::nvvm_rcp_approx_ftz_d,
DL, MVT::i32),
1195 MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d));
1203 std::optional<unsigned> FirstVAArg,
const CallBase &CB,
1204 unsigned UniqueCallSite)
const {
1207 std::string Prototype;
1209 O <<
"prototype_" << UniqueCallSite <<
" : .callprototype ";
1216 const Align RetAlign = getArgumentAlignment(&CB, RetTy, 0,
DL);
1217 O <<
".param .align " << RetAlign.
value() <<
" .b8 _["
1218 <<
DL.getTypeAllocSize(RetTy) <<
"]";
1222 size = ITy->getBitWidth();
1225 "Floating point type expected here");
1233 O <<
".param .b" <<
size <<
" _";
1235 O <<
".param .b" << PtrVT.getSizeInBits() <<
" _";
1245 const unsigned NumArgs = FirstVAArg.value_or(Args.size());
1247 for (
const unsigned I :
llvm::seq(NumArgs)) {
1248 const auto ArgOuts =
1249 AllOuts.take_while([
I](
auto O) {
return O.OrigArgIndex ==
I; });
1250 AllOuts = AllOuts.drop_front(ArgOuts.size());
1252 Type *Ty = Args[
I].Ty;
1258 if (ArgOuts[0].Flags.isByVal()) {
1261 Type *ETy = Args[
I].IndirectType;
1262 Align InitialAlign = ArgOuts[0].Flags.getNonZeroByValAlign();
1263 Align ParamByValAlign =
1266 O <<
".param .align " << ParamByValAlign.
value() <<
" .b8 _["
1267 << ArgOuts[0].Flags.getByValSize() <<
"]";
1271 getArgumentAlignment(&CB, Ty,
I + AttributeList::FirstArgIndex,
DL);
1272 O <<
".param .align " << ParamAlign.
value() <<
" .b8 _["
1273 <<
DL.getTypeAllocSize(Ty) <<
"]";
1278 (
getValueType(
DL, Ty) == MVT::i8 && ArgOuts[0].VT == MVT::i16)) &&
1279 "type mismatch between callee prototype and arguments");
1285 sz = PtrVT.getSizeInBits();
1287 sz = Ty->getPrimitiveSizeInBits();
1289 O <<
".param .b" << sz <<
" _";
1294 O << (first ?
"" :
",") <<
" .param .align "
1295 << STI.getMaxRequiredAlignment() <<
" .b8 _[]";
1314 return DL.getABITypeAlign(Ty);
1319 if (!DirectCallee) {
1327 return StackAlign.value();
1338 return DL.getABITypeAlign(Ty);
1363 if (
Ptr->getOpcode() == ISD::ADDRSPACECAST) {
1366 Ptr = ASC->getOperand(0);
1385 const EVT ActualVT = V.getValueType();
1386 assert((ActualVT == ExpectedVT ||
1388 "Non-integer argument type size mismatch");
1389 if (ExpectedVT.
bitsGT(ActualVT))
1391 if (ExpectedVT.
bitsLT(ActualVT))
1400 if (CLI.
IsVarArg && (STI.getPTXVersion() < 60 || STI.getSmVersion() < 30))
1402 "Support for variadic functions (unsized array parameter) introduced "
1403 "in PTX ISA version 6.0 and requires target sm_30.");
1415 const auto GetI32 = [&](
const unsigned I) {
1419 const unsigned UniqueCallSite = GlobalUniqueCallSite++;
1427 const auto MakeDeclareScalarParam = [&](
SDValue Symbol,
unsigned Size) {
1433 {StartChain, Symbol, GetI32(SizeBits), DeclareGlue});
1443 {StartChain, Symbol, GetI32(
Align.
value()), GetI32(
Size), DeclareGlue});
1465 "Non-VarArg function with extra arguments");
1468 unsigned VAOffset = 0;
1470 const SDValue VADeclareParam =
1471 CLI.
Args.size() > FirstVAArg
1472 ? MakeDeclareArrayParam(getCallParamSymbol(DAG, FirstVAArg, MVT::i32),
1473 Align(STI.getMaxRequiredAlignment()), 0)
1487 assert(AllOuts.size() == AllOutVals.size() &&
1488 "Outs and OutVals must be the same size");
1492 const auto ArgI = E.index();
1493 const auto Arg = E.value();
1494 const auto ArgOuts =
1495 AllOuts.take_while([&](
auto O) {
return O.OrigArgIndex == ArgI; });
1496 const auto ArgOutVals = AllOutVals.take_front(ArgOuts.size());
1497 AllOuts = AllOuts.drop_front(ArgOuts.size());
1498 AllOutVals = AllOutVals.drop_front(ArgOuts.size());
1500 const bool IsVAArg = (ArgI >= FirstVAArg);
1501 const bool IsByVal = Arg.IsByVal;
1504 getCallParamSymbol(DAG, IsVAArg ? FirstVAArg : ArgI, MVT::i32);
1506 assert((!IsByVal || Arg.IndirectType) &&
1507 "byval arg must have indirect type");
1508 Type *ETy = (IsByVal ? Arg.IndirectType : Arg.Ty);
1510 const Align ArgAlign = [&]() {
1515 const Align InitialAlign = ArgOuts[0].Flags.getNonZeroByValAlign();
1519 return getArgumentAlignment(CB, Arg.Ty, ArgI + 1,
DL);
1522 const unsigned TySize =
DL.getTypeAllocSize(ETy);
1523 assert((!IsByVal || TySize == ArgOuts[0].Flags.getByValSize()) &&
1524 "type size mismatch");
1526 const SDValue ArgDeclare = [&]() {
1528 return VADeclareParam;
1531 return MakeDeclareArrayParam(ParamSymbol, ArgAlign, TySize);
1533 assert(ArgOuts.size() == 1 &&
"We must pass only one value as non-array");
1534 assert((ArgOuts[0].VT.isInteger() || ArgOuts[0].VT.isFloatingPoint()) &&
1535 "Only int and float types are supported as non-array arguments");
1537 return MakeDeclareScalarParam(ParamSymbol, TySize);
1541 assert(ArgOutVals.size() == 1 &&
"We must pass only one value as byval");
1542 SDValue SrcPtr = ArgOutVals[0];
1543 const auto PointerInfo =
refinePtrAS(SrcPtr, DAG,
DL, *
this);
1544 const Align BaseSrcAlign = ArgOuts[0].Flags.getNonZeroByValAlign();
1547 VAOffset =
alignTo(VAOffset, ArgAlign);
1555 for (
const unsigned NumElts : VI) {
1560 DAG.
getLoad(LoadVT, dl, CallChain, SrcAddr, PointerInfo, SrcAlign);
1562 TypeSize ParamOffset = Offsets[J].getWithIncrement(VAOffset);
1567 DAG.
getStore(ArgDeclare, dl, SrcLoad, ParamAddr,
1580 assert(VTs.
size() == Offsets.size() &&
"Size mismatch");
1581 assert(VTs.
size() == ArgOuts.size() &&
"Size mismatch");
1587 const bool ExtendIntegerParam =
1588 Arg.Ty->isIntegerTy() &&
DL.getTypeAllocSizeInBits(Arg.Ty) < 32;
1590 const auto GetStoredValue = [&](
const unsigned I) {
1594 "OutVal type should always be legal");
1598 ExtendIntegerParam ? MVT::i32 : (VTI == MVT::i1 ? MVT::i8 : VTI);
1605 for (
const unsigned NumElts : VI) {
1613 "Vectorization should be disabled for vaargs.");
1619 const EVT TheStoreType = ExtendIntegerParam ? MVT::i32 : EltVT;
1622 assert(VAOffset == 0 &&
"VAOffset must be 0 for non-VA args");
1629 const MaybeAlign CurrentAlign = ExtendIntegerParam
1635 return GetStoredValue(J + K);
1651 const unsigned ResultSize =
DL.getTypeAllocSize(RetTy);
1653 const Align RetAlign = getArgumentAlignment(CB, RetTy, 0,
DL);
1654 MakeDeclareArrayParam(RetSymbol, RetAlign, ResultSize);
1656 MakeDeclareScalarParam(RetSymbol, ResultSize);
1662 if (VADeclareParam) {
1665 VADeclareParam.
getOperand(2), GetI32(VAOffset),
1668 VADeclareParam->
getVTList(), DeclareParamOps);
1679 const bool IsIndirectCall = (!Func && CB) || ConvertToIndirectCall;
1686 assert(CalleeFunc !=
nullptr &&
"Libcall callee must be set.");
1690 CalleeFunc->
addFnAttr(
"nvptx-libcall-callee",
"true");
1693 if (IsIndirectCall) {
1704 HasVAArgs ? std::optional(FirstVAArg) : std::nullopt, *CB,
1706 const char *ProtoStr =
nvTM->getStrPool().save(Proto).data();
1710 CallPrereqs.
push_back(PrototypeDeclare);
1713 const unsigned Proto = IsIndirectCall ? UniqueCallSite : 0;
1714 const unsigned NumArgs =
1721 {CallToken, GetI32(CLI.
IsConvergent), GetI32(IsIndirectCall),
1722 GetI32(Ins.empty() ? 0 : 1), GetI32(NumArgs), Callee, GetI32(Proto)});
1730 assert(VTs.
size() == Ins.size() &&
"Bad value decomposition");
1732 const Align RetAlign = getArgumentAlignment(CB, RetTy, 0,
DL);
1738 const bool ExtendIntegerRetVal =
1739 RetTy->
isIntegerTy() &&
DL.getTypeAllocSizeInBits(RetTy) < 32;
1743 for (
const unsigned NumElts : VI) {
1745 ExtendIntegerRetVal ?
MaybeAlign(std::nullopt)
1750 ExtendIntegerRetVal ? MVT::i32 : (VTI == MVT::i1 ? MVT::i8 : VTI);
1760 for (
const unsigned J :
llvm::seq(NumElts))
1768 UniqueCallSite + 1,
SDValue(), dl);
1789 if (STI.getPTXVersion() < 73 || STI.getSmVersion() < 52) {
1794 "Support for dynamic alloca introduced in PTX ISA version 7.3 and "
1795 "requires target sm_52.",
1829 if (STI.getPTXVersion() < 73 || STI.getSmVersion() < 52) {
1834 "Support for stackrestore requires PTX ISA version >= 7.3 and target "
1837 return Op.getOperand(0);
1851 if (STI.getPTXVersion() < 73 || STI.getSmVersion() < 52) {
1856 "Support for stacksave requires PTX ISA version >= 7.3 and target >= "
1880 unsigned NumOperands =
Node->getNumOperands();
1881 for (
unsigned i = 0; i < NumOperands; ++i) {
1883 EVT VVT = SubOp.getNode()->getValueType(0);
1886 for (
unsigned j = 0; j < NumSubElem; ++j) {
1897 assert(
A.getValueType() == MVT::i32 &&
B.getValueType() == MVT::i32 &&
1898 Selector.
getValueType() == MVT::i32 &&
"PRMT must have i32 operands");
1916 ArrayRef<std::pair<unsigned /*NodeType*/, unsigned /*NumInputs*/>>
Ops,
1922 while (Level.size() > 1) {
1928 unsigned I = 0,
E = Level.size();
1929 for (;
I + NumInputs <=
E;
I += NumInputs) {
1938 if (ReducedLevel.
empty()) {
1942 assert(
OpIdx <
Ops.size() &&
"no smaller operators for reduction");
1954 Level = ReducedLevel;
1957 return *Level.begin();
1962 switch (ReductionOpcode) {
1963 case ISD::VECREDUCE_FMAX:
1964 return ISD::FMAXNUM;
1965 case ISD::VECREDUCE_FMIN:
1966 return ISD::FMINNUM;
1967 case ISD::VECREDUCE_FMAXIMUM:
1968 return ISD::FMAXIMUM;
1969 case ISD::VECREDUCE_FMINIMUM:
1970 return ISD::FMINIMUM;
1977static std::optional<NVPTXISD::NodeType>
1979 switch (ReductionOpcode) {
1980 case ISD::VECREDUCE_FMAX:
1982 case ISD::VECREDUCE_FMIN:
1984 case ISD::VECREDUCE_FMAXIMUM:
1986 case ISD::VECREDUCE_FMINIMUM:
1989 return std::nullopt;
1999 const SDNodeFlags
Flags =
Op->getFlags();
2002 const unsigned Opcode =
Op->getOpcode();
2003 const EVT EltTy =
Vector.getValueType().getVectorElementType();
2006 const bool CanUseMinMax3 =
2007 EltTy == MVT::f32 && STI.getSmVersion() >= 100 &&
2008 STI.getPTXVersion() >= 88 &&
2009 (Opcode == ISD::VECREDUCE_FMAX || Opcode == ISD::VECREDUCE_FMIN ||
2010 Opcode == ISD::VECREDUCE_FMAXIMUM || Opcode == ISD::VECREDUCE_FMINIMUM);
2014 SmallVector<std::pair<
unsigned ,
unsigned >, 2> ScalarOps;
2017 CanUseMinMax3 && Opcode3Elem)
2018 ScalarOps.push_back({*Opcode3Elem, 3});
2030 EVT FromVT =
Op->getOperand(0)->getValueType(0);
2031 if (FromVT != MVT::v2i8) {
2047 EVT ToVT =
Op->getValueType(0);
2057 EVT VT =
Op->getValueType(0);
2063 return Operand->isUndef() || isa<ConstantSDNode>(Operand) ||
2064 isa<ConstantFPSDNode>(Operand);
2066 if (VT != MVT::v4i8)
2071 uint64_t SelectionValue) ->
SDValue {
2078 return getPRMT(L, R, SelectionValue,
DL, DAG);
2080 auto PRMT__10 = GetPRMT(
Op->getOperand(0),
Op->getOperand(1),
true, 0x3340);
2081 auto PRMT__32 = GetPRMT(
Op->getOperand(2),
Op->getOperand(3),
true, 0x3340);
2082 auto PRMT3210 = GetPRMT(PRMT__10, PRMT__32,
false, 0x5410);
2087 auto GetOperand = [](
SDValue Op,
int N) -> APInt {
2089 EVT VT =
Op->getValueType(0);
2091 return APInt(32, 0);
2093 if (VT == MVT::v2f16 || VT == MVT::v2bf16)
2095 else if (VT == MVT::v2i16 || VT == MVT::v4i8)
2101 if (VT == MVT::v4i8)
2103 return Value.zext(32);
2121 assert(32 % NumElements == 0 &&
"must evenly divide bit length");
2122 const unsigned ShiftAmount = 32 / NumElements;
2123 for (
unsigned ElementNo :
seq(NumElements))
2124 Value |= GetOperand(
Op, ElementNo).shl(ElementNo * ShiftAmount);
2126 return DAG.
