Thanks to visit codestin.com
Credit goes to llvm.org

LLVM 22.0.0git
SPIRVInstructionSelector.cpp
Go to the documentation of this file.
1//===- SPIRVInstructionSelector.cpp ------------------------------*- C++ -*-==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the targeting of the InstructionSelector class for
10// SPIRV.
11// TODO: This should be generated by TableGen.
12//
13//===----------------------------------------------------------------------===//
14
17#include "SPIRV.h"
18#include "SPIRVGlobalRegistry.h"
19#include "SPIRVInstrInfo.h"
20#include "SPIRVRegisterInfo.h"
21#include "SPIRVTargetMachine.h"
22#include "SPIRVUtils.h"
23#include "llvm/ADT/APFloat.h"
32#include "llvm/IR/IntrinsicsSPIRV.h"
33#include "llvm/Support/Debug.h"
35
36#define DEBUG_TYPE "spirv-isel"
37
38using namespace llvm;
39namespace CL = SPIRV::OpenCLExtInst;
40namespace GL = SPIRV::GLSLExtInst;
41
43 std::vector<std::pair<SPIRV::InstructionSet::InstructionSet, uint32_t>>;
44
45namespace {
46
47llvm::SPIRV::SelectionControl::SelectionControl
48getSelectionOperandForImm(int Imm) {
49 if (Imm == 2)
50 return SPIRV::SelectionControl::Flatten;
51 if (Imm == 1)
52 return SPIRV::SelectionControl::DontFlatten;
53 if (Imm == 0)
54 return SPIRV::SelectionControl::None;
55 llvm_unreachable("Invalid immediate");
56}
57
58#define GET_GLOBALISEL_PREDICATE_BITSET
59#include "SPIRVGenGlobalISel.inc"
60#undef GET_GLOBALISEL_PREDICATE_BITSET
61
62class SPIRVInstructionSelector : public InstructionSelector {
63 const SPIRVSubtarget &STI;
64 const SPIRVInstrInfo &TII;
66 const RegisterBankInfo &RBI;
69 MachineFunction *HasVRegsReset = nullptr;
70
71 /// We need to keep track of the number we give to anonymous global values to
72 /// generate the same name every time when this is needed.
73 mutable DenseMap<const GlobalValue *, unsigned> UnnamedGlobalIDs;
75
76public:
77 SPIRVInstructionSelector(const SPIRVTargetMachine &TM,
78 const SPIRVSubtarget &ST,
79 const RegisterBankInfo &RBI);
80 void setupMF(MachineFunction &MF, GISelValueTracking *VT,
81 CodeGenCoverage *CoverageInfo, ProfileSummaryInfo *PSI,
82 BlockFrequencyInfo *BFI) override;
83 // Common selection code. Instruction-specific selection occurs in spvSelect.
84 bool select(MachineInstr &I) override;
85 static const char *getName() { return DEBUG_TYPE; }
86
87#define GET_GLOBALISEL_PREDICATES_DECL
88#include "SPIRVGenGlobalISel.inc"
89#undef GET_GLOBALISEL_PREDICATES_DECL
90
91#define GET_GLOBALISEL_TEMPORARIES_DECL
92#include "SPIRVGenGlobalISel.inc"
93#undef GET_GLOBALISEL_TEMPORARIES_DECL
94
95private:
96 void resetVRegsType(MachineFunction &MF);
97
98 // tblgen-erated 'select' implementation, used as the initial selector for
99 // the patterns that don't require complex C++.
100 bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const;
101
102 // All instruction-specific selection that didn't happen in "select()".
103 // Is basically a large Switch/Case delegating to all other select method.
104 bool spvSelect(Register ResVReg, const SPIRVType *ResType,
105 MachineInstr &I) const;
106
107 bool selectFirstBitHigh(Register ResVReg, const SPIRVType *ResType,
108 MachineInstr &I, bool IsSigned) const;
109
110 bool selectFirstBitLow(Register ResVReg, const SPIRVType *ResType,
111 MachineInstr &I) const;
112
113 bool selectFirstBitSet16(Register ResVReg, const SPIRVType *ResType,
114 MachineInstr &I, unsigned ExtendOpcode,
115 unsigned BitSetOpcode) const;
116
117 bool selectFirstBitSet32(Register ResVReg, const SPIRVType *ResType,
118 MachineInstr &I, Register SrcReg,
119 unsigned BitSetOpcode) const;
120
121 bool selectFirstBitSet64(Register ResVReg, const SPIRVType *ResType,
122 MachineInstr &I, Register SrcReg,
123 unsigned BitSetOpcode, bool SwapPrimarySide) const;
124
125 bool selectFirstBitSet64Overflow(Register ResVReg, const SPIRVType *ResType,
126 MachineInstr &I, Register SrcReg,
127 unsigned BitSetOpcode,
128 bool SwapPrimarySide) const;
129
130 bool selectGlobalValue(Register ResVReg, MachineInstr &I,
131 const MachineInstr *Init = nullptr) const;
132
133 bool selectOpWithSrcs(Register ResVReg, const SPIRVType *ResType,
134 MachineInstr &I, std::vector<Register> SrcRegs,
135 unsigned Opcode) const;
136
137 bool selectUnOp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
138 unsigned Opcode) const;
139
140 bool selectBitcast(Register ResVReg, const SPIRVType *ResType,
141 MachineInstr &I) const;
142
143 bool selectLoad(Register ResVReg, const SPIRVType *ResType,
144 MachineInstr &I) const;
145 bool selectStore(MachineInstr &I) const;
146
147 bool selectStackSave(Register ResVReg, const SPIRVType *ResType,
148 MachineInstr &I) const;
149 bool selectStackRestore(MachineInstr &I) const;
150
151 bool selectMemOperation(Register ResVReg, MachineInstr &I) const;
152
153 bool selectAtomicRMW(Register ResVReg, const SPIRVType *ResType,
154 MachineInstr &I, unsigned NewOpcode,
155 unsigned NegateOpcode = 0) const;
156
157 bool selectAtomicCmpXchg(Register ResVReg, const SPIRVType *ResType,
158 MachineInstr &I) const;
159
160 bool selectFence(MachineInstr &I) const;
161
162 bool selectAddrSpaceCast(Register ResVReg, const SPIRVType *ResType,
163 MachineInstr &I) const;
164
165 bool selectAnyOrAll(Register ResVReg, const SPIRVType *ResType,
166 MachineInstr &I, unsigned OpType) const;
167
168 bool selectAll(Register ResVReg, const SPIRVType *ResType,
169 MachineInstr &I) const;
170
171 bool selectAny(Register ResVReg, const SPIRVType *ResType,
172 MachineInstr &I) const;
173
174 bool selectBitreverse(Register ResVReg, const SPIRVType *ResType,
175 MachineInstr &I) const;
176
177 bool selectBuildVector(Register ResVReg, const SPIRVType *ResType,
178 MachineInstr &I) const;
179 bool selectSplatVector(Register ResVReg, const SPIRVType *ResType,
180 MachineInstr &I) const;
181
182 bool selectCmp(Register ResVReg, const SPIRVType *ResType,
183 unsigned comparisonOpcode, MachineInstr &I) const;
184 bool selectDiscard(Register ResVReg, const SPIRVType *ResType,
185 MachineInstr &I) const;
186
187 bool selectICmp(Register ResVReg, const SPIRVType *ResType,
188 MachineInstr &I) const;