getNode(ISD::BITCAST,
DL,
Op->getValueType(0), Const);
2134 EVT VectorVT =
Vector.getValueType();
2136 if (VectorVT == MVT::v4i8) {
2144 Flags.setNoSignedWrap(
Ext.getScalarValueSizeInBits() > 8);
2145 Flags.setNoUnsignedWrap(
Ext.getScalarValueSizeInBits() >= 8);
2146 Ext->setFlags(Flags);
2159 SDLoc dl(
Op.getNode());
2171 EVT VectorVT =
Vector.getValueType();
2173 if (VectorVT != MVT::v4i8)
2177 if (
Value->isUndef())
2189 return DAG.
getNode(ISD::BITCAST,
DL,
Op->getValueType(0), BFI);
2196 if (VectorVT != MVT::v4i8 ||
Op.getValueType() != MVT::v4i8)
2202 uint32_t Selector = 0;
2204 if (
I.value() != -1)
2205 Selector |= (
I.value() << (
I.index() * 4));
2223 EVT VT =
Op.getValueType();
2231 if (VTBits == 32 && STI.getSmVersion() >= 35) {
2284 EVT VT =
Op.getValueType();
2291 if (VTBits == 32 && STI.getSmVersion() >= 35) {
2338 EVT VT =
Op.getValueType();
2352 EVT VT =
Op.getValueType();
2355 return LowerFROUND32(
Op, DAG);
2358 return LowerFROUND64(
Op, DAG);
2374 EVT VT =
Op.getValueType();
2380 const unsigned SignBitMask = 0x80000000;
2383 const unsigned PointFiveInBits = 0x3F000000;
2384 SDValue PointFiveWithSignRaw =
2388 DAG.
getNode(ISD::BITCAST, SL, VT, PointFiveWithSignRaw);
2415 EVT VT =
Op.getValueType();
2434 DAG.
getNode(ISD::FTRUNC, SL, VT,
A);
2444 EVT VT =
N->getValueType(0);
2466 assert(STI.getSmVersion() < 90 || STI.getPTXVersion() < 78);
2468 if (
Op.getValueType() == MVT::bf16) {
2472 DAG.
getNode(
Op.getOpcode(), Loc, MVT::f32,
Op.getOperand(0)),
2482 assert(STI.getSmVersion() < 90 || STI.getPTXVersion() < 78);
2484 if (
Op.getOperand(0).getValueType() == MVT::bf16) {
2487 Op.getOpcode(), Loc,
Op.getValueType(),
2488 DAG.
getNode(ISD::FP_EXTEND, Loc, MVT::f32,
Op.getOperand(0)));
2497 EVT NarrowVT =
Op.getValueType();
2502 if (STI.getSmVersion() < 80 || STI.getPTXVersion() < 70) {
2505 if (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78) {
2507 if (STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70) {
2534 EVT WideVT =
Op.getValueType();
2537 (STI.getSmVersion() < 80 || STI.getPTXVersion() < 71)) {
2539 return DAG.
getNode(ISD::BF16_TO_FP, Loc, WideVT, Narrow);
2542 (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78)) {
2546 if (STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 71) {
2551 return DAG.
getNode(ISD::FP_EXTEND, Loc, WideVT,
Op);
2561 if (
Op.getValueType() != MVT::v2i16)
2563 EVT EltVT =
Op.getValueType().getVectorElementType();
2565 for (
int I = 0,
E =
Op.getValueType().getVectorNumElements();
I <
E;
I++) {
2568 [&](
const SDUse &O) {
2569 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT,
2570 O.get(), DAG.getIntPtrConstant(I, DL));
2585 for (
size_t I = 0;
I <
N->getNumOperands();
I++) {
2602 return Tcgen05StNode;
2614 case Intrinsic::nvvm_tcgen05_st_16x64b_x1:
2615 case Intrinsic::nvvm_tcgen05_st_16x64b_x2:
2616 case Intrinsic::nvvm_tcgen05_st_16x64b_x4:
2617 case Intrinsic::nvvm_tcgen05_st_16x64b_x8:
2618 case Intrinsic::nvvm_tcgen05_st_16x64b_x16:
2619 case Intrinsic::nvvm_tcgen05_st_16x64b_x32:
2620 case Intrinsic::nvvm_tcgen05_st_16x64b_x128:
2621 case Intrinsic::nvvm_tcgen05_st_16x128b_x1:
2622 case Intrinsic::nvvm_tcgen05_st_16x128b_x2:
2623 case Intrinsic::nvvm_tcgen05_st_16x128b_x4:
2624 case Intrinsic::nvvm_tcgen05_st_16x128b_x8:
2625 case Intrinsic::nvvm_tcgen05_st_16x128b_x16:
2626 case Intrinsic::nvvm_tcgen05_st_16x128b_x32:
2627 case Intrinsic::nvvm_tcgen05_st_16x128b_x64:
2628 case Intrinsic::nvvm_tcgen05_st_16x256b_x1:
2629 case Intrinsic::nvvm_tcgen05_st_16x256b_x2:
2630 case Intrinsic::nvvm_tcgen05_st_16x256b_x4:
2631 case Intrinsic::nvvm_tcgen05_st_16x256b_x8:
2632 case Intrinsic::nvvm_tcgen05_st_16x256b_x16:
2633 case Intrinsic::nvvm_tcgen05_st_16x256b_x32:
2634 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x1:
2635 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x2:
2636 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x4:
2637 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x8:
2638 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x16:
2639 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x32:
2640 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x64:
2641 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x128:
2642 case Intrinsic::nvvm_tcgen05_st_32x32b_x1:
2643 case Intrinsic::nvvm_tcgen05_st_32x32b_x2:
2644 case Intrinsic::nvvm_tcgen05_st_32x32b_x4:
2645 case Intrinsic::nvvm_tcgen05_st_32x32b_x8:
2646 case Intrinsic::nvvm_tcgen05_st_32x32b_x16:
2647 case Intrinsic::nvvm_tcgen05_st_32x32b_x32:
2648 case Intrinsic::nvvm_tcgen05_st_16x64b_x64:
2649 case Intrinsic::nvvm_tcgen05_st_32x32b_x64:
2650 case Intrinsic::nvvm_tcgen05_st_32x32b_x128:
2660 if (
N->getOperand(1).getValueType() != MVT::i128) {
2667 auto Opcode = [&]() {
2669 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_is_canceled:
2671 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_x:
2673 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_y:
2675 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_z:
2683 SDValue TryCancelResponse =
N->getOperand(1);
2684 SDValue Cast = DAG.
getNode(ISD::BITCAST,
DL, MVT::v2i64, TryCancelResponse);
2692 return DAG.
getNode(Opcode,
DL,
N->getVTList(),
2693 {TryCancelResponse0, TryCancelResponse1});
2697 const unsigned Mode = [&]() {
2698 switch (
Op->getConstantOperandVal(0)) {
2699 case Intrinsic::nvvm_prmt:
2701 case Intrinsic::nvvm_prmt_b4e:
2703 case Intrinsic::nvvm_prmt_ecl:
2705 case Intrinsic::nvvm_prmt_ecr:
2707 case Intrinsic::nvvm_prmt_f4e:
2709 case Intrinsic::nvvm_prmt_rc16:
2711 case Intrinsic::nvvm_prmt_rc8:
2719 SDValue B =
Op.getNumOperands() == 4 ?
Op.getOperand(2)
2721 SDValue Selector = (
Op->op_end() - 1)->get();
2725 switch (
Op->getConstantOperandVal(0)) {
2728 case Intrinsic::nvvm_prmt:
2729 case Intrinsic::nvvm_prmt_b4e:
2730 case Intrinsic::nvvm_prmt_ecl:
2731 case Intrinsic::nvvm_prmt_ecr:
2732 case Intrinsic::nvvm_prmt_f4e:
2733 case Intrinsic::nvvm_prmt_rc16:
2734 case Intrinsic::nvvm_prmt_rc8:
2736 case Intrinsic::nvvm_internal_addrspace_wrap:
2737 return Op.getOperand(1);
2738 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_is_canceled:
2739 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_x:
2740 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_y:
2741 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_z:
2751 assert(V.getValueType() == MVT::i64 &&
2752 "Unexpected CTLZ/CTPOP type to legalize");
2761 assert(
A.getValueType() == MVT::i64 &&
B.getValueType() == MVT::i64);
2766 const auto Amt = AmtConst->getZExtValue() & 63;
2793 ? std::make_tuple(AHi, ALo, BHi)
2794 : std::make_tuple(ALo, BHi, BLo);
2821 EVT Ty =
Op.getValueType();
2831 if (Flags.hasNoInfs())
2843 assert(
Op.getValueType() == MVT::i1 &&
"Custom lowering enabled only for i1");
2853 TrueVal = TrueVal.getOperand(0);
2854 FalseVal = FalseVal.getOperand(0);
2856 EVT VT = TrueVal.getSimpleValueType().bitsLE(FalseVal.getSimpleValueType())
2857 ? TrueVal.getValueType()
2858 : FalseVal.getValueType();
2878 switch (
Op.getOpcode()) {
2883 case ISD::ADDRSPACECAST:
2884 return LowerADDRSPACECAST(
Op, DAG);
2892 return LowerBUILD_VECTOR(
Op, DAG);
2894 return LowerBITCAST(
Op, DAG);
2898 return LowerEXTRACT_VECTOR_ELT(
Op, DAG);
2900 return LowerINSERT_VECTOR_ELT(
Op, DAG);
2902 return LowerVECTOR_SHUFFLE(
Op, DAG);
2904 return LowerCONCAT_VECTORS(
Op, DAG);
2905 case ISD::VECREDUCE_FMAX:
2906 case ISD::VECREDUCE_FMIN:
2907 case ISD::VECREDUCE_FMAXIMUM:
2908 case ISD::VECREDUCE_FMINIMUM:
2909 return LowerVECREDUCE(
Op, DAG);
2911 return LowerSTORE(
Op, DAG);
2913 return LowerLOAD(
Op, DAG);
2915 return LowerShiftLeftParts(
Op, DAG);
2918 return LowerShiftRightParts(
Op, DAG);
2922 return LowerFROUND(
Op, DAG);
2924 return LowerFCOPYSIGN(
Op, DAG);
2927 return LowerINT_TO_FP(
Op, DAG);
2930 return LowerFP_TO_INT(
Op, DAG);
2932 return LowerFP_ROUND(
Op, DAG);
2933 case ISD::FP_EXTEND:
2934 return LowerFP_EXTEND(
Op, DAG);
2936 return LowerBR_JT(
Op, DAG);
2938 return LowerVAARG(
Op, DAG);
2940 return LowerVASTART(
Op, DAG);
2959 case ISD::DYNAMIC_STACKALLOC:
2961 case ISD::STACKRESTORE:
2963 case ISD::STACKSAVE:
2966 return LowerCopyToReg_128(
Op, DAG);
2971 return PromoteBinOpIfF32FTZ(
Op, DAG);
2989 unsigned JId = JT->getIndex();
3021 unsigned SrcAS =
N->getSrcAddressSpace();
3022 unsigned DestAS =
N->getDestAddressSpace();
3032 const MVT GenerictVT =
3036 SDValue SharedClusterConversion =
3039 return SharedClusterConversion;
3054 SDNode *
Node =
Op.getNode();
3056 EVT VT =
Node->getValueType(0);
3060 const MaybeAlign MA(
Node->getConstantOperandVal(3));
3063 Tmp1, Tmp2, MachinePointerInfo(V));
3083 MachinePointerInfo(V));
3089 return DAG.
getLoad(VT,
DL, Tmp1, VAList, MachinePointerInfo(SrcV));
3098 SDValue VAReg = getParamSymbol(DAG, -1, PtrVT);
3101 return DAG.