189 bool selectFCmp(Register ResVReg, const SPIRVType *ResType,
190 MachineInstr &I) const;
191
192 bool selectSign(Register ResVReg, const SPIRVType *ResType,
193 MachineInstr &I) const;
194
195 bool selectFloatDot(Register ResVReg, const SPIRVType *ResType,
196 MachineInstr &I) const;
197
198 bool selectOverflowArith(Register ResVReg, const SPIRVType *ResType,
199 MachineInstr &I, unsigned Opcode) const;
200 bool selectDebugTrap(Register ResVReg, const SPIRVType *ResType,
201 MachineInstr &I) const;
202
203 bool selectIntegerDot(Register ResVReg, const SPIRVType *ResType,
204 MachineInstr &I, bool Signed) const;
205
206 bool selectIntegerDotExpansion(Register ResVReg, const SPIRVType *ResType,
207 MachineInstr &I) const;
208
209 bool selectOpIsInf(Register ResVReg, const SPIRVType *ResType,
210 MachineInstr &I) const;
211
212 bool selectOpIsNan(Register ResVReg, const SPIRVType *ResType,
213 MachineInstr &I) const;
214
215 template <bool Signed>
216 bool selectDot4AddPacked(Register ResVReg, const SPIRVType *ResType,
217 MachineInstr &I) const;
218 template <bool Signed>
219 bool selectDot4AddPackedExpansion(Register ResVReg, const SPIRVType *ResType,
220 MachineInstr &I) const;
221
222 bool selectWaveReduceMax(Register ResVReg, const SPIRVType *ResType,
223 MachineInstr &I, bool IsUnsigned) const;
224
225 bool selectWaveReduceSum(Register ResVReg, const SPIRVType *ResType,
226 MachineInstr &I) const;
227
228 bool selectConst(Register ResVReg, const SPIRVType *ResType,
229 MachineInstr &I) const;
230
231 bool selectSelect(Register ResVReg, const SPIRVType *ResType,
232 MachineInstr &I) const;
233 bool selectSelectDefaultArgs(Register ResVReg, const SPIRVType *ResType,
234 MachineInstr &I, bool IsSigned) const;
235 bool selectIToF(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
236 bool IsSigned, unsigned Opcode) const;
237 bool selectExt(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
238 bool IsSigned) const;
239
240 bool selectTrunc(Register ResVReg, const SPIRVType *ResType,
241 MachineInstr &I) const;
242
243 bool selectSUCmp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
244 bool IsSigned) const;
245
246 bool selectIntToBool(Register IntReg, Register ResVReg, MachineInstr &I,
247 const SPIRVType *intTy, const SPIRVType *boolTy) const;
248
249 bool selectOpUndef(Register ResVReg, const SPIRVType *ResType,
250 MachineInstr &I) const;
251 bool selectFreeze(Register ResVReg, const SPIRVType *ResType,
252 MachineInstr &I) const;
253 bool selectIntrinsic(Register ResVReg, const SPIRVType *ResType,
254 MachineInstr &I) const;
255 bool selectExtractVal(Register ResVReg, const SPIRVType *ResType,
256 MachineInstr &I) const;
257 bool selectInsertVal(Register ResVReg, const SPIRVType *ResType,
258 MachineInstr &I) const;
259 bool selectExtractElt(Register ResVReg, const SPIRVType *ResType,
260 MachineInstr &I) const;
261 bool selectInsertElt(Register ResVReg, const SPIRVType *ResType,
262 MachineInstr &I) const;
263 bool selectGEP(Register ResVReg, const SPIRVType *ResType,
264 MachineInstr &I) const;
265
266 bool selectFrameIndex(Register ResVReg, const SPIRVType *ResType,
267 MachineInstr &I) const;
268 bool selectAllocaArray(Register ResVReg, const SPIRVType *ResType,
269 MachineInstr &I) const;
270
271 bool selectBranch(MachineInstr &I) const;
272 bool selectBranchCond(MachineInstr &I) const;
273
274 bool selectPhi(Register ResVReg, const SPIRVType *ResType,
275 MachineInstr &I) const;
276
277 bool selectExtInst(Register ResVReg, const SPIRVType *RestType,
278 MachineInstr &I, GL::GLSLExtInst GLInst) const;
279 bool selectExtInst(Register ResVReg, const SPIRVType *ResType,
280 MachineInstr &I, CL::OpenCLExtInst CLInst) const;
281 bool selectExtInst(Register ResVReg, const SPIRVType *ResType,
282 MachineInstr &I, CL::OpenCLExtInst CLInst,
283 GL::GLSLExtInst GLInst) const;
284 bool selectExtInst(Register ResVReg, const SPIRVType *ResType,
285 MachineInstr &I, const ExtInstList &ExtInsts) const;
286 bool selectExtInstForLRound(Register ResVReg, const SPIRVType *ResType,
287 MachineInstr &I, CL::OpenCLExtInst CLInst,
288 GL::GLSLExtInst GLInst) const;
289 bool selectExtInstForLRound(Register ResVReg, const SPIRVType *ResType,
291 const ExtInstList &ExtInsts) const;
292
293 bool selectLog10(Register ResVReg, const SPIRVType *ResType,
294 MachineInstr &I) const;
295
296 bool selectSaturate(Register ResVReg, const SPIRVType *ResType,
297 MachineInstr &I) const;
298
299 bool selectWaveOpInst(Register ResVReg, const SPIRVType *ResType,
300 MachineInstr &I, unsigned Opcode) const;
301
302 bool selectWaveActiveCountBits(Register ResVReg, const SPIRVType *ResType,
303 MachineInstr &I) const;
304
306
307 bool selectHandleFromBinding(Register &ResVReg, const SPIRVType *ResType,
308 MachineInstr &I) const;
309
310 bool selectReadImageIntrinsic(Register &ResVReg, const SPIRVType *ResType,
311 MachineInstr &I) const;
312 bool selectImageWriteIntrinsic(MachineInstr &I) const;
313 bool selectResourceGetPointer(Register &ResVReg, const SPIRVType *ResType,
314 MachineInstr &I) const;
315 bool selectModf(Register ResVReg, const SPIRVType *ResType,
316 MachineInstr &I) const;
317 bool selectFrexp(Register ResVReg, const SPIRVType *ResType,
318 MachineInstr &I) const;
319 // Utilities
320 std::pair<Register, bool>
321 buildI32Constant(uint32_t Val, MachineInstr &I,
322 const SPIRVType *ResType = nullptr) const;
323
324 Register buildZerosVal(const SPIRVType *ResType, MachineInstr &I) const;
325 Register buildZerosValF(const SPIRVType *ResType, MachineInstr &I) const;
326 Register buildOnesVal(bool AllOnes, const SPIRVType *ResType,
327 MachineInstr &I) const;
328 Register buildOnesValF(const SPIRVType *ResType, MachineInstr &I) const;
329
330 bool wrapIntoSpecConstantOp(MachineInstr &I,
331 SmallVector<Register> &CompositeArgs) const;
332
333 Register getUcharPtrTypeReg(MachineInstr &I,
334 SPIRV::StorageClass::StorageClass SC) const;
335 MachineInstrBuilder buildSpecConstantOp(MachineInstr &I, Register Dest,
336 Register Src, Register DestType,
337 uint32_t Opcode) const;