getStore(
Op.getOperand(0),
DL, VAReg,
Op.getOperand(1),
3102 MachinePointerInfo(SV));
3106static std::optional<std::pair<SDValue, SDValue>>
3109 const EVT ResVT = LD->getValueType(0);
3110 const EVT MemVT = LD->getMemoryVT();
3115 return std::nullopt;
3117 const auto NumEltsAndEltVT =
3119 if (!NumEltsAndEltVT)
3120 return std::nullopt;
3121 const auto [NumElts, EltVT] = NumEltsAndEltVT.value();
3123 Align Alignment = LD->getAlign();
3126 if (Alignment < PrefAlign) {
3132 return std::nullopt;
3143 return std::nullopt;
3155 ListVTs.push_back(MVT::Other);
3168 LD->getMemOperand());
3177 for (
const unsigned I :
llvm::seq(NumElts)) {
3182 for (
const unsigned I :
llvm::seq(NumElts)) {
3184 if (LoadEltVT != EltVT)
3192 const MVT BuildVecVT =
3204 Results.append({Res->first, Res->second});
3221 assert(LD->getValueType(0) == MVT::i1 &&
"Custom lowering for i1 load only");
3223 LD->getBasePtr(), LD->getPointerInfo(),
3224 MVT::i8, LD->getAlign(),
3225 LD->getMemOperand()->getFlags());
3236 if (
Op.getValueType() == MVT::i1)
3243 assert(
LD->getValueType(0).isInteger() &&
LD->getMemoryVT().isInteger() &&
3244 "Unexpected fpext-load");
3246 LD->getChain(),
LD->getBasePtr(),
LD->getMemoryVT(),
3247 LD->getMemOperand());
3259 const EVT MemVT =
N->getMemoryVT();
3266 const auto NumEltsAndEltVT =
3268 if (!NumEltsAndEltVT)
3270 const auto [NumElts, EltVT] = NumEltsAndEltVT.value();
3274 Align Alignment =
N->getAlign();
3276 if (Alignment < PrefAlign) {
3303 Ops.push_back(
N->getOperand(0));
3313 for (
const unsigned I :
llvm::seq(NumElts)) {
3316 NumEltsPerSubVector);
3321 for (
const unsigned I :
llvm::seq(NumElts)) {
3331 Ops.push_back(ExtVal);
3336 Ops.append(
N->op_begin() + 2,
N->op_end());
3340 N->getMemoryVT(),
N->getMemOperand());
3348 EVT VT =
Store->getMemoryVT();
3351 return LowerSTOREi1(
Op, DAG);
3363 SDNode *
Node =
Op.getNode();
3372 DAG.
getTruncStore(Tmp1, dl, Tmp3, Tmp2,
ST->getPointerInfo(), MVT::i8,
3373 ST->getAlign(),
ST->getMemOperand()->getFlags());
3382 assert(
Op.getOperand(1).getValueType() == MVT::i128 &&
3383 "Custom lowering for 128-bit CopyToReg only");
3385 SDNode *
Node =
Op.getNode();
3397 NewOps[0] =
Op->getOperand(0);
3398 NewOps[1] =
Op->getOperand(1);
3402 NewOps[4] =
Op->getOperand(3);
3407unsigned NVPTXTargetLowering::getNumRegisters(
3409 std::optional<MVT> RegisterVT = std::nullopt)
const {
3410 if (VT == MVT::i128 && RegisterVT == MVT::i128)
3415bool NVPTXTargetLowering::splitValueIntoRegisterParts(
3417 unsigned NumParts,
MVT PartVT, std::optional<CallingConv::ID> CC)
const {
3418 if (Val.
getValueType() == MVT::i128 && NumParts == 1) {
3431 StringRef SavedStr =
nvTM->getStrPool().save(
3438 const StringRef SavedStr =
nvTM->getStrPool().save(
"param" + Twine(
I));
3466 for (
const auto &Arg :
F.args()) {
3467 const auto ArgIns = AllIns.take_while(
3468 [&](
auto I) {
return I.OrigArgIndex == Arg.getArgNo(); });
3469 AllIns = AllIns.drop_front(ArgIns.size());
3471 Type *Ty = Arg.getType();
3476 if (Arg.use_empty()) {
3478 for (
const auto &In : ArgIns) {
3479 assert(!In.Used &&
"Arg.use_empty() is true but Arg is used?");
3485 SDValue ArgSymbol = getParamSymbol(DAG, Arg.getArgNo(), PtrVT);
3491 if (Arg.hasByValAttr()) {
3499 assert(ArgIns.size() == 1 &&
"ByVal argument must be a pointer");
3500 const auto &ByvalIn = ArgIns[0];
3502 "Ins type did not match function type");
3503 assert(ByvalIn.VT == PtrVT &&
"ByVal argument must be a pointer");
3508 P.getNode()->setIROrder(Arg.getArgNo() + 1);
3511 P.getNode()->setIROrder(Arg.getArgNo() + 1);
3520 assert(VTs.
size() == ArgIns.size() &&
"Size mismatch");
3521 assert(VTs.
size() == Offsets.size() &&
"Size mismatch");
3524 &
F, Ty, Arg.getArgNo() + AttributeList::FirstArgIndex,
DL);
3528 for (
const unsigned NumElts : VI) {
3530 const EVT LoadVT = VTs[
I] == MVT::i1 ? MVT::i8 : VTs[
I];
3538 DAG.
getLoad(VecVT, dl, Root, VecAddr,
3542 P.getNode()->setIROrder(Arg.getArgNo() + 1);
3543 for (
const unsigned J :
llvm::seq(NumElts)) {
3555 if (!OutChains.
empty())
3568 Type *RetTy =
F.getReturnType();
3571 assert(OutVals.
empty() && Outs.
empty() &&
"Return value expected for void");
3584 const bool ExtendIntegerRetVal =
3585 RetTy->
isIntegerTy() &&
DL.getTypeAllocSizeInBits(RetTy) < 32;
3590 assert(VTs.
size() == OutVals.
size() &&
"Bad return value decomposition");
3592 const auto GetRetVal = [&](
unsigned I) ->
SDValue {
3596 "OutVal type should always be legal");
3600 ExtendIntegerRetVal ? MVT::i32 : (VTI == MVT::i1 ? MVT::i8 : VTI);
3606 for (
const unsigned NumElts : VI) {
3607 const MaybeAlign CurrentAlign = ExtendIntegerRetVal
3612 NumElts, dl, DAG, [&](
unsigned K) {
return GetRetVal(
I + K); });
3629 if (Constraint.
size() > 1)
3645 case Intrinsic::nvvm_match_all_sync_i32p:
3646 case Intrinsic::nvvm_match_all_sync_i64p:
3651 Info.memVT = MVT::i1;
3656 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col:
3657 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row:
3658 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride:
3659 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride:
3660 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col:
3661 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row:
3662 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride:
3663 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride:
3664 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col:
3665 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row:
3666 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride:
3667 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride:
3668 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col:
3669 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row:
3670 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride:
3671 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride:
3672 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col:
3673 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row:
3674 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride:
3675 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride:
3676 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col:
3677 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row:
3678 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride:
3679 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride: {
3681 Info.memVT = MVT::v8f16;
3682 Info.ptrVal =
I.getArgOperand(0);
3685 Info.align =
Align(16);
3688 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col:
3689 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col_stride:
3690 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col_stride:
3691 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col:
3692 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row:
3693 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row_stride:
3694 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row_stride:
3695 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row:
3696 case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col:
3697 case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col_stride:
3698 case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row:
3699 case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row_stride:
3700 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col:
3701 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col_stride:
3702 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col_stride:
3703 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col:
3704 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row:
3705 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row_stride:
3706 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row_stride:
3707 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row:
3708 case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col:
3709 case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col_stride:
3710 case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row:
3711 case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row_stride: {
3713 Info.memVT = MVT::v2i32;
3714 Info.ptrVal =
I.getArgOperand(0);
3717 Info.align =
Align(8);
3721 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col:
3722 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col_stride:
3723 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col_stride:
3724 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col:
3725 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row:
3726 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row_stride:
3727 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row_stride:
3728 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row:
3729 case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col:
3730 case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col_stride:
3731 case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row:
3732 case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row_stride:
3733 case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col:
3734 case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col_stride:
3735 case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row:
3736 case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row_stride:
3738 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col:
3739 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col_stride:
3740 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col_stride:
3741 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col:
3742 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row:
3743 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row_stride:
3744 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row_stride:
3745 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row:
3746 case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col:
3747 case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col_stride:
3748 case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row:
3749 case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row_stride:
3750 case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col:
3751 case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col_stride:
3752 case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row:
3753 case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row_stride:
3754 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_b16:
3755 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_trans_b16:
3756 case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x2_trans_b8:
3757 case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x2_trans_b8x16_b4x16_p64:
3758 case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x2_trans_b8x16_b6x16_p32:
3759 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x4_b8x16_b4x16_p64:
3760 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x4_b8x16_b6x16_p32: {
3762 Info.memVT = MVT::v4i32;
3763 Info.ptrVal =
I.getArgOperand(0);
3766 Info.align =
Align(16);
3770 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col:
3771 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col_stride:
3772 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col_stride:
3773 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col:
3774 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row:
3775 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row_stride:
3776 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row_stride:
3777 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row:
3779 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col:
3780 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col_stride:
3781 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col_stride:
3782 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col:
3783 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row:
3784 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row_stride:
3785 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row_stride:
3786 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row:
3787 case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row:
3788 case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row_stride:
3789 case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col:
3790 case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col_stride:
3791 case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row:
3792 case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row_stride:
3793 case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row_stride:
3794 case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row:
3795 case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col:
3796 case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col_stride:
3797 case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col_stride:
3798 case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col:
3799 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_b16:
3800 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_trans_b16:
3801 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x1_b8x16_b4x16_p64:
3802 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x1_b8x16_b6x16_p32: {
3804 Info.memVT = MVT::i32;
3805 Info.ptrVal =
I.getArgOperand(0);
3808 Info.align =
Align(4);
3812 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col:
3813 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row:
3814 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride:
3815 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride:
3816 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col:
3817 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row:
3818 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride:
3819 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride:
3820 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col:
3821 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row:
3822 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride:
3823 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride: {
3825 Info.memVT = MVT::v4f16;
3826 Info.ptrVal =
I.getArgOperand(0);
3829 Info.align =
Align(16);
3833 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col:
3834 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row:
3835 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride:
3836 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride:
3837 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col:
3838 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row:
3839 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride:
3840 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride:
3841 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col:
3842 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row:
3843 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride:
3844 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride:
3845 case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col:
3846 case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row:
3847 case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col_stride:
3848 case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row_stride: {
3850 Info.memVT = MVT::v8f32;
3851 Info.ptrVal =
I.getArgOperand(0);
3854 Info.align =
Align(16);
3858 case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col:
3859 case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col_stride:
3860 case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row:
3861 case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row_stride:
3863 case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col:
3864 case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col_stride:
3865 case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row:
3866 case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row_stride:
3868 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col:
3869 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col_stride:
3870 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row:
3871 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row_stride:
3872 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col:
3873 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col_stride:
3874 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row:
3875 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row_stride:
3876 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col:
3877 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col_stride:
3878 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row:
3879 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row_stride: {
3881 Info.memVT = MVT::v8i32;
3882 Info.ptrVal =
I.getArgOperand(0);
3885 Info.align =
Align(16);
3889 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col:
3890 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col_stride:
3891 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row:
3892 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row_stride:
3893 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col:
3894 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col_stride:
3895 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row:
3896 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row_stride:
3897 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_b16:
3898 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_trans_b16:
3899 case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x1_trans_b8:
3900 case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x1_trans_b8x16_b4x16_p64:
3901 case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x1_trans_b8x16_b6x16_p32:
3902 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x2_b8x16_b4x16_p64:
3903 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x2_b8x16_b6x16_p32: {
3905 Info.memVT = MVT::v2i32;
3906 Info.ptrVal =
I.getArgOperand(0);
3909 Info.align =
Align(8);
3913 case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col:
3914 case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col_stride:
3915 case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row:
3916 case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row_stride:
3918 case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col:
3919 case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col_stride:
3920 case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row:
3921 case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row_stride: {
3923 Info.memVT = MVT::f64;
3924 Info.ptrVal =
I.getArgOperand(0);
3927 Info.align =
Align(8);
3931 case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col:
3932 case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col_stride:
3933 case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row:
3934 case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row_stride: {
3936 Info.memVT = MVT::v2f64;
3937 Info.ptrVal =
I.getArgOperand(0);
3940 Info.align =
Align(16);
3944 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col:
3945 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row:
3946 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride:
3947 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride:
3948 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col:
3949 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row:
3950 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride:
3951 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride:
3952 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col:
3953 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row:
3954 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride:
3955 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride: {
3957 Info.memVT = MVT::v4f16;
3958 Info.ptrVal =
I.getArgOperand(0);
3961 Info.align =
Align(16);
3965 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col:
3966 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row:
3967 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride:
3968 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride:
3969 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col:
3970 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row:
3971 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride:
3972 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride:
3973 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col:
3974 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row:
3975 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride:
3976 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride:
3977 case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col:
3978 case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row:
3979 case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col_stride:
3980 case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row_stride: {
3982 Info.memVT = MVT::v8f32;
3983 Info.ptrVal =
I.getArgOperand(0);
3986 Info.align =
Align(16);
3990 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col:
3991 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col_stride:
3992 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row:
3993 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row_stride:
3994 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col:
3995 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col_stride:
3996 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row:
3997 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row_stride:
3998 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col:
3999 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col_stride:
4000 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row:
4001 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row_stride: {
4003 Info.memVT = MVT::v8i32;
4004 Info.ptrVal =
I.getArgOperand(0);
4007 Info.align =
Align(16);
4011 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col:
4012 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col_stride:
4013 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row:
4014 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row_stride:
4015 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col:
4016 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col_stride:
4017 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row:
4018 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row_stride:
4019 case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x2_b16:
4020 case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x2_trans_b16:
4021 case Intrinsic::nvvm_stmatrix_sync_aligned_m16n8_x2_trans_b8: {
4023 Info.memVT = MVT::v2i32;
4024 Info.ptrVal =
I.getArgOperand(0);
4027 Info.align =
Align(8);
4031 case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col:
4032 case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col_stride:
4033 case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row:
4034 case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row_stride: {
4036 Info.memVT = MVT::v2f64;
4037 Info.ptrVal =
I.getArgOperand(0);
4040 Info.align =
Align(16);
4044 case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x1_b16:
4045 case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x1_trans_b16:
4046 case Intrinsic::nvvm_stmatrix_sync_aligned_m16n8_x1_trans_b8: {
4048 Info.memVT = MVT::i32;
4049 Info.ptrVal =
I.getArgOperand(0);
4052 Info.align =
Align(4);
4056 case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x4_b16:
4057 case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x4_trans_b16:
4058 case Intrinsic::nvvm_stmatrix_sync_aligned_m16n8_x4_trans_b8: {
4060 Info.memVT = MVT::v4i32;
4061 Info.ptrVal =
I.getArgOperand(0);
4064 Info.align =
Align(16);
4068 case Intrinsic::nvvm_atomic_add_gen_f_cta:
4069 case Intrinsic::nvvm_atomic_add_gen_f_sys:
4070 case Intrinsic::nvvm_atomic_add_gen_i_cta:
4071 case Intrinsic::nvvm_atomic_add_gen_i_sys:
4072 case Intrinsic::nvvm_atomic_and_gen_i_cta:
4073 case Intrinsic::nvvm_atomic_and_gen_i_sys:
4074 case Intrinsic::nvvm_atomic_cas_gen_i_cta:
4075 case Intrinsic::nvvm_atomic_cas_gen_i_sys:
4076 case Intrinsic::nvvm_atomic_dec_gen_i_cta:
4077 case Intrinsic::nvvm_atomic_dec_gen_i_sys:
4078 case Intrinsic::nvvm_atomic_inc_gen_i_cta:
4079 case Intrinsic::nvvm_atomic_inc_gen_i_sys:
4080 case Intrinsic::nvvm_atomic_max_gen_i_cta:
4081 case Intrinsic::nvvm_atomic_max_gen_i_sys:
4082 case Intrinsic::nvvm_atomic_min_gen_i_cta:
4083 case Intrinsic::nvvm_atomic_min_gen_i_sys:
4084 case Intrinsic::nvvm_atomic_or_gen_i_cta:
4085 case Intrinsic::nvvm_atomic_or_gen_i_sys:
4086 case Intrinsic::nvvm_atomic_exch_gen_i_cta:
4087 case Intrinsic::nvvm_atomic_exch_gen_i_sys:
4088 case Intrinsic::nvvm_atomic_xor_gen_i_cta:
4089 case Intrinsic::nvvm_atomic_xor_gen_i_sys: {
4090 auto &
DL =
I.getDataLayout();
4093 Info.ptrVal =
I.getArgOperand(0);
4100 case Intrinsic::nvvm_prefetch_tensormap: {
4101 auto &
DL =
I.getDataLayout();
4104 Info.ptrVal =
I.getArgOperand(0);
4112 case Intrinsic::nvvm_ldu_global_i:
4113 case Intrinsic::nvvm_ldu_global_f:
4114 case Intrinsic::nvvm_ldu_global_p: {
4117 Info.ptrVal =
I.getArgOperand(0);
4124 case Intrinsic::nvvm_tex_1d_v4f32_s32:
4125 case Intrinsic::nvvm_tex_1d_v4f32_f32:
4126 case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
4127 case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
4128 case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
4129 case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
4130 case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
4131 case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
4132 case Intrinsic::nvvm_tex_2d_v4f32_s32:
4133 case Intrinsic::nvvm_tex_2d_v4f32_f32:
4134 case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
4135 case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
4136 case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
4137 case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
4138 case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
4139 case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
4140 case Intrinsic::nvvm_tex_3d_v4f32_s32:
4141 case Intrinsic::nvvm_tex_3d_v4f32_f32:
4142 case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
4143 case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
4144 case Intrinsic::nvvm_tex_cube_v4f32_f32:
4145 case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
4146 case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
4147 case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
4148 case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
4149 case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
4150 case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
4151 case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
4152 case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
4153 case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
4154 case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
4155 case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
4156 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
4157 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
4158 case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
4159 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
4160 case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
4161 case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
4162 case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
4163 case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
4164 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
4165 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
4166 case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
4167 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
4168 case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
4169 case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
4170 case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
4171 case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
4172 case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
4173 case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
4174 case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
4175 case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
4176 case Intrinsic::nvvm_tex_unified_cube_grad_v4f32_f32:
4177 case Intrinsic::nvvm_tex_unified_cube_array_grad_v4f32_f32:
4178 case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
4179 case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
4180 case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
4181 case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
4183 Info.memVT = MVT::v4f32;
4184 Info.ptrVal =
nullptr;
4187 Info.align =
Align(16);
4190 case Intrinsic::nvvm_tex_1d_v4s32_s32:
4191 case Intrinsic::nvvm_tex_1d_v4s32_f32:
4192 case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
4193 case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
4194 case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
4195 case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
4196 case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
4197 case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
4198 case Intrinsic::nvvm_tex_2d_v4s32_s32:
4199 case Intrinsic::nvvm_tex_2d_v4s32_f32:
4200 case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
4201 case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
4202 case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
4203 case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
4204 case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
4205 case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
4206 case Intrinsic::nvvm_tex_3d_v4s32_s32:
4207 case Intrinsic::nvvm_tex_3d_v4s32_f32:
4208 case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
4209 case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
4210 case Intrinsic::nvvm_tex_cube_v4s32_f32:
4211 case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
4212 case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
4213 case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
4214 case Intrinsic::nvvm_tex_cube_v4u32_f32:
4215 case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
4216 case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
4217 case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
4218 case Intrinsic::nvvm_tex_1d_v4u32_s32:
4219 case Intrinsic::nvvm_tex_1d_v4u32_f32:
4220 case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
4221 case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
4222 case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
4223 case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
4224 case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
4225 case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
4226 case Intrinsic::nvvm_tex_2d_v4u32_s32:
4227 case Intrinsic::nvvm_tex_2d_v4u32_f32:
4228 case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
4229 case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
4230 case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
4231 case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
4232 case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
4233 case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
4234 case Intrinsic::nvvm_tex_3d_v4u32_s32:
4235 case Intrinsic::nvvm_tex_3d_v4u32_f32:
4236 case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
4237 case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
4238 case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
4239 case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
4240 case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
4241 case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
4242 case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
4243 case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
4244 case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
4245 case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
4246 case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
4247 case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
4248 case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
4249 case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
4250 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
4251 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
4252 case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
4253 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
4254 case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
4255 case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
4256 case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
4257 case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
4258 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
4259 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
4260 case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
4261 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
4262 case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