338 MachineInstrBuilder buildConstGenericPtr(MachineInstr &I, Register SrcPtr,
339 SPIRVType *SrcPtrTy) const;
340 Register buildPointerToResource(const SPIRVType *ResType,
341 SPIRV::StorageClass::StorageClass SC,
343 uint32_t ArraySize, Register IndexReg,
344 bool IsNonUniform, StringRef Name,
345 MachineIRBuilder MIRBuilder) const;
346 SPIRVType *widenTypeToVec4(const SPIRVType *Type, MachineInstr &I) const;
347 bool extractSubvector(Register &ResVReg, const SPIRVType *ResType,
348 Register &ReadReg, MachineInstr &InsertionPoint) const;
349 bool generateImageRead(Register &ResVReg, const SPIRVType *ResType,
350 Register ImageReg, Register IdxReg, DebugLoc Loc,
351 MachineInstr &Pos) const;
352 bool BuildCOPY(Register DestReg, Register SrcReg, MachineInstr &I) const;
353 bool loadVec3BuiltinInputID(SPIRV::BuiltIn::BuiltIn BuiltInValue,
354 Register ResVReg, const SPIRVType *ResType,
355 MachineInstr &I) const;
356 bool loadBuiltinInputID(SPIRV::BuiltIn::BuiltIn BuiltInValue,
357 Register ResVReg, const SPIRVType *ResType,
358 MachineInstr &I) const;
359 bool loadHandleBeforePosition(Register &HandleReg, const SPIRVType *ResType,
360 GIntrinsic &HandleDef, MachineInstr &Pos) const;
361};
362
363bool sampledTypeIsSignedInteger(const llvm::Type *HandleType) {
364 const TargetExtType *TET = cast<TargetExtType>(HandleType);
365 if (TET->getTargetExtName() == "spirv.Image") {
366 return false;
367 }
368 assert(TET->getTargetExtName() == "spirv.SignedImage");
369 return TET->getTypeParameter(0)->isIntegerTy();
370}
371} // end anonymous namespace
372
373#define GET_GLOBALISEL_IMPL
374#include "SPIRVGenGlobalISel.inc"
375#undef GET_GLOBALISEL_IMPL
376
377SPIRVInstructionSelector::SPIRVInstructionSelector(const SPIRVTargetMachine &TM,
378 const SPIRVSubtarget &ST,
379 const RegisterBankInfo &RBI)
380 : InstructionSelector(), STI(ST), TII(*ST.getInstrInfo()),
381 TRI(*ST.getRegisterInfo()), RBI(RBI), GR(*ST.getSPIRVGlobalRegistry()),
382 MRI(nullptr),
384#include "SPIRVGenGlobalISel.inc"
387#include "SPIRVGenGlobalISel.inc"
389{
390}
391
392void SPIRVInstructionSelector::setupMF(MachineFunction &MF,
394 CodeGenCoverage *CoverageInfo,
396 BlockFrequencyInfo *BFI) {
397 MRI = &MF.getRegInfo();
398 GR.setCurrentFunc(MF);
399 InstructionSelector::setupMF(MF, VT, CoverageInfo, PSI, BFI);
400}
401
402// Ensure that register classes correspond to pattern matching rules.
403void SPIRVInstructionSelector::resetVRegsType(MachineFunction &MF) {
404 if (HasVRegsReset == &MF)
405 return;
406 HasVRegsReset = &MF;
407
408 MachineRegisterInfo &MRI = MF.getRegInfo();
409 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
410 Register Reg = Register::index2VirtReg(I);
411 LLT RegType = MRI.getType(Reg);
412 if (RegType.isScalar())
413 MRI.setType(Reg, LLT::scalar(64));
414 else if (RegType.isPointer())
415 MRI.setType(Reg, LLT::pointer(0, 64));
416 else if (RegType.isVector())
417 MRI.setType(Reg, LLT::fixed_vector(2, LLT::scalar(64)));
418 }
419 for (const auto &MBB : MF) {
420 for (const auto &MI : MBB) {
421 if (isPreISelGenericOpcode(MI.getOpcode()))
422 GR.erase(&MI);
423 if (MI.getOpcode() != SPIRV::ASSIGN_TYPE)
424 continue;
425
426 Register DstReg = MI.getOperand(0).getReg();
427 LLT DstType = MRI.getType(DstReg);
428 Register SrcReg = MI.getOperand(1).getReg();
429 LLT SrcType = MRI.getType(SrcReg);
430 if (DstType != SrcType)
431 MRI.setType(DstReg, MRI.getType(SrcReg));
432
433 const TargetRegisterClass *DstRC = MRI.getRegClassOrNull(DstReg);
434 const TargetRegisterClass *SrcRC = MRI.getRegClassOrNull(SrcReg);
435 if (DstRC != SrcRC && SrcRC)
436 MRI.setRegClass(DstReg, SrcRC);
437 }
438 }
439}
440
441// Return true if the type represents a constant register
444 OpDef = passCopy(OpDef, MRI);
445
446 if (Visited.contains(OpDef))
447 return true;
448 Visited.insert(OpDef);
449
450 unsigned Opcode = OpDef->getOpcode();
451 switch (Opcode) {
452 case TargetOpcode::G_CONSTANT:
453 case TargetOpcode::G_FCONSTANT:
454 return true;
455 case TargetOpcode::G_INTRINSIC:
456 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
457 case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS:
458 return cast<GIntrinsic>(*OpDef).getIntrinsicID() ==
459 Intrinsic::spv_const_composite;
460 case TargetOpcode::G_BUILD_VECTOR:
461 case TargetOpcode::G_SPLAT_VECTOR: {
462 for (unsigned i = OpDef->getNumExplicitDefs(); i < OpDef->getNumOperands();
463 i++) {
464 MachineInstr *OpNestedDef =
465 OpDef->getOperand(i).isReg()
466 ? MRI->getVRegDef(OpDef->getOperand(i).getReg())
467 : nullptr;
468 if (OpNestedDef && !isConstReg(MRI, OpNestedDef, Visited))
469 return false;
470 }
471 return true;
472 case SPIRV::OpConstantTrue:
473 case SPIRV::OpConstantFalse:
474 case SPIRV::OpConstantI:
475 case SPIRV::OpConstantF:
476 case SPIRV::OpConstantComposite:
477 case SPIRV::OpConstantCompositeContinuedINTEL:
478 case SPIRV::OpConstantSampler:
479 case SPIRV::OpConstantNull:
480 case SPIRV::OpUndef:
481 case SPIRV::OpConstantFunctionPointerINTEL:
482 return true;
483 }
484 }
485 return false;
486}
487
488// Return true if the virtual register represents a constant
491 if (MachineInstr *OpDef = MRI->getVRegDef(OpReg))
492 return isConstReg(MRI, OpDef, Visited);
493 return false;
494}
495
497 for (const auto &MO : MI.all_defs()) {
498 Register Reg = MO.getReg();
499 if (Reg.isPhysical() || !MRI.use_nodbg_empty(Reg))
500 return false;
501 }
502 if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE || MI.isFakeUse() ||
503 MI.isLifetimeMarker())
504 return false;
505 if (MI.isPHI())
506 return true;
507 if (MI.mayStore() || MI.isCall() ||
508 (MI.mayLoad() && MI.hasOrderedMemoryRef()) || MI.isPosition() ||
509 MI.isDebugInstr() || MI.isTerminator() || MI.isJumpTableDebugInfo())
510 return false;
511 return true;
512}
513
514bool SPIRVInstructionSelector::select(MachineInstr &I) {
515 resetVRegsType(*I.getParent()->getParent());
516
517 assert(I.getParent() && "Instruction should be in a basic block!");
518 assert(I.getParent()->getParent() && "Instruction should be in a function!");
519
520 Register Opcode = I.getOpcode();
521 // If it's not a GMIR instruction, we've selected it already.
522 if (!isPreISelGenericOpcode(Opcode)) {
523 if (Opcode == SPIRV::ASSIGN_TYPE) { // These pseudos aren't needed any more.
524 Register DstReg = I.getOperand(0).getReg();
525 Register SrcReg = I.getOperand(1).getReg();
526 auto *Def = MRI->getVRegDef(SrcReg);
527 if (isTypeFoldingSupported(Def->getOpcode()) &&
528 Def->getOpcode() != TargetOpcode::G_CONSTANT &&
529 Def->getOpcode() != TargetOpcode::G_FCONSTANT) {
530 bool Res = false;
531 if (Def->getOpcode() == TargetOpcode::G_SELECT) {
532 Register SelectDstReg = Def->getOperand(0).getReg();
533 Res = selectSelect(SelectDstReg, GR.getSPIRVTypeForVReg(SelectDstReg),
534 *Def);
536 Def->removeFromParent();
537 MRI->replaceRegWith(DstReg, SelectDstReg);
539 I.removeFromParent();
540 } else
541 Res = selectImpl(I, *CoverageInfo);
542 LLVM_DEBUG({
543 if (!Res && Def->getOpcode() != TargetOpcode::G_CONSTANT) {
544 dbgs() << "Unexpected pattern in ASSIGN_TYPE.\nInstruction: ";
545 I.print(dbgs());
546 }
547 });
548 assert(Res || Def->getOpcode() == TargetOpcode::G_CONSTANT);
549 if (Res) {
550 if (!isTriviallyDead(*Def, *MRI) && isDead(*Def, *MRI))
551 DeadMIs.insert(Def);
552 return Res;
553 }
554 }
555 MRI->setRegClass(SrcReg, MRI->getRegClass(DstReg));
556 MRI->replaceRegWith(SrcReg, DstReg);
558 I.removeFromParent();
559 return true;
560 } else if (I.getNumDefs() == 1) {
561 // Make all vregs 64 bits (for SPIR-V IDs).
562 MRI->setType(I.getOperand(0).getReg(), LLT::scalar(64));
563 }
565 }
566
567 if (DeadMIs.contains(&I)) {
568 // if the instruction has been already made dead by folding it away
569 // erase it
570 LLVM_DEBUG(dbgs() << "Instruction is folded and dead.\n");
573 I.eraseFromParent();
574 return true;
575 }
576
577 if (I.getNumOperands() != I.getNumExplicitOperands()) {
578 LLVM_DEBUG(errs() << "Generic instr has unexpected implicit operands\n");
579 return false;
580 }
581
582 // Common code for getting return reg+type, and removing selected instr
583 // from parent occurs here. Instr-specific selection happens in spvSelect().
584 bool HasDefs = I.getNumDefs() > 0;
585 Register ResVReg = HasDefs ? I.getOperand(0).getReg() : Register(0);
586 SPIRVType *ResType = HasDefs ? GR.getSPIRVTypeForVReg(ResVReg) : nullptr;
587 assert(!HasDefs || ResType || I.getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
588 I.getOpcode() == TargetOpcode::G_IMPLICIT_DEF);
589 if (spvSelect(ResVReg, ResType, I)) {
590 if (HasDefs) // Make all vregs 64 bits (for SPIR-V IDs).