4263 case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
4264 case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
4265 case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
4266 case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
4267 case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
4268 case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
4269 case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
4270 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
4271 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
4272 case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
4273 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
4274 case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
4275 case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
4276 case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
4277 case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
4278 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
4279 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
4280 case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
4281 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
4282 case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
4283 case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
4284 case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
4285 case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
4286 case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
4287 case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
4288 case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
4289 case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
4290 case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
4291 case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
4292 case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
4293 case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
4294 case Intrinsic::nvvm_tex_unified_cube_grad_v4s32_f32:
4295 case Intrinsic::nvvm_tex_unified_cube_grad_v4u32_f32:
4296 case Intrinsic::nvvm_tex_unified_cube_array_grad_v4s32_f32:
4297 case Intrinsic::nvvm_tex_unified_cube_array_grad_v4u32_f32:
4298 case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
4299 case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
4300 case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
4301 case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
4302 case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
4303 case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
4304 case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
4305 case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
4307 Info.memVT = MVT::v4i32;
4308 Info.ptrVal =
nullptr;
4311 Info.align =
Align(16);
4314 case Intrinsic::nvvm_suld_1d_i8_clamp:
4315 case Intrinsic::nvvm_suld_1d_v2i8_clamp:
4316 case Intrinsic::nvvm_suld_1d_v4i8_clamp:
4317 case Intrinsic::nvvm_suld_1d_array_i8_clamp:
4318 case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
4319 case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
4320 case Intrinsic::nvvm_suld_2d_i8_clamp:
4321 case Intrinsic::nvvm_suld_2d_v2i8_clamp:
4322 case Intrinsic::nvvm_suld_2d_v4i8_clamp:
4323 case Intrinsic::nvvm_suld_2d_array_i8_clamp:
4324 case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
4325 case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
4326 case Intrinsic::nvvm_suld_3d_i8_clamp:
4327 case Intrinsic::nvvm_suld_3d_v2i8_clamp:
4328 case Intrinsic::nvvm_suld_3d_v4i8_clamp:
4329 case Intrinsic::nvvm_suld_1d_i8_trap:
4330 case Intrinsic::nvvm_suld_1d_v2i8_trap:
4331 case Intrinsic::nvvm_suld_1d_v4i8_trap:
4332 case Intrinsic::nvvm_suld_1d_array_i8_trap:
4333 case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
4334 case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
4335 case Intrinsic::nvvm_suld_2d_i8_trap:
4336 case Intrinsic::nvvm_suld_2d_v2i8_trap:
4337 case Intrinsic::nvvm_suld_2d_v4i8_trap:
4338 case Intrinsic::nvvm_suld_2d_array_i8_trap:
4339 case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
4340 case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
4341 case Intrinsic::nvvm_suld_3d_i8_trap:
4342 case Intrinsic::nvvm_suld_3d_v2i8_trap:
4343 case Intrinsic::nvvm_suld_3d_v4i8_trap:
4344 case Intrinsic::nvvm_suld_1d_i8_zero:
4345 case Intrinsic::nvvm_suld_1d_v2i8_zero:
4346 case Intrinsic::nvvm_suld_1d_v4i8_zero:
4347 case Intrinsic::nvvm_suld_1d_array_i8_zero:
4348 case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
4349 case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
4350 case Intrinsic::nvvm_suld_2d_i8_zero:
4351 case Intrinsic::nvvm_suld_2d_v2i8_zero:
4352 case Intrinsic::nvvm_suld_2d_v4i8_zero:
4353 case Intrinsic::nvvm_suld_2d_array_i8_zero:
4354 case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
4355 case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
4356 case Intrinsic::nvvm_suld_3d_i8_zero:
4357 case Intrinsic::nvvm_suld_3d_v2i8_zero:
4358 case Intrinsic::nvvm_suld_3d_v4i8_zero:
4360 Info.memVT = MVT::i8;
4361 Info.ptrVal =
nullptr;
4364 Info.align =
Align(16);
4367 case Intrinsic::nvvm_suld_1d_i16_clamp:
4368 case Intrinsic::nvvm_suld_1d_v2i16_clamp:
4369 case Intrinsic::nvvm_suld_1d_v4i16_clamp:
4370 case Intrinsic::nvvm_suld_1d_array_i16_clamp:
4371 case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
4372 case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
4373 case Intrinsic::nvvm_suld_2d_i16_clamp:
4374 case Intrinsic::nvvm_suld_2d_v2i16_clamp:
4375 case Intrinsic::nvvm_suld_2d_v4i16_clamp:
4376 case Intrinsic::nvvm_suld_2d_array_i16_clamp:
4377 case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
4378 case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
4379 case Intrinsic::nvvm_suld_3d_i16_clamp:
4380 case Intrinsic::nvvm_suld_3d_v2i16_clamp:
4381 case Intrinsic::nvvm_suld_3d_v4i16_clamp:
4382 case Intrinsic::nvvm_suld_1d_i16_trap:
4383 case Intrinsic::nvvm_suld_1d_v2i16_trap:
4384 case Intrinsic::nvvm_suld_1d_v4i16_trap:
4385 case Intrinsic::nvvm_suld_1d_array_i16_trap:
4386 case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
4387 case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
4388 case Intrinsic::nvvm_suld_2d_i16_trap:
4389 case Intrinsic::nvvm_suld_2d_v2i16_trap:
4390 case Intrinsic::nvvm_suld_2d_v4i16_trap:
4391 case Intrinsic::nvvm_suld_2d_array_i16_trap:
4392 case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
4393 case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
4394 case Intrinsic::nvvm_suld_3d_i16_trap:
4395 case Intrinsic::nvvm_suld_3d_v2i16_trap:
4396 case Intrinsic::nvvm_suld_3d_v4i16_trap:
4397 case Intrinsic::nvvm_suld_1d_i16_zero:
4398 case Intrinsic::nvvm_suld_1d_v2i16_zero:
4399 case Intrinsic::nvvm_suld_1d_v4i16_zero:
4400 case Intrinsic::nvvm_suld_1d_array_i16_zero:
4401 case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
4402 case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
4403 case Intrinsic::nvvm_suld_2d_i16_zero:
4404 case Intrinsic::nvvm_suld_2d_v2i16_zero:
4405 case Intrinsic::nvvm_suld_2d_v4i16_zero:
4406 case Intrinsic::nvvm_suld_2d_array_i16_zero:
4407 case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
4408 case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
4409 case Intrinsic::nvvm_suld_3d_i16_zero:
4410 case Intrinsic::nvvm_suld_3d_v2i16_zero:
4411 case Intrinsic::nvvm_suld_3d_v4i16_zero:
4413 Info.memVT = MVT::i16;
4414 Info.ptrVal =
nullptr;
4417 Info.align =
Align(16);
4420 case Intrinsic::nvvm_suld_1d_i32_clamp:
4421 case Intrinsic::nvvm_suld_1d_v2i32_clamp:
4422 case Intrinsic::nvvm_suld_1d_v4i32_clamp:
4423 case Intrinsic::nvvm_suld_1d_array_i32_clamp:
4424 case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
4425 case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
4426 case Intrinsic::nvvm_suld_2d_i32_clamp:
4427 case Intrinsic::nvvm_suld_2d_v2i32_clamp:
4428 case Intrinsic::nvvm_suld_2d_v4i32_clamp:
4429 case Intrinsic::nvvm_suld_2d_array_i32_clamp:
4430 case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
4431 case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
4432 case Intrinsic::nvvm_suld_3d_i32_clamp:
4433 case Intrinsic::nvvm_suld_3d_v2i32_clamp:
4434 case Intrinsic::nvvm_suld_3d_v4i32_clamp:
4435 case Intrinsic::nvvm_suld_1d_i32_trap:
4436 case Intrinsic::nvvm_suld_1d_v2i32_trap:
4437 case Intrinsic::nvvm_suld_1d_v4i32_trap:
4438 case Intrinsic::nvvm_suld_1d_array_i32_trap:
4439 case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
4440 case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
4441 case Intrinsic::nvvm_suld_2d_i32_trap:
4442 case Intrinsic::nvvm_suld_2d_v2i32_trap:
4443 case Intrinsic::nvvm_suld_2d_v4i32_trap:
4444 case Intrinsic::nvvm_suld_2d_array_i32_trap:
4445 case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
4446 case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
4447 case Intrinsic::nvvm_suld_3d_i32_trap:
4448 case Intrinsic::nvvm_suld_3d_v2i32_trap:
4449 case Intrinsic::nvvm_suld_3d_v4i32_trap:
4450 case Intrinsic::nvvm_suld_1d_i32_zero:
4451 case Intrinsic::nvvm_suld_1d_v2i32_zero:
4452 case Intrinsic::nvvm_suld_1d_v4i32_zero:
4453 case Intrinsic::nvvm_suld_1d_array_i32_zero:
4454 case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
4455 case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
4456 case Intrinsic::nvvm_suld_2d_i32_zero:
4457 case Intrinsic::nvvm_suld_2d_v2i32_zero:
4458 case Intrinsic::nvvm_suld_2d_v4i32_zero:
4459 case Intrinsic::nvvm_suld_2d_array_i32_zero:
4460 case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
4461 case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
4462 case Intrinsic::nvvm_suld_3d_i32_zero:
4463 case Intrinsic::nvvm_suld_3d_v2i32_zero:
4464 case Intrinsic::nvvm_suld_3d_v4i32_zero:
4466 Info.memVT = MVT::i32;
4467 Info.ptrVal =
nullptr;
4470 Info.align =
Align(16);
4473 case Intrinsic::nvvm_suld_1d_i64_clamp:
4474 case Intrinsic::nvvm_suld_1d_v2i64_clamp:
4475 case Intrinsic::nvvm_suld_1d_array_i64_clamp:
4476 case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
4477 case Intrinsic::nvvm_suld_2d_i64_clamp:
4478 case Intrinsic::nvvm_suld_2d_v2i64_clamp:
4479 case Intrinsic::nvvm_suld_2d_array_i64_clamp:
4480 case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
4481 case Intrinsic::nvvm_suld_3d_i64_clamp:
4482 case Intrinsic::nvvm_suld_3d_v2i64_clamp:
4483 case Intrinsic::nvvm_suld_1d_i64_trap:
4484 case Intrinsic::nvvm_suld_1d_v2i64_trap:
4485 case Intrinsic::nvvm_suld_1d_array_i64_trap:
4486 case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
4487 case Intrinsic::nvvm_suld_2d_i64_trap:
4488 case Intrinsic::nvvm_suld_2d_v2i64_trap:
4489 case Intrinsic::nvvm_suld_2d_array_i64_trap:
4490 case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
4491 case Intrinsic::nvvm_suld_3d_i64_trap:
4492 case Intrinsic::nvvm_suld_3d_v2i64_trap:
4493 case Intrinsic::nvvm_suld_1d_i64_zero:
4494 case Intrinsic::nvvm_suld_1d_v2i64_zero:
4495 case Intrinsic::nvvm_suld_1d_array_i64_zero:
4496 case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
4497 case Intrinsic::nvvm_suld_2d_i64_zero:
4498 case Intrinsic::nvvm_suld_2d_v2i64_zero:
4499 case Intrinsic::nvvm_suld_2d_array_i64_zero:
4500 case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
4501 case Intrinsic::nvvm_suld_3d_i64_zero:
4502 case Intrinsic::nvvm_suld_3d_v2i64_zero:
4504 Info.memVT = MVT::i64;
4505 Info.ptrVal =
nullptr;
4508 Info.align =
Align(16);
4511 case Intrinsic::nvvm_tcgen05_ld_16x64b_x1:
4512 case Intrinsic::nvvm_tcgen05_ld_32x32b_x1:
4513 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x1: {
4515 Info.memVT = MVT::v1i32;
4516 Info.ptrVal =
I.getArgOperand(0);
4523 case Intrinsic::nvvm_tcgen05_ld_16x64b_x2:
4524 case Intrinsic::nvvm_tcgen05_ld_16x128b_x1:
4525 case Intrinsic::nvvm_tcgen05_ld_32x32b_x2:
4526 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x2: {
4528 Info.memVT = MVT::v2i32;
4529 Info.ptrVal =
I.getArgOperand(0);
4536 case Intrinsic::nvvm_tcgen05_ld_16x64b_x4:
4537 case Intrinsic::nvvm_tcgen05_ld_16x128b_x2:
4538 case Intrinsic::nvvm_tcgen05_ld_32x32b_x4:
4539 case Intrinsic::nvvm_tcgen05_ld_16x256b_x1:
4540 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x4: {
4542 Info.memVT = MVT::v4i32;
4543 Info.ptrVal =
I.getArgOperand(0);
4550 case Intrinsic::nvvm_tcgen05_ld_16x64b_x8:
4551 case Intrinsic::nvvm_tcgen05_ld_16x128b_x4:
4552 case Intrinsic::nvvm_tcgen05_ld_16x256b_x2:
4553 case Intrinsic::nvvm_tcgen05_ld_32x32b_x8:
4554 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x8: {
4556 Info.memVT = MVT::v8i32;
4557 Info.ptrVal =
I.getArgOperand(0);
4564 case Intrinsic::nvvm_tcgen05_ld_16x64b_x16:
4565 case Intrinsic::nvvm_tcgen05_ld_16x128b_x8:
4566 case Intrinsic::nvvm_tcgen05_ld_16x256b_x4:
4567 case Intrinsic::nvvm_tcgen05_ld_32x32b_x16:
4568 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x16: {
4570 Info.memVT = MVT::v16i32;
4571 Info.ptrVal =
I.getArgOperand(0);
4578 case Intrinsic::nvvm_tcgen05_ld_16x64b_x32:
4579 case Intrinsic::nvvm_tcgen05_ld_16x128b_x16:
4580 case Intrinsic::nvvm_tcgen05_ld_16x256b_x8:
4581 case Intrinsic::nvvm_tcgen05_ld_32x32b_x32:
4582 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x32: {
4584 Info.memVT = MVT::v32i32;
4585 Info.ptrVal =
I.getArgOperand(0);
4592 case Intrinsic::nvvm_tcgen05_ld_16x64b_x64:
4593 case Intrinsic::nvvm_tcgen05_ld_16x128b_x32:
4594 case Intrinsic::nvvm_tcgen05_ld_16x256b_x16:
4595 case Intrinsic::nvvm_tcgen05_ld_32x32b_x64:
4596 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x64: {
4598 Info.memVT = MVT::v64i32;
4599 Info.ptrVal =
I.getArgOperand(0);
4606 case Intrinsic::nvvm_tcgen05_ld_16x64b_x128:
4607 case Intrinsic::nvvm_tcgen05_ld_16x128b_x64:
4608 case Intrinsic::nvvm_tcgen05_ld_16x256b_x32:
4609 case Intrinsic::nvvm_tcgen05_ld_32x32b_x128:
4610 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x128: {
4612 Info.memVT = MVT::v128i32;
4613 Info.ptrVal =
I.getArgOperand(0);
4620 case Intrinsic::nvvm_tcgen05_st_16x64b_x1:
4621 case Intrinsic::nvvm_tcgen05_st_32x32b_x1:
4622 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x1: {
4624 Info.memVT = MVT::i32;
4625 Info.ptrVal =
I.getArgOperand(0);
4632 case Intrinsic::nvvm_tcgen05_st_16x64b_x2:
4633 case Intrinsic::nvvm_tcgen05_st_16x128b_x1:
4634 case Intrinsic::nvvm_tcgen05_st_32x32b_x2:
4635 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x2: {
4637 Info.memVT = MVT::v2i32;
4638 Info.ptrVal =
I.getArgOperand(0);
4645 case Intrinsic::nvvm_tcgen05_st_16x64b_x4:
4646 case Intrinsic::nvvm_tcgen05_st_16x128b_x2:
4647 case Intrinsic::nvvm_tcgen05_st_16x256b_x1:
4648 case Intrinsic::nvvm_tcgen05_st_32x32b_x4:
4649 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x4: {
4651 Info.memVT = MVT::v4i32;
4652 Info.ptrVal =
I.getArgOperand(0);
4659 case Intrinsic::nvvm_tcgen05_st_16x64b_x8:
4660 case Intrinsic::nvvm_tcgen05_st_16x128b_x4:
4661 case Intrinsic::nvvm_tcgen05_st_16x256b_x2:
4662 case Intrinsic::nvvm_tcgen05_st_32x32b_x8:
4663 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x8: {
4665 Info.memVT = MVT::v8i32;
4666 Info.ptrVal =
I.getArgOperand(0);
4673 case Intrinsic::nvvm_tcgen05_st_16x64b_x16:
4674 case Intrinsic::nvvm_tcgen05_st_16x128b_x8:
4675 case Intrinsic::nvvm_tcgen05_st_16x256b_x4:
4676 case Intrinsic::nvvm_tcgen05_st_32x32b_x16:
4677 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x16: {
4679 Info.memVT = MVT::v16i32;
4680 Info.ptrVal =
I.getArgOperand(0);
4687 case Intrinsic::nvvm_tcgen05_st_16x64b_x32:
4688 case Intrinsic::nvvm_tcgen05_st_16x128b_x16:
4689 case Intrinsic::nvvm_tcgen05_st_16x256b_x8:
4690 case Intrinsic::nvvm_tcgen05_st_32x32b_x32:
4691 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x32: {
4693 Info.memVT = MVT::v32i32;
4694 Info.ptrVal =
I.getArgOperand(0);
4701 case Intrinsic::nvvm_tcgen05_st_16x64b_x64:
4702 case Intrinsic::nvvm_tcgen05_st_16x128b_x32:
4703 case Intrinsic::nvvm_tcgen05_st_16x256b_x16:
4704 case Intrinsic::nvvm_tcgen05_st_32x32b_x64:
4705 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x64: {
4707 Info.memVT = MVT::v64i32;
4708 Info.ptrVal =
I.getArgOperand(0);
4715 case Intrinsic::nvvm_tcgen05_st_16x64b_x128:
4716 case Intrinsic::nvvm_tcgen05_st_16x128b_x64:
4717 case Intrinsic::nvvm_tcgen05_st_16x256b_x32:
4718 case Intrinsic::nvvm_tcgen05_st_32x32b_x128:
4719 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x128: {
4721 Info.memVT = MVT::v128i32;
4722 Info.ptrVal =
I.getArgOperand(0);
4743 const Align ABITypeAlign = std::min(
Align(128),
DL.getABITypeAlign(ArgTy));
4748 if (!
F || !