591 for (unsigned i = 0; i < I.getNumDefs(); ++i)
592 MRI->setType(I.getOperand(i).getReg(), LLT::scalar(64));
594 I.removeFromParent();
595 return true;
596 }
597 return false;
598}
599
600static bool mayApplyGenericSelection(unsigned Opcode) {
601 switch (Opcode) {
602 case TargetOpcode::G_CONSTANT:
603 case TargetOpcode::G_FCONSTANT:
604 return false;
605 case TargetOpcode::G_SADDO:
606 case TargetOpcode::G_SSUBO:
607 return true;
608 }
609 return isTypeFoldingSupported(Opcode);
610}
611
612bool SPIRVInstructionSelector::BuildCOPY(Register DestReg, Register SrcReg,
613 MachineInstr &I) const {
614 const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(DestReg);
615 const TargetRegisterClass *SrcRC = MRI->getRegClassOrNull(SrcReg);
616 if (DstRC != SrcRC && SrcRC)
617 MRI->setRegClass(DestReg, SrcRC);
618 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
619 TII.get(TargetOpcode::COPY))
620 .addDef(DestReg)
621 .addUse(SrcReg)
622 .constrainAllUses(TII, TRI, RBI);
623}
624
625bool SPIRVInstructionSelector::spvSelect(Register ResVReg,
626 const SPIRVType *ResType,
627 MachineInstr &I) const {
628 const unsigned Opcode = I.getOpcode();
629 if (mayApplyGenericSelection(Opcode))
630 return selectImpl(I, *CoverageInfo);
631 switch (Opcode) {
632 case TargetOpcode::G_CONSTANT:
633 case TargetOpcode::G_FCONSTANT:
634 return selectConst(ResVReg, ResType, I);
635 case TargetOpcode::G_GLOBAL_VALUE:
636 return selectGlobalValue(ResVReg, I);
637 case TargetOpcode::G_IMPLICIT_DEF:
638 return selectOpUndef(ResVReg, ResType, I);
639 case TargetOpcode::G_FREEZE:
640 return selectFreeze(ResVReg, ResType, I);
641
642 case TargetOpcode::G_INTRINSIC:
643 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
644 case TargetOpcode::G_INTRINSIC_CONVERGENT:
645 case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS:
646 return selectIntrinsic(ResVReg, ResType, I);
647 case TargetOpcode::G_BITREVERSE:
648 return selectBitreverse(ResVReg, ResType, I);
649
650 case TargetOpcode::G_BUILD_VECTOR:
651 return selectBuildVector(ResVReg, ResType, I);
652 case TargetOpcode::G_SPLAT_VECTOR:
653 return selectSplatVector(ResVReg, ResType, I);
654
655 case TargetOpcode::G_SHUFFLE_VECTOR: {
656 MachineBasicBlock &BB = *I.getParent();
657 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorShuffle))
658 .addDef(ResVReg)
659 .addUse(GR.getSPIRVTypeID(ResType))
660 .addUse(I.getOperand(1).getReg())
661 .addUse(I.getOperand(2).getReg());
662 for (auto V : I.getOperand(3).getShuffleMask())
663 MIB.addImm(V);
664 return MIB.constrainAllUses(TII, TRI, RBI);
665 }
666 case TargetOpcode::G_MEMMOVE:
667 case TargetOpcode::G_MEMCPY:
668 case TargetOpcode::G_MEMSET:
669 return selectMemOperation(ResVReg, I);
670
671 case TargetOpcode::G_ICMP:
672 return selectICmp(ResVReg, ResType, I);
673 case TargetOpcode::G_FCMP:
674 return selectFCmp(ResVReg, ResType, I);
675
676 case TargetOpcode::G_FRAME_INDEX:
677 return selectFrameIndex(ResVReg, ResType, I);
678
679 case TargetOpcode::G_LOAD:
680 return selectLoad(ResVReg, ResType, I);
681 case TargetOpcode::G_STORE:
682 return selectStore(I);
683
684 case TargetOpcode::G_BR:
685 return selectBranch(I);
686 case TargetOpcode::G_BRCOND:
687 return selectBranchCond(I);
688
689 case TargetOpcode::G_PHI:
690 return selectPhi(ResVReg, ResType, I);
691
692 case TargetOpcode::G_FPTOSI:
693 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToS);
694 case TargetOpcode::G_FPTOUI:
695 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToU);
696
697 case TargetOpcode::G_FPTOSI_SAT:
698 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToS);
699 case TargetOpcode::G_FPTOUI_SAT:
700 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToU);
701
702 case TargetOpcode::G_SITOFP:
703 return selectIToF(ResVReg, ResType, I, true, SPIRV::OpConvertSToF);
704 case TargetOpcode::G_UITOFP:
705 return selectIToF(ResVReg, ResType, I, false, SPIRV::OpConvertUToF);
706
707 case TargetOpcode::G_CTPOP:
708 return selectUnOp(ResVReg, ResType, I, SPIRV::OpBitCount);
709 case TargetOpcode::G_SMIN:
710 return selectExtInst(ResVReg, ResType, I, CL::s_min, GL::SMin);
711 case TargetOpcode::G_UMIN:
712 return selectExtInst(ResVReg, ResType, I, CL::u_min, GL::UMin);
713
714 case TargetOpcode::G_SMAX:
715 return selectExtInst(ResVReg, ResType, I, CL::s_max, GL::SMax);
716 case TargetOpcode::G_UMAX:
717 return selectExtInst(ResVReg, ResType, I, CL::u_max, GL::UMax);
718
719 case TargetOpcode::G_SCMP:
720 return selectSUCmp(ResVReg, ResType, I, true);
721 case TargetOpcode::G_UCMP:
722 return selectSUCmp(ResVReg, ResType, I, false);
723 case TargetOpcode::G_LROUND:
724 case TargetOpcode::G_LLROUND: {
725 Register regForLround =
726 MRI->createVirtualRegister(MRI->getRegClass(ResVReg), "lround");
727 MRI->setRegClass(regForLround, &SPIRV::iIDRegClass);
728 GR.assignSPIRVTypeToVReg(GR.getSPIRVTypeForVReg(I.getOperand(1).getReg()),
729 regForLround, *(I.getParent()->getParent()));
730 selectExtInstForLRound(regForLround, GR.getSPIRVTypeForVReg(regForLround),
731 I, CL::round, GL::Round);
732 MachineBasicBlock &BB = *I.getParent();
733 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConvertFToS))
734 .addDef(ResVReg)
735 .addUse(GR.getSPIRVTypeID(ResType))
736 .addUse(regForLround);
737 return MIB.constrainAllUses(TII, TRI, RBI);
738 }
739 case TargetOpcode::G_STRICT_FMA:
740 case TargetOpcode::G_FMA:
741 return selectExtInst(ResVReg, ResType, I, CL::fma, GL::Fma);
742
743 case TargetOpcode::G_STRICT_FLDEXP:
744 return selectExtInst(ResVReg, ResType, I, CL::ldexp);
745
746 case TargetOpcode::G_FPOW:
747 return selectExtInst(ResVReg, ResType, I, CL::pow, GL::Pow);
748 case TargetOpcode::G_FPOWI:
749 return selectExtInst(ResVReg, ResType, I, CL::pown);
750
751 case TargetOpcode::G_FEXP:
752 return selectExtInst(ResVReg, ResType, I, CL::exp, GL::Exp);
753 case TargetOpcode::G_FEXP2:
754 return selectExtInst(ResVReg, ResType, I, CL::exp2, GL::Exp2);
755
756 case TargetOpcode::G_FLOG:
757 return selectExtInst(ResVReg, ResType, I, CL::log, GL::Log);
758 case TargetOpcode::G_FLOG2:
759 return selectExtInst(ResVReg, ResType, I, CL::log2, GL::Log2);