F->hasLocalLinkage() ||
4749 F->hasAddressTaken(
nullptr,
4753 return ABITypeAlign;
4756 return std::max(
Align(16), ABITypeAlign);
4763 Align ArgAlign = InitialAlign;
4778 ArgAlign = std::max(ArgAlign,
Align(4));
4788 std::string ParamName;
4793 ParamStr <<
"_vararg";
4795 ParamStr <<
"_param_" << Idx;
4847 if (Constraint.
size() == 1) {
4848 switch (Constraint[0]) {
4867std::pair<unsigned, const TargetRegisterClass *>
4871 if (Constraint.
size() == 1) {
4872 switch (Constraint[0]) {
4874 return std::make_pair(0U, &NVPTX::B1RegClass);
4877 return std::make_pair(0U, &NVPTX::B16RegClass);
4880 return std::make_pair(0U, &NVPTX::B32RegClass);
4884 return std::make_pair(0U, &NVPTX::B64RegClass);
4886 if (STI.getSmVersion() < 70)
4888 "supported for sm_70 and higher!");
4889 return std::make_pair(0U, &NVPTX::B128RegClass);
4919 return Const && Const->getZExtValue() == 0;
4951 if (M->getOpcode() !=
ISD::MUL || !M.getNode()->hasOneUse())
4959 ((ZeroOpNum == 1) ? N1 : MAD),
4960 ((ZeroOpNum == 1) ? MAD : N1));
4975 (
N->getFlags().hasAllowContract() &&
4988 int nonAddCount = 0;
4997 int orderNo =
N->getIROrder();
5003 if (orderNo - orderNo2 < 500)
5009 bool opIsLive =
false;
5018 int orderNo3 =
User->getIROrder();
5019 if (orderNo3 > orderNo) {
5027 int orderNo3 =
User->getIROrder();
5028 if (orderNo3 > orderNo) {
5063 EVT ElementVT =
N->getValueType(0);
5074 if (U.getValueType() == MVT::Glue || U.getValueType() == MVT::Other)
5076 if (U.getUser()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
5077 if (N->getOpcode() != ISD::LOAD)
5094 return !U.getUser()->use_empty();
5108 unsigned OldNumOutputs;
5109 switch (
LD->getOpcode()) {
5116 Operands.push_back(DCI.DAG.getIntPtrConstant(
5126 if (ElementVT != MVT::v2f32)
5137 const unsigned NewNumOutputs = OldNumOutputs * 2;
5140 NewVTs.append(
LD->value_begin() + OldNumOutputs,
LD->value_end());
5143 SDValue NewLoad = DCI.DAG.getMemIntrinsicNode(
5144 Opcode,
DL, DCI.DAG.getVTList(NewVTs),
Operands,
LD->getMemoryVT(),
5145 LD->getMemOperand());
5151 for (
unsigned I :
seq(OldNumOutputs))
5152 Results.push_back(DCI.DAG.getBuildVector(
5153 ElementVT,
DL, {NewLoad.getValue(I * 2), NewLoad.getValue(I * 2 + 1)}));
5158 return DCI.DAG.getMergeValues(
Results,
DL);
5173 unsigned Front,
unsigned Back) {
5180 EVT ElementVT =
N->getOperand(Front).getValueType();
5190 switch (
N->getOpcode()) {
5203 if (ElementVT != MVT::v2f32)
5217 for (
SDValue BV :
N->ops().drop_front(Front).drop_back(Back)) {
5223 if (!BV.hasOneUse())
5230 if (
Op.getOpcode() == ISD::BITCAST)
5231 Op =
Op.getOperand(0);
5235 Op->getOperand(0).getValueType() == MVT::i32)
5242 Operands.append({BV.getOperand(0), BV.getOperand(1)});
5244 Operands.append(
N->op_end() - Back,
N->op_end());
5248 ST->getMemoryVT(), ST->getMemOperand());
5259 if (!ST->getValue().getValueType().isSimple())
5272 if (!
N->getValueType(0).isSimple())
5292 if (VT.
isVector() || VT != MVT::i32)
5312 if (VT.
isVector() || !(VT == MVT::f32 || VT == MVT::f64))
5325 switch (MinMax2Opcode) {
5327 case ISD::FMAXIMUMNUM:
5330 case ISD::FMINIMUMNUM:
5345 unsigned PTXVersion,
unsigned SmVersion) {
5348 EVT VT =
N->getValueType(0);
5349 if (VT != MVT::f32 || PTXVersion < 88 || SmVersion < 100)
5354 unsigned MinMaxOp2 =
N->getOpcode();
5384 EVT VT =
N->getValueType(0);
5388 const SDValue &Num =
N->getOperand(0);
5389 const SDValue &Den =
N->getOperand(1);
5392 if (U->getOpcode() == DivOpc && U->getOperand(0) == Num &&
5411 if (!
Op.hasOneUse())
5413 EVT ToVT =
N->getValueType(0);
5414 EVT FromVT =
Op.getValueType();
5415 if (!((ToVT == MVT::i32 && FromVT == MVT::i16) ||
5416 (ToVT == MVT::i64 && FromVT == MVT::i32)))
5423 unsigned ExtOpcode =
N->getOpcode();
5424 unsigned Opcode = 0;
5433 const auto ShiftAmt =
Op.getConstantOperandVal(1);
5456 EVT OrigVT =
Op.getOperand(0).getValueType();
5462 EVT OrigVT =
Op.getOperand(0).getValueType();
5489 IsSigned = (LHSSign ==
Signed);
5493 const APInt &Val = CI->getAPIntValue();
5495 return Val.
isIntN(OptSize);
5504 return LHSSign == RHSSign;
5514 EVT MulType =
N->getValueType(0);
5515 if (MulType != MVT::i32 && MulType != MVT::i64) {
5555 if (MulType == MVT::i32) {
5556 DemotedVT = MVT::i16;
5558 DemotedVT = MVT::i32;
5580 return Const && Const->getZExtValue() == 1;
5588 return Add->getOperand(1);
5591 return Add->getOperand(0);
5632 (ConstOpNo == 1) ?
X : NewMul,
5633 (ConstOpNo == 1) ? NewMul :
X);
5644 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
5694 unsigned int SmVersion) {
5695 EVT CCType =
N->getValueType(0);
5699 EVT AType =
A.getValueType();
5700 if (!(CCType == MVT::v2i1 && (AType == MVT::v2f16 || AType == MVT::v2bf16)))
5703 if (
A.getValueType() == MVT::v2bf16 && SmVersion < 90)
5714 DL, DCI.
DAG.
getVTList(MVT::i1, MVT::i1), {A, B, N->getOperand(2)});
5742 if (!(VectorBits == 16 || VectorBits == 32 || VectorBits == 64))
5747 if (!Index || Index->getZExtValue() == 0)
5762 if (EltVT != EltIVT)
5763 Result = DCI.
DAG.
getNode(ISD::BITCAST,
DL, EltVT, Result);
5765 if (EltVT !=
N->getValueType(0))
5775 if (VectorVT != MVT::v4i8)
5786 for (
int I = 0;
I < 4; ++
I) {
5805 auto VT =
N->getValueType(0);
5812 auto Op0 =
N->getOperand(0);
5813 auto Op1 =
N->getOperand(1);
5820 std::pair<SDValue *, uint64_t *> OpData[2] = {{&Op0, &Op0Bytes},
5826 for (
auto &[
Op, OpBytes] : OpData) {
5828 if (
Op->getOpcode() == ISD::BITCAST)
5829 *
Op =
Op->getOperand(0);
5832 Op->getOperand(0).getValueType() == MVT::i32))
5837 if (!
Op->hasOneUse())
5840 *
Op =
Op->getOperand(0);
5848 assert((*OpBytes == 0x10 || *OpBytes == 0x54) &&
5849 "PRMT selector values out of range");
5851 *
Op =
Op->getOperand(0);
5857 auto &DAG = DCI.
DAG;
5861 (Op1Bytes << 8) | Op0Bytes,
DL, DAG);
5870 assert(ASCN2->getDestAddressSpace() == ASCN1->getSrcAddressSpace());
5873 if (ASCN1->getDestAddressSpace() == ASCN2->getSrcAddressSpace())
5874 return ASCN2->getOperand(0);
5892 const auto GetSelector = [](
unsigned S0,
unsigned S1,
unsigned S2,
5894 return APInt(32, S0 | (
S1 << 4) | (S2 << 8) | (S3 << 12));
5899 return GetSelector(V, V + 1, V + 2, V + 3);
5901 return GetSelector(V, (V - 1) & 7, (V - 2) & 7, (V - 3) & 7);
5903 return GetSelector(V, V, V, V);
5905 return GetSelector(V, std::max(V, 1U), std::max(V, 2U), 3U);
5907 return GetSelector(0, std::min(V, 1U), std::min(V, 2U), V);
5909 unsigned V1 = (V & 1) << 1;
5910 return GetSelector(V1, V1 + 1, V1, V1 + 1);
5918 assert(
A.getBitWidth() == 32 &&
B.getBitWidth() == 32 &&
5919 Selector.
getBitWidth() == 32 &&
"PRMT must have i32 operands");
5923 APInt Result(32, 0);
5928 APInt Byte = BitField.extractBits(8, Idx * 8);
5930 Byte = Byte.ashr(8);
5931 Result.insertBits(Byte,
I * 8);
5946 N->getConstantOperandAPInt(1),
5947 N->getConstantOperandAPInt(2),
5948 N->getConstantOperandVal(3)),
5949 SDLoc(
N),
N->getValueType(0));
5964 switch (R.getOpcode()) {
5969 case ISD::BITCAST: {
5996 for (
auto &
Op : R->ops()) {
6010 R.getValueType(), V, R.getOperand(1));
6026 if (
Reg.getOpcode() != ISD::LOAD) {
6035 DAGCombinerInfo &DCI)
const {
6037 switch (
N->getOpcode()) {
6042 case ISD::ADDRSPACECAST:
6057 case ISD::FMAXIMUMNUM:
6058 case ISD::FMINIMUMNUM:
6060 STI.getSmVersion());
6093 EVT ToVT =
Op->getValueType(0);
6094 if (ToVT != MVT::v2i8) {
6113 bool hasOffset =
false) {
6115 EVT ResVT =
N->getValueType(0);
6123 for (
unsigned i = 0; i < NumElts; ++i)
6134 Ops.push_back(
N->getOperand(3));
6135 Ops.push_back(
N->getOperand(4));
6137 Ops.push_back(
N->getOperand(3));
6146 for (
unsigned i = 0; i < NumElts; ++i) {
6153 Results.push_back(BuildVector);
6168 case Intrinsic::nvvm_ldu_global_i:
6169 case Intrinsic::nvvm_ldu_global_f:
6170 case Intrinsic::nvvm_ldu_global_p: {
6171 EVT ResVT =
N->getValueType(0);
6183 bool NeedTrunc =
false;
6189 unsigned Opcode = 0;
6197 LdResVTs = DAG.
getVTList(EltVT, EltVT, MVT::Other);
6201 EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
6214 OtherOps.
append(
N->op_begin() + 2,
N->op_end());
6224 for (
unsigned i = 0; i < NumElts; ++i) {
6242 "Custom handling of non-i8 ldu/ldg?");
6265 case Intrinsic::nvvm_tcgen05_ld_16x64b_x2:
6266 case Intrinsic::nvvm_tcgen05_ld_16x64b_x4:
6267 case Intrinsic::nvvm_tcgen05_ld_16x64b_x8:
6268 case Intrinsic::nvvm_tcgen05_ld_16x64b_x16:
6269 case Intrinsic::nvvm_tcgen05_ld_16x64b_x32:
6270 case Intrinsic::nvvm_tcgen05_ld_16x64b_x64:
6271 case Intrinsic::nvvm_tcgen05_ld_16x64b_x128:
6272 case Intrinsic::nvvm_tcgen05_ld_32x32b_x2:
6273 case Intrinsic::nvvm_tcgen05_ld_32x32b_x4:
6274 case Intrinsic::nvvm_tcgen05_ld_32x32b_x8:
6275 case Intrinsic::nvvm_tcgen05_ld_32x32b_x16:
6276 case Intrinsic::nvvm_tcgen05_ld_32x32b_x32:
6277 case Intrinsic::nvvm_tcgen05_ld_32x32b_x64:
6278 case Intrinsic::nvvm_tcgen05_ld_32x32b_x128:
6279 case Intrinsic::nvvm_tcgen05_ld_16x128b_x1:
6280 case Intrinsic::nvvm_tcgen05_ld_16x128b_x2:
6281 case Intrinsic::nvvm_tcgen05_ld_16x128b_x4:
6282 case Intrinsic::nvvm_tcgen05_ld_16x128b_x8:
6283 case Intrinsic::nvvm_tcgen05_ld_16x128b_x16:
6284 case Intrinsic::nvvm_tcgen05_ld_16x128b_x32:
6285 case Intrinsic::nvvm_tcgen05_ld_16x128b_x64:
6286 case Intrinsic::nvvm_tcgen05_ld_16x256b_x1:
6287 case Intrinsic::nvvm_tcgen05_ld_16x256b_x2:
6288 case Intrinsic::nvvm_tcgen05_ld_16x256b_x4:
6289 case Intrinsic::nvvm_tcgen05_ld_16x256b_x8:
6290 case Intrinsic::nvvm_tcgen05_ld_16x256b_x16:
6291 case Intrinsic::nvvm_tcgen05_ld_16x256b_x32:
6294 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x2:
6295 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x4:
6296 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x8:
6297 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x16:
6298 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x32:
6299 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x64:
6300 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x128:
6314 assert(
Reg.getValueType() == MVT::i128 &&
6315 "Custom lowering for CopyFromReg with 128-bit reg only");
6317 N->getValueType(2)};
6348 assert(
N->getValueType(0) == MVT::i128 &&
6349 "Custom lowering for atomic128 only supports i128");
6357 "Support for b128 atomics introduced in PTX ISA version 8.3 and "
6358 "requires target sm_90.",
6369 for (
const auto &
Op : AN->
ops().drop_front(2)) {
6377 unsigned Opcode =
N->getOpcode() == ISD::ATOMIC_SWAP
6384 {Result.getValue(0), Result.getValue(1)}));
6385 Results.push_back(Result.getValue(2));
6388void NVPTXTargetLowering::ReplaceNodeResults(
6390 switch (
N->getOpcode()) {
6408 case ISD::ATOMIC_CMP_SWAP:
6409 case ISD::ATOMIC_SWAP:
6421 if (Ty->isHalfTy() && STI.getSmVersion() >= 70 &&
6422 STI.getPTXVersion() >= 63)
6424 if (Ty->isBFloatTy() && STI.getSmVersion() >= 90 &&
6425 STI.getPTXVersion() >= 78)
6427 if (Ty->isFloatTy())
6429 if (Ty->isDoubleTy() && STI.hasAtomAddF64())
6435 assert(Ty->isIntegerTy() &&
"Ty should be integer at this point");
6455 if (STI.hasAtomBitwise64())
6476 if (STI.hasAtomMinMax64())
6515 STI.getMinCmpXchgSizeInBits() ||
6522 bool BitwidthSupportedAndIsSeqCst =
6525 STI.getMinCmpXchgSizeInBits();
6562 CASWidth < STI.getMinCmpXchgSizeInBits()))
6585 case ISD::VP_FP_TO_UINT:
6587 return ISD::VP_FP_TO_SINT;
6608 unsigned Mode =
Op.getConstantOperandVal(3);
6618 "PRMT must have i32 operands");
6627 KnownBits Byte = BitField.extractBits(8, Idx * 8);
6638 auto ExtType = LD->getConstantOperandVal(LD->getNumOperands() - 1);
6643 auto DestVT = LD->getValueType(0);
6644 if (DestVT.isVector())
6657 switch (
Op.getOpcode()) {
6684 APInt &Src = Idx < 4 ? DemandedLHS : DemandedRHS;
6685 unsigned ByteStart = (Idx % 4) * 8;