760 case TargetOpcode::G_FLOG10:
761 return selectLog10(ResVReg, ResType, I);
762
763 case TargetOpcode::G_FABS:
764 return selectExtInst(ResVReg, ResType, I, CL::fabs, GL::FAbs);
765 case TargetOpcode::G_ABS:
766 return selectExtInst(ResVReg, ResType, I, CL::s_abs, GL::SAbs);
767
768 case TargetOpcode::G_FMINNUM:
769 case TargetOpcode::G_FMINIMUM:
770 return selectExtInst(ResVReg, ResType, I, CL::fmin, GL::NMin);
771 case TargetOpcode::G_FMAXNUM:
772 case TargetOpcode::G_FMAXIMUM:
773 return selectExtInst(ResVReg, ResType, I, CL::fmax, GL::NMax);
774
775 case TargetOpcode::G_FCOPYSIGN:
776 return selectExtInst(ResVReg, ResType, I, CL::copysign);
777
778 case TargetOpcode::G_FCEIL:
779 return selectExtInst(ResVReg, ResType, I, CL::ceil, GL::Ceil);
780 case TargetOpcode::G_FFLOOR:
781 return selectExtInst(ResVReg, ResType, I, CL::floor, GL::Floor);
782
783 case TargetOpcode::G_FCOS:
784 return selectExtInst(ResVReg, ResType, I, CL::cos, GL::Cos);
785 case TargetOpcode::G_FSIN:
786 return selectExtInst(ResVReg, ResType, I, CL::sin, GL::Sin);
787 case TargetOpcode::G_FTAN:
788 return selectExtInst(ResVReg, ResType, I, CL::tan, GL::Tan);
789 case TargetOpcode::G_FACOS:
790 return selectExtInst(ResVReg, ResType, I, CL::acos, GL::Acos);
791 case TargetOpcode::G_FASIN:
792 return selectExtInst(ResVReg, ResType, I, CL::asin, GL::Asin);
793 case TargetOpcode::G_FATAN:
794 return selectExtInst(ResVReg, ResType, I, CL::atan, GL::Atan);
795 case TargetOpcode::G_FATAN2:
796 return selectExtInst(ResVReg, ResType, I, CL::atan2, GL::Atan2);
797 case TargetOpcode::G_FCOSH:
798 return selectExtInst(ResVReg, ResType, I, CL::cosh, GL::Cosh);
799 case TargetOpcode::G_FSINH:
800 return selectExtInst(ResVReg, ResType, I, CL::sinh, GL::Sinh);
801 case TargetOpcode::G_FTANH:
802 return selectExtInst(ResVReg, ResType, I, CL::tanh, GL::Tanh);
803
804 case TargetOpcode::G_STRICT_FSQRT:
805 case TargetOpcode::G_FSQRT:
806 return selectExtInst(ResVReg, ResType, I, CL::sqrt, GL::Sqrt);
807
808 case TargetOpcode::G_CTTZ:
809 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
810 return selectExtInst(ResVReg, ResType, I, CL::ctz);
811 case TargetOpcode::G_CTLZ:
812 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
813 return selectExtInst(ResVReg, ResType, I, CL::clz);
814
815 case TargetOpcode::G_INTRINSIC_ROUND:
816 return selectExtInst(ResVReg, ResType, I, CL::round, GL::Round);
817 case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
818 return selectExtInst(ResVReg, ResType, I, CL::rint, GL::RoundEven);
819 case TargetOpcode::G_INTRINSIC_TRUNC:
820 return selectExtInst(ResVReg, ResType, I, CL::trunc, GL::Trunc);
821 case TargetOpcode::G_FRINT:
822 case TargetOpcode::G_FNEARBYINT:
823 return selectExtInst(ResVReg, ResType, I, CL::rint, GL::RoundEven);
824
825 case TargetOpcode::G_SMULH:
826 return selectExtInst(ResVReg, ResType, I, CL::s_mul_hi);
827 case TargetOpcode::G_UMULH:
828 return selectExtInst(ResVReg, ResType, I, CL::u_mul_hi);
829
830 case TargetOpcode::G_SADDSAT:
831 return selectExtInst(ResVReg, ResType, I, CL::s_add_sat);
832 case TargetOpcode::G_UADDSAT:
833 return selectExtInst(ResVReg, ResType, I, CL::u_add_sat);
834 case TargetOpcode::G_SSUBSAT:
835 return selectExtInst(ResVReg, ResType, I, CL::s_sub_sat);
836 case TargetOpcode::G_USUBSAT:
837 return selectExtInst(ResVReg, ResType, I, CL::u_sub_sat);
838
839 case TargetOpcode::G_FFREXP:
840 return selectFrexp(ResVReg, ResType, I);
841
842 case TargetOpcode::G_UADDO:
843 return selectOverflowArith(ResVReg, ResType, I,
844 ResType->getOpcode() == SPIRV::OpTypeVector
845 ? SPIRV::OpIAddCarryV
846 : SPIRV::OpIAddCarryS);
847 case TargetOpcode::G_USUBO:
848 return selectOverflowArith(ResVReg, ResType, I,
849 ResType->getOpcode() == SPIRV::OpTypeVector
850 ? SPIRV::OpISubBorrowV
851 : SPIRV::OpISubBorrowS);
852 case TargetOpcode::G_UMULO:
853 return selectOverflowArith(ResVReg, ResType, I, SPIRV::OpUMulExtended);
854 case TargetOpcode::G_SMULO:
855 return selectOverflowArith(ResVReg, ResType, I, SPIRV::OpSMulExtended);
856
857 case TargetOpcode::G_SEXT:
858 return selectExt(ResVReg, ResType, I, true);
859 case TargetOpcode::G_ANYEXT:
860 case TargetOpcode::G_ZEXT:
861 return selectExt(ResVReg, ResType, I, false);
862 case TargetOpcode::G_TRUNC:
863 return selectTrunc(ResVReg, ResType, I);
864 case TargetOpcode::G_FPTRUNC:
865 case TargetOpcode::G_FPEXT:
866 return selectUnOp(ResVReg, ResType, I, SPIRV::OpFConvert);
867
868 case TargetOpcode::G_PTRTOINT:
869 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertPtrToU);
870 case TargetOpcode::G_INTTOPTR:
871 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertUToPtr);
872 case TargetOpcode::G_BITCAST:
873 return selectBitcast(ResVReg, ResType, I);
874 case TargetOpcode::G_ADDRSPACE_CAST:
875 return selectAddrSpaceCast(ResVReg, ResType, I);
876 case TargetOpcode::G_PTR_ADD: {
877 // Currently, we get G_PTR_ADD only applied to global variables.
878 assert(I.getOperand(1).isReg() && I.getOperand(2).isReg());
879 Register GV = I.getOperand(1).getReg();
880 MachineRegisterInfo::def_instr_iterator II = MRI->def_instr_begin(GV);
881 (void)II;
882 assert(((*II).getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
883 (*II).getOpcode() == TargetOpcode::COPY ||
884 (*II).getOpcode() == SPIRV::OpVariable) &&
885 getImm(I.getOperand(2), MRI));
886 // It may be the initialization of a global variable.
887 bool IsGVInit = false;
889 UseIt = MRI->use_instr_begin(I.getOperand(0).getReg()),
890 UseEnd = MRI->use_instr_end();
891 UseIt != UseEnd; UseIt = std::next(UseIt)) {
892 if ((*UseIt).getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
893 (*UseIt).getOpcode() == SPIRV::OpVariable) {
894 IsGVInit = true;
895 break;
896 }
897 }
898 MachineBasicBlock &BB = *I.getParent();
899 if (!IsGVInit) {
900 SPIRVType *GVType = GR.getSPIRVTypeForVReg(GV);
901 SPIRVType *GVPointeeType = GR.getPointeeType(GVType);
902 SPIRVType *ResPointeeType = GR.getPointeeType(ResType);
903 if (GVPointeeType && ResPointeeType && GVPointeeType != ResPointeeType) {
904 // Build a new virtual register that is associated with the required
905 // data type.
906 Register NewVReg = MRI->createGenericVirtualRegister(MRI->getType(GV));
907 MRI->setRegClass(NewVReg, MRI->getRegClass(GV));
908 // Having a correctly typed base we are ready to build the actually
909 // required GEP. It may not be a constant though, because all Operands
910 // of OpSpecConstantOp is to originate from other const instructions,
911 // and only the AccessChain named opcodes accept a global OpVariable
912 // instruction. We can't use an AccessChain opcode because of the type
913 // mismatch between result and base types.
914 if (!GR.isBitcastCompatible(ResType, GVType))
916 "incompatible result and operand types in a bitcast");
917 Register ResTypeReg = GR.getSPIRVTypeID(ResType);
918 MachineInstrBuilder MIB =
919 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpBitcast))
920 .addDef(NewVReg)
921 .addUse(ResTypeReg)
922 .addUse(GV);
923 return MIB.constrainAllUses(TII, TRI, RBI) &&
924 BuildMI(BB, I, I.getDebugLoc(),
925 TII.get(STI.isLogicalSPIRV()
926 ? SPIRV::OpInBoundsAccessChain
927 : SPIRV::OpInBoundsPtrAccessChain))
928 .addDef(ResVReg)
929 .addUse(ResTypeReg)
930 .addUse(NewVReg)
931 .addUse(I.getOperand(2).getReg())
932 .constrainAllUses(TII, TRI, RBI);
933 } else {
934 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSpecConstantOp))
935 .addDef(ResVReg)
936 .addUse(GR.getSPIRVTypeID(ResType))
937 .addImm(
938 static_cast<uint32_t>(SPIRV::Opcode::InBoundsPtrAccessChain))
939 .addUse(GV)
940 .addUse(I.getOperand(2).getReg())
941 .constrainAllUses(TII, TRI, RBI);
942 }
943 }
944 // It's possible to translate G_PTR_ADD to OpSpecConstantOp: either to
945 // initialize a global variable with a constant expression (e.g., the test
946 // case opencl/basic/progvar_prog_scope_init.ll), or for another use case
947 Register Idx = buildZerosVal(GR.getOrCreateSPIRVIntegerType(32, I, TII), I);
948 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSpecConstantOp))
949 .addDef(ResVReg)
950 .addUse(GR.getSPIRVTypeID(ResType))
951 .addImm(static_cast<uint32_t>(
952 SPIRV::Opcode::InBoundsPtrAccessChain))
953 .addUse(GV)
954 .addUse(Idx)
955 .addUse(I.getOperand(2).getReg());
956 return MIB.constrainAllUses(TII, TRI, RBI);
957 }
958
959 case TargetOpcode::G_ATOMICRMW_OR:
960 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicOr);
961 case TargetOpcode::G_ATOMICRMW_ADD:
962 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicIAdd);
963 case TargetOpcode::G_ATOMICRMW_AND:
964 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicAnd);
965 case TargetOpcode::G_ATOMICRMW_MAX:
966 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicSMax);
967 case TargetOpcode::G_ATOMICRMW_MIN:
968 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicSMin);
969 case TargetOpcode::G_ATOMICRMW_SUB:
970 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicISub);
971 case TargetOpcode::G_ATOMICRMW_XOR:
972 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicXor);
973 case TargetOpcode::G_ATOMICRMW_UMAX:
974 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicUMax);
975 case TargetOpcode::G_ATOMICRMW_UMIN:
976 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicUMin);
977 case TargetOpcode::G_ATOMICRMW_XCHG:
978 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicExchange);
979 case TargetOpcode::G_ATOMIC_CMPXCHG:
980 return selectAtomicCmpXchg(ResVReg, ResType, I);
981
982 case TargetOpcode::G_ATOMICRMW_FADD:
983 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFAddEXT);
984 case TargetOpcode::G_ATOMICRMW_FSUB:
985 // Translate G_ATOMICRMW_FSUB to OpAtomicFAddEXT with negative value operand
986 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFAddEXT,
987 SPIRV::OpFNegate);
988 case TargetOpcode::G_ATOMICRMW_FMIN:
989 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFMinEXT);
990 case TargetOpcode::G_ATOMICRMW_FMAX:
991 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFMaxEXT);
992
993 case TargetOpcode::G_FENCE:
994 return selectFence(I);
995
996 case TargetOpcode::G_STACKSAVE:
997 return selectStackSave(ResVReg, ResType, I);
998 case TargetOpcode::G_STACKRESTORE:
999 return selectStackRestore(I);
1000
1001 case TargetOpcode::G_UNMERGE_VALUES:
1002 return selectUnmergeValues(I);
1003
1004 // Discard gen opcodes for intrinsics which we do not expect to actually
1005 // represent code after lowering or intrinsics which are not implemented but
1006 // should not crash when found in a customer's LLVM IR input.