6687 Src.
setBit(ByteStart + 7);
6689 Src.setBits(ByteStart, ByteStart + 8);
6692 return {DemandedLHS, DemandedRHS};
6711 SDValue Op0 = PRMT.getOperand(0);
6712 SDValue Op1 = PRMT.getOperand(1);
6717 unsigned Mode = PRMT.getConstantOperandVal(3);
6722 const unsigned LeadingBytes =
DemandedBits.countLeadingZeros() / 8;
6723 const unsigned SelBits = (4 - LeadingBytes) * 4;
6724 if (Selector.
getLoBits(SelBits) ==
APInt(32, 0x3210).getLoBits(SelBits))
6726 if (Selector.
getLoBits(SelBits) ==
APInt(32, 0x7654).getLoBits(SelBits))
6739 if ((DemandedOp0 && DemandedOp0 != Op0) ||
6740 (DemandedOp1 && DemandedOp1 != Op1)) {
6741 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
6742 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
6754 switch (
Op.getOpcode()) {
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformADDCombineWithOperands - Try DAG combinations for an ADD with operands N0 and N1.
static SDValue PerformADDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
static SDValue PerformVSELECTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static SDValue PerformMULCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *Subtarget)
static SDValue PerformBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformBUILD_VECTORCombine - Target-specific dag combine xforms for ISD::BUILD_VECTOR.
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
#define LLVM_FALLTHROUGH
LLVM_FALLTHROUGH - Mark fallthrough cases in switch statements.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file contains the declarations of entities that describe floating point environment and related ...
Module.h This file contains the declarations for the Module class.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
mir Rename Register Operands
static DebugLoc getDebugLoc(MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI)
Return the first found DebugLoc that has a DILocation, given a range of instructions.
Register const TargetRegisterInfo * TRI
NVPTX address space definition.
static bool shouldConvertToIndirectCall(const CallBase *CB, const GlobalAddressSDNode *Func)
static SDValue combineADDRSPACECAST(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static cl::opt< bool > sched4reg("nvptx-sched4reg", cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false))
static SDValue PerformEXTRACTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static cl::opt< NVPTX::DivPrecisionLevel > UsePrecDivF32("nvptx-prec-divf32", cl::Hidden, cl::desc("NVPTX Specific: Override the precision of the lowering for f32 fdiv"), cl::values(clEnumValN(NVPTX::DivPrecisionLevel::Approx, "0", "Use div.approx"), clEnumValN(NVPTX::DivPrecisionLevel::Full, "1", "Use div.full"), clEnumValN(NVPTX::DivPrecisionLevel::IEEE754, "2", "Use IEEE Compliant F32 div.rnd if available (default)"), clEnumValN(NVPTX::DivPrecisionLevel::IEEE754_NoFTZ, "3", "Use IEEE Compliant F32 div.rnd if available, no FTZ")), cl::init(NVPTX::DivPrecisionLevel::IEEE754))
static bool isConstOne(const SDValue &Operand)
static cl::opt< unsigned > FMAContractLevelOpt("nvptx-fma-level", cl::Hidden, cl::desc("NVPTX Specific: FMA contraction (0: don't do it" " 1: do it 2: do it aggressively"), cl::init(2))
static bool IsPTXVectorType(MVT VT)
static void ReplaceTcgen05Ld(SDNode *N, SelectionDAG &DAG, SmallVectorImpl< SDValue > &Results, bool hasOffset=false)
static SDValue lowerLOADi1(LoadSDNode *LD, SelectionDAG &DAG)
static MachinePointerInfo refinePtrAS(SDValue &Ptr, SelectionDAG &DAG, const DataLayout &DL, const TargetLowering &TL)
static SDValue lowerROT(SDValue Op, SelectionDAG &DAG)
static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL, LLVMContext &Ctx, CallingConv::ID CallConv, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< uint64_t > &Offsets, uint64_t StartingOffset=0)
ComputePTXValueVTs - For the given Type Ty, returns the set of primitive legal-ish MVTs that compose ...
static void ReplaceBITCAST(SDNode *Node, SelectionDAG &DAG, SmallVectorImpl< SDValue > &Results)
static void replaceAtomicSwap128(SDNode *N, SelectionDAG &DAG, const NVPTXSubtarget &STI, SmallVectorImpl< SDValue > &Results)
static SDValue lowerSTOREVector(SDValue Op, SelectionDAG &DAG, const NVPTXSubtarget &STI)
static SDValue lowerLoadVector(SDNode *N, SelectionDAG &DAG, const NVPTXSubtarget &STI)
static void replaceProxyReg(SDNode *N, SelectionDAG &DAG, const TargetLowering &TLI, SmallVectorImpl< SDValue > &Results)
static void ReplaceCopyFromReg_128(SDNode *N, SelectionDAG &DAG, SmallVectorImpl< SDValue > &Results)
static SDValue lowerCTLZCTPOP(SDValue Op, SelectionDAG &DAG)
static SDValue combineMADConstOne(SDValue X, SDValue Add, EVT VT, SDLoc DL, TargetLowering::DAGCombinerInfo &DCI)
static SDValue combinePRMT(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, CodeGenOptLevel OptLevel)
static SDValue combinePackingMovIntoStore(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, unsigned Front, unsigned Back)
Fold packing movs into a store.
static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG, SmallVectorImpl< SDValue > &Results)
static SDValue getBuildVectorizedValue(unsigned N, const SDLoc &dl, SelectionDAG &DAG, T GetElement)
static SDValue getExtractVectorizedValue(SDValue V, unsigned I, EVT VT, const SDLoc &dl, SelectionDAG &DAG)
static NVPTXISD::NodeType getMinMax3Opcode(unsigned MinMax2Opcode)
Get 3-input version of a 2-input min/max opcode.
static unsigned canMergeParamLoadStoresStartingAt(unsigned Idx, uint32_t AccessSize, const SmallVectorImpl< EVT > &ValueVTs, const SmallVectorImpl< T > &Offsets, Align ParamAlignment)
static EVT getVectorizedVT(EVT VT, unsigned N, LLVMContext &C)
static SDValue lowerIntrinsicWOChain(SDValue Op, SelectionDAG &DAG)
static SDValue PerformFMinMaxCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, unsigned PTXVersion, unsigned SmVersion)
PerformFMinMaxCombine - Combine (fmaxnum (fmaxnum a, b), c) into (fmaxnum3 a, b, c).
static SDValue combineMulWide(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, CodeGenOptLevel OptLevel)
static SDValue PerformFADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI, CodeGenOptLevel OptLevel)
static bool isConstZero(const SDValue &Operand)
static SDValue LowerVectorArith(SDValue Op, SelectionDAG &DAG)
static bool IsMulWideOperandDemotable(SDValue Op, unsigned OptSize, OperandSignedness &S)
IsMulWideOperandDemotable - Checks if the provided DAG node is an operand that can be demoted to OptS...
static std::pair< APInt, APInt > getPRMTDemandedBits(const APInt &SelectorVal, const APInt &DemandedBits)
static APInt computePRMT(APInt A, APInt B, APInt Selector, unsigned Mode)
static ISD::NodeType getScalarOpcodeForReduction(unsigned ReductionOpcode)
static SDValue PerformREMCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, CodeGenOptLevel OptLevel)
static SDValue PerformMULCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI)
static void computeKnownBitsForPRMT(const SDValue Op, KnownBits &Known, const SelectionDAG &DAG, unsigned Depth)
static SDValue combineUnpackingMovIntoLoad(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
Fold unpacking movs into a load by increasing the number of return values.
static SDValue LowerClusterLaunchControlQueryCancel(SDValue Op, SelectionDAG &DAG)
static std::optional< NVPTXISD::NodeType > getScalar3OpcodeForReduction(unsigned ReductionOpcode)
Get 3-input scalar reduction opcode.
static std::optional< std::pair< SDValue, SDValue > > replaceLoadVector(SDNode *N, SelectionDAG &DAG, const NVPTXSubtarget &STI)
replaceLoadVector - Convert vector loads into multi-output scalar loads.
static SDValue expandFSH64(SDValue A, SDValue B, SDValue ShiftAmount, SDLoc DL, unsigned Opcode, SelectionDAG &DAG)
static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS, unsigned OptSize, bool &IsSigned)
AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can be demoted to OptSize bits...
static SDValue TryMULWIDECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply of M/2 bits that produces...
static SDValue lowerPrmtIntrinsic(SDValue Op, SelectionDAG &DAG)
static SDValue LowerTcgen05St(SDValue Op, SelectionDAG &DAG)
static SDValue combineMulSelectConstOne(SDValue X, SDValue Select, EVT VT, SDLoc DL, TargetLowering::DAGCombinerInfo &DCI)
static SDValue buildTreeReduction(const SmallVector< SDValue > &Elements, EVT EltTy, ArrayRef< std::pair< unsigned, unsigned > > Ops, const SDLoc &DL, const SDNodeFlags Flags, SelectionDAG &DAG)
Reduces the elements using the scalar operations provided.
static SDValue combineProxyReg(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static SmallVector< unsigned, 16 > VectorizePTXValueVTs(const SmallVectorImpl< EVT > &ValueVTs, const SmallVectorImpl< T > &Offsets, Align ParamAlignment, bool IsVAArg=false)
static SDValue getPRMT(SDValue A, SDValue B, SDValue Selector, SDLoc DL, SelectionDAG &DAG, unsigned Mode=NVPTX::PTXPrmtMode::NONE)
static SDValue matchMADConstOnePattern(SDValue Add)
static SDValue LowerIntrinsicVoid(SDValue Op, SelectionDAG &DAG)
static SDValue correctParamType(SDValue V, EVT ExpectedVT, ISD::ArgFlagsTy Flags, SelectionDAG &DAG, SDLoc dl)
static ISD::NodeType getExtOpcode(const ISD::ArgFlagsTy &Flags)
static cl::opt< bool > UsePrecSqrtF32("nvptx-prec-sqrtf32", cl::Hidden, cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."), cl::init(true))
static void computeKnownBitsForLoadV(const SDValue Op, KnownBits &Known)
static APInt getPRMTSelector(const APInt &Selector, unsigned Mode)
static EVT promoteScalarIntegerPTX(const EVT VT)
PromoteScalarIntegerPTX Used to make sure the arguments/returns are suitable for passing and promote ...
static SDValue simplifyDemandedBitsForPRMT(SDValue PRMT, const APInt &DemandedBits, SelectionDAG &DAG, const TargetLowering &TLI, unsigned Depth)
static SDValue lowerFREM(SDValue Op, SelectionDAG &DAG)
static SDValue canonicalizePRMTInput(SDValue Op, SelectionDAG &DAG)
static SDValue sinkProxyReg(SDValue R, SDValue Chain, TargetLowering::DAGCombinerInfo &DCI)
static SDValue lowerFSH(SDValue Op, SelectionDAG &DAG)
static SDValue PromoteBinOpToF32(SDNode *N, SelectionDAG &DAG)
static SDValue PerformSETCCCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, unsigned int SmVersion)
static std::optional< std::pair< unsigned int, MVT > > getVectorLoweringShape(EVT VectorEVT, const NVPTXSubtarget &STI, unsigned AddressSpace)
static cl::opt< bool > ForceMinByValParamAlign("nvptx-force-min-byval-param-align", cl::Hidden, cl::desc("NVPTX Specific: force 4-byte minimal alignment for byval" " params of device functions."), cl::init(false))
static cl::opt< bool > UseApproxLog2F32("nvptx-approx-log2f32", cl::desc("NVPTX Specific: whether to use lg2.approx for log2"), cl::init(false))
Whereas CUDA's implementation (see libdevice) uses ex2.approx for exp2(), it does NOT use lg2....
static SDValue lowerSELECT(SDValue Op, SelectionDAG &DAG)
static SDValue combineLOAD(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const NVPTXSubtarget &STI)
static SDValue combineSTORE(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const NVPTXSubtarget &STI)
static SDValue PerformSHLCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, CodeGenOptLevel OptLevel)
PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
MachineInstr unsigned OpIdx
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This file describes how to lower LLVM code to machine code.
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
Class for arbitrary precision integers.
LLVM_ABI APInt getLoBits(unsigned numBits) const
Compute an APInt containing numBits lowbits from this APInt.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
LLVM_ABI APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool isSignedIntN(unsigned N) const
Check if this APInt has an N-bits signed integer value.
bool slt(const APInt &RHS) const
Signed less than comparison.
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
bool isIntN(unsigned N) const
Check if this APInt has an N-bits unsigned integer value.
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
const T & back() const
back - Get the last element.
ArrayRef< T > drop_back(size_t N=1) const
Drop the last N elements of the array.
bool empty() const
empty - Check if the array is empty.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
an instruction that atomically reads a memory location, combines it with another value,...
@ Min
*p = old <signed v ? old : v
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ UMax
*p = old >unsigned v ? old : v
@ UDecWrap
Decrement one until a minimum value or zero.
bool isFloatingPointOperation() const
BinOp getOperation() const
This is an SDNode representing atomic operations.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
FunctionType * getFunctionType() const
This class represents a function call, abstracting a target machine's calling convention.
const APInt & getAPIntValue() const
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
uint64_t getNumOperands() const
A parsed version of the target data layout string in and methods for querying it.
TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
Diagnostic information for unsupported feature in backend.
void addFnAttr(Attribute::AttrKind Kind)
Add function attributes to this function.
Common base class shared among various IRBuilders.
This is an important class for using LLVM in a threaded context.
LLVM_ABI void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
This class is used to represent ISD::LOAD nodes.
MCSection * getDataSection() const
Instances of this class represent a uniqued identifier for a section in the current translation unit.
StringRef getName() const
getName - Get the symbol name.
static auto integer_fixedlen_vector_valuetypes()
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
static auto integer_valuetypes()
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
static auto fixedlen_vector_valuetypes()
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
static MVT getIntegerVT(unsigned BitWidth)
static auto fp_valuetypes()
MVT getScalarType() const
If this is a vector, return the element type, otherwise return this.
static auto fp_fixedlen_vector_valuetypes()
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineJumpTableInfo * getJumpTableInfo() const
getJumpTableInfo - Return the jump table info object for the current function.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
@ EK_Inline
EK_Inline - Jump table entries are emitted inline at their point of use.
const std::vector< MachineJumpTableEntry > & getJumpTables() const
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
This is an abstract virtual class for memory operations.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
EVT getMemoryVT() const
Return the type of the in-memory value.
static unsigned getFromTypeWidthForLoad(const MemSDNode *Mem)
bool hasAtomSwap128() const
bool hasF32x2Instructions() const
bool has256BitVectorLoadStore(unsigned AS) const
AtomicOrdering atomicOperationOrderAfterFenceSplit(const Instruction *I) const override
ConstraintType getConstraintType(StringRef Constraint) const override
getConstraintType - Given a constraint letter, return the type of constraint it is for this target.
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
const NVPTXTargetMachine * nvTM
bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0) const override
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
NVPTXTargetLowering(const NVPTXTargetMachine &TM, const NVPTXSubtarget &STI)
std::string getPrototype(const DataLayout &DL, Type *, const ArgListTy &, const SmallVectorImpl< ISD::OutputArg > &, std::optional< unsigned > FirstVAArg, const CallBase &CB, unsigned UniqueCallSite) const
unsigned getPreferredFPToIntOpcode(unsigned Op, EVT FromVT, EVT ToVT) const override
bool useF32FTZ(const MachineFunction &MF) const
SDValue LowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const
Align getFunctionArgumentAlignment(const Function *F, Type *Ty, unsigned Idx, const DataLayout &DL) const
SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &ExtraSteps, bool &UseOneConst, bool Reciprocal) const override
Hooks for building estimates in place of slower divisions and square roots.
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, const SmallVectorImpl< SDValue > &OutVals, const SDLoc &dl, SelectionDAG &DAG) const override
This hook must be implemented to lower outgoing return values, described by the Outs array,...
SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::InputArg > &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower the incoming (formal) arguments, described by the Ins array,...
void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const override
Lower the specified operand into the Ops vector.
SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const
Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const override
std::string getParamName(const Function *F, int Idx) const
TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const override
Return the preferred vector type legalization action.
NVPTX::DivPrecisionLevel getDivF32Level(const MachineFunction &MF, const SDNode &N) const
bool shouldInsertFencesForAtomic(const Instruction *) const override
Whether AtomicExpandPass should automatically insert fences and reduce ordering for this atomic.
Align getFunctionParamOptimizedAlign(const Function *F, Type *ArgTy, const DataLayout &DL) const
getFunctionParamOptimizedAlign - since function arguments are passed via .param space,...
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, EVT VT) const override
Return the ValueType of the result of SETCC operations.
std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override
Given a physical register constraint (e.g.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I=nullptr) const override
isLegalAddressingMode - Return true if the addressing mode represented by AM is legal for this target...
Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const override
Inserts in the IR a target-specific intrinsic specifying a fence.
AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
Align getFunctionByValParamAlign(const Function *F, Type *ArgTy, Align InitialAlign, const DataLayout &DL) const
Helper for computing alignment of a device function byval parameter.
bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, MachineFunction &MF, unsigned Intrinsic) const override
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
const char * getTargetNodeName(unsigned Opcode) const override
This method returns the name of a target specific DAG node.
bool allowFMA(MachineFunction &MF, CodeGenOptLevel OptLevel) const
bool usePrecSqrtF32(const SDNode *N=nullptr) const
unsigned getJumpTableEncoding() const override
Return the entry encoding for a jump table in the current function.
SDValue LowerCall(CallLoweringInfo &CLI, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower calls into the specified DAG.
void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const override
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
MCSection * SelectSectionForGlobal(const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const override
~NVPTXTargetObjectFile() override
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
const DebugLoc & getDebugLoc() const
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
bool hasOneUse() const
Return true if there is exactly one use of this node.
unsigned getIROrder() const
Return the node ordering.
SDNodeFlags getFlags() const
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
SDVTList getVTList() const
const SDValue & getOperand(unsigned Num) const
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
iterator_range< user_iterator > users()
Represents a use of a SDNode.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
const SDValue & getOperand(unsigned i) const
unsigned getOpcode() const
SectionKind - This is a simple POD value that classifies the properties of a section.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
LLVM_ABI SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
const TargetSubtargetInfo & getSubtarget() const
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue getSymbolFunctionGlobalAddress(SDValue Op, Function **TargetFunction=nullptr)
Return a GlobalAddress of the function from the current module with name matching the given ExternalS...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI SDNode * MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, ArrayRef< SDValue > Ops)
This mutates the specified node to have the specified return type, opcode, and operands.
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it's not CSE'd).
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
const DataLayout & getDataLayout() const
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
MachineFunction & getMachineFunction() const
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
ArrayRef< int > getMask() const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
constexpr size_t size() const
size - Get the string size.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
void setMaxDivRemBitWidthSupported(unsigned SizeInBits)
Set the size in bits of the maximum div/rem the backend supports.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
const TargetMachine & getTargetMachine() const
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
Convenience method to set an operation to Promote and specify the type in a single call.
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth)
Tells the code generator which bitwidths to bypass.
virtual unsigned getNumRegisters(LLVMContext &Context, EVT VT, std::optional< MVT > RegisterVT=std::nullopt) const
Return the number of registers that this ValueType will eventually require.
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)
Set the maximum atomic operation size supported by the backend.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ ZeroOrNegativeOneBooleanContent
void setMinCmpXchgSizeInBits(unsigned SizeInBits)
Sets the minimum cmpxchg or ll/sc size supported by the backend.
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, MVT VT, LegalizeAction Action)
Indicate that the specified condition code is or isn't supported on the target and indicate what to d...
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
Align getMinStackArgumentAlignment() const
Return the minimum stack alignment of an argument.
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
std::vector< ArgListEntry > ArgListTy
virtual Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
virtual Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
Inserts in the IR a target-specific intrinsic specifying a fence.
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
void setSchedulingPreference(Sched::Preference Pref)
Specify the target scheduling preference.
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
void setJumpIsExpensive(bool isExpensive=true)
Tells the code generator not to expand logic operations on comparison predicates into separate sequen...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
More limited version of SimplifyDemandedBits that can be used to "lookthrough" ops that don't contrib...
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
TargetLowering(const TargetLowering &)=delete
SDValue expandRoundInexactToOdd(EVT ResultVT, SDValue Op, const SDLoc &DL, SelectionDAG &DAG) const
Truncate Op to ResultVT.
SDValue expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const
Expand round(fp) to fp conversion.
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
Primary interface to the complete machine description for the target machine.
CodeGenOptLevel getOptLevel() const
Returns the optimization level: None, Less, Default, or Aggressive.
MCSymbol * getSymbol(const GlobalValue *GV) const
FPOpFusion::FPOpFusionMode AllowFPOpFusion
AllowFPOpFusion - This flag is set by the -fp-contract=xxx option.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetFrameLowering * getFrameLowering() const
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
Type * getType() const
All values are typed, get the type of this value.
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt pow(const APInt &X, int64_t N)
Compute X^N for N>=0.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ BSWAP
Byte Swap and Counting operators.
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ ADD
Simple integer binary arithmetic operators.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ SIGN_EXTEND
Conversion operators.
@ SSUBO
Same for subtraction.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
@ STRICT_FP_TO_SINT
STRICT_FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
LLVM_ABI bool allOperandsUndef(const SDNode *N)
Return true if the node has at least one operand and all operands of the specified node are ISD::UNDE...
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
@ Bitcast
Perform the operation on a different, but equivalently sized type.
@ ADDRESS_SPACE_SHARED_CLUSTER
@ CLUSTERLAUNCHCONTROL_QUERY_CANCEL_IS_CANCELED
@ CALL
This node represents a PTX call instruction.
@ CLUSTERLAUNCHCONTROL_QUERY_CANCEL_GET_FIRST_CTAID_X
@ UNPACK_VECTOR
This node is the inverse of NVPTX::BUILD_VECTOR.
@ CLUSTERLAUNCHCONTROL_QUERY_CANCEL_GET_FIRST_CTAID_Y
@ DeclareScalarParam
These nodes represent a parameter declaration.
@ CLUSTERLAUNCHCONTROL_QUERY_CANCEL_GET_FIRST_CTAID_Z
@ ATOMIC_CMP_SWAP_B128
These nodes are used to lower atomic instructions with i128 type.
@ BUILD_VECTOR
This node is similar to ISD::BUILD_VECTOR except that the output may be implicitly bitcast to a scala...
bool isPackedVectorTy(EVT VT)
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
NodeAddr< NodeBase * > Node
This is an optimization pass for GlobalISel generic memory operations.
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
bool shouldEmitPTXNoReturn(const Value *V, const TargetMachine &TM)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MaybeAlign getAlign(const CallInst &I, unsigned Index)
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
bool isReleaseOrStronger(AtomicOrdering AO)
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere.
unsigned promoteScalarArgumentSize(unsigned size)
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
bool shouldPassAsArray(Type *Ty)
CodeGenOptLevel
Code generation optimization level.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ Sub
Subtraction of integers.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
DWARFExpression::Operation Op
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< EVT > *MemVTs, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
ArrayRef(const T &OneElt) -> ArrayRef< T >
bool isAcquireOrStronger(AtomicOrdering AO)
constexpr unsigned BitWidth
bool isKernelFunction(const Function &F)
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Function * getMaybeBitcastedCallee(const CallBase *CB)
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
static LLVM_ABI const fltSemantics & IEEEsingle() LLVM_READNONE
This struct is a compact representation of a valid (non-zero power of two) alignment.
uint64_t value() const
This is a hole in the type system and should not be abused.
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
ElementCount getVectorElementCount() const
bool is32BitVector() const
Return true if this is a 32-bit vector type.
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
uint64_t getScalarSizeInBits() const
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
EVT changeVectorElementType(EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool isInteger() const
Return true if this is an integer or a vector integer type.
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
unsigned getBitWidth() const
Get the bit width of this value.
void resetAll()
Resets the known state of all bits.
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
This class contains a discriminated union of information about pointers in memory operands,...
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
These are IR-level optimization flags that may be propagated to SDNodes.
bool hasAllowContract() const
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...
This structure contains all information that is necessary for lowering calls.
SmallVector< ISD::InputArg, 32 > Ins
SmallVector< ISD::OutputArg, 32 > Outs
SmallVector< SDValue, 32 > OutVals
Type * RetTy
Same as OrigRetTy, or partially legalized for soft float libcalls.
bool isAfterLegalizeDAG() const
bool isBeforeLegalize() const
A convenience struct that encapsulates a DAG, and two SDValues for returning information from TargetL...
bool CombineTo(SDValue O, SDValue N)