1007 case TargetOpcode::G_TRAP:
1008 case TargetOpcode::G_UBSANTRAP:
1009 case TargetOpcode::DBG_LABEL:
1010 return true;
1011 case TargetOpcode::G_DEBUGTRAP:
1012 return selectDebugTrap(ResVReg, ResType, I);
1013
1014 default:
1015 return false;
1016 }
1017}
1018
1019bool SPIRVInstructionSelector::selectDebugTrap(Register ResVReg,
1020 const SPIRVType *ResType,
1021 MachineInstr &I) const {
1022 unsigned Opcode = SPIRV::OpNop;
1023 MachineBasicBlock &BB = *I.getParent();
1024 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
1025 .constrainAllUses(TII, TRI, RBI);
1026}
1027
1028bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
1029 const SPIRVType *ResType,
1030 MachineInstr &I,
1031 GL::GLSLExtInst GLInst) const {
1032 if (!STI.canUseExtInstSet(
1033 SPIRV::InstructionSet::InstructionSet::GLSL_std_450)) {
1034 std::string DiagMsg;
1035 raw_string_ostream OS(DiagMsg);
1036 I.print(OS, true, false, false, false);
1037 DiagMsg += " is only supported with the GLSL extended instruction set.\n";
1038 report_fatal_error(DiagMsg.c_str(), false);
1039 }
1040 return selectExtInst(ResVReg, ResType, I,
1041 {{SPIRV::InstructionSet::GLSL_std_450, GLInst}});
1042}
1043
1044bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
1045 const SPIRVType *ResType,
1046 MachineInstr &I,
1047 CL::OpenCLExtInst CLInst) const {
1048 return selectExtInst(ResVReg, ResType, I,
1049 {{SPIRV::InstructionSet::OpenCL_std, CLInst}});
1050}
1051
1052bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
1053 const SPIRVType *ResType,
1054 MachineInstr &I,
1055 CL::OpenCLExtInst CLInst,
1056 GL::GLSLExtInst GLInst) const {
1057 ExtInstList ExtInsts = {{SPIRV::InstructionSet::OpenCL_std, CLInst},
1058 {SPIRV::InstructionSet::GLSL_std_450, GLInst}};
1059 return selectExtInst(ResVReg, ResType, I, ExtInsts);
1060}
1061
1062bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
1063 const SPIRVType *ResType,
1064 MachineInstr &I,
1065 const ExtInstList &Insts) const {
1066
1067 for (const auto &Ex : Insts) {
1068 SPIRV::InstructionSet::InstructionSet Set = Ex.first;
1069 uint32_t Opcode = Ex.second;
1070 if (STI.canUseExtInstSet(Set)) {
1071 MachineBasicBlock &BB = *I.getParent();
1072 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
1073 .addDef(ResVReg)
1074 .addUse(GR.getSPIRVTypeID(ResType))
1075 .addImm(static_cast<uint32_t>(Set))
1076 .addImm(Opcode)
1077 .setMIFlags(I.getFlags());
1078 const unsigned NumOps = I.getNumOperands();
1079 unsigned Index = 1;
1080 if (Index < NumOps &&
1081 I.getOperand(Index).getType() ==
1082 MachineOperand::MachineOperandType::MO_IntrinsicID)
1083 Index = 2;
1084 for (; Index < NumOps; ++Index)
1085 MIB.add(I.getOperand(Index));
1086 return MIB.constrainAllUses(TII, TRI, RBI);
1087 }
1088 }
1089 return false;
1090}
1091bool SPIRVInstructionSelector::selectExtInstForLRound(
1092 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
1093 CL::OpenCLExtInst CLInst, GL::GLSLExtInst GLInst) const {
1094 ExtInstList ExtInsts = {{SPIRV::InstructionSet::OpenCL_std, CLInst},
1095 {SPIRV::InstructionSet::GLSL_std_450, GLInst}};
1096 return selectExtInstForLRound(ResVReg, ResType, I, ExtInsts);
1097}
1098
1099bool SPIRVInstructionSelector::selectExtInstForLRound(
1100 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
1101 const ExtInstList &Insts) const {
1102 for (const auto &Ex : Insts) {
1103 SPIRV::InstructionSet::InstructionSet Set = Ex.first;
1104 uint32_t Opcode = Ex.second;
1105 if (STI.canUseExtInstSet(Set)) {
1106 MachineBasicBlock &BB = *I.getParent();
1107 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
1108 .addDef(ResVReg)
1109 .addUse(GR.getSPIRVTypeID(ResType))
1110 .addImm(static_cast<uint32_t>(Set))
1111 .addImm(Opcode);
1112 const unsigned NumOps = I.getNumOperands();
1113 unsigned Index = 1;
1114 if (Index < NumOps &&
1115 I.getOperand(Index).getType() ==
1116 MachineOperand::MachineOperandType::MO_IntrinsicID)
1117 Index = 2;
1118 for (; Index < NumOps; ++Index)
1119 MIB.add(I.getOperand(Index));
1120 MIB.constrainAllUses(TII, TRI, RBI);
1121 return true;
1122 }
1123 }
1124 return false;
1125}
1126
1127bool SPIRVInstructionSelector::selectFrexp(Register ResVReg,
1128 const SPIRVType *ResType,
1129 MachineInstr &I) const {
1130 ExtInstList ExtInsts = {{SPIRV::InstructionSet::OpenCL_std, CL::frexp},
1131 {SPIRV::InstructionSet::GLSL_std_450, GL::Frexp}};
1132 for (const auto &Ex : ExtInsts) {
1133 SPIRV::InstructionSet::InstructionSet Set = Ex.first;
1134 uint32_t Opcode = Ex.second;
1135 if (!STI.canUseExtInstSet(Set))
1136 continue;
1137
1138 MachineIRBuilder MIRBuilder(I);
1139 SPIRVType *PointeeTy = GR.getSPIRVTypeForVReg(I.getOperand(1).getReg());
1141 PointeeTy, MIRBuilder, SPIRV::StorageClass::Function);
1142 Register PointerVReg =
1143 createVirtualRegister(PointerType, &GR, MRI, MRI->getMF());
1144
1145 auto It = getOpVariableMBBIt(I);
1146 auto MIB = BuildMI(*It->getParent(), It, It->getDebugLoc(),
1147 TII.get(SPIRV::OpVariable))
1148 .addDef(PointerVReg)
1149 .addUse(GR.getSPIRVTypeID(PointerType))
1150 .addImm(static_cast<uint32_t>(SPIRV::StorageClass::Function))
1151 .constrainAllUses(TII, TRI, RBI);
1152
1153 MIB = MIB &
1154 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
1155 .addDef(ResVReg)
1156 .addUse(GR.getSPIRVTypeID(ResType))
1157 .addImm(static_cast<uint32_t>(Ex.first))
1158 .addImm(Opcode)
1159 .add(I.getOperand(2))
1160 .addUse(PointerVReg)
1161 .constrainAllUses(TII, TRI, RBI);
1162
1163 MIB = MIB &
1164 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
1165 .addDef(I.getOperand(1).getReg())
1166 .addUse(GR.getSPIRVTypeID(PointeeTy))
1167 .addUse(PointerVReg)
1168 .constrainAllUses(TII, TRI, RBI);
1169 return MIB;
1170 }
1171 return false;
1172}
1173
1174bool SPIRVInstructionSelector::selectOpWithSrcs(Register ResVReg,
1175 const SPIRVType *ResType,
1176 MachineInstr &I,
1177 std::vector<Register> Srcs,
1178 unsigned Opcode) const {
1179 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
1180 .addDef(ResVReg)
1181 .addUse(GR.getSPIRVTypeID(ResType));
1182 for (Register SReg : Srcs) {
1183 MIB.addUse(SReg);
1184 }
1185 return MIB.constrainAllUses(TII, TRI, RBI);
1186}
1187
1188bool SPIRVInstructionSelector::selectUnOp(Register ResVReg,
1189 const SPIRVType *ResType,
1190 MachineInstr &I,
1191 unsigned Opcode) const {
1192 if (STI.isPhysicalSPIRV() && I.getOperand(1).isReg()) {
1193 Register SrcReg = I.getOperand(1).getReg();
1194 bool IsGV = false;
1196 MRI->def_instr_begin(SrcReg);
1197 DefIt != MRI->def_instr_end(); DefIt = std::next(DefIt)) {
1198 if ((*DefIt).getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
1199 (*DefIt).getOpcode() == SPIRV::OpVariable) {
1200 IsGV = true;
1201 break;
1202 }
1203 }
1204 if (IsGV) {
1205 uint32_t SpecOpcode = 0;
1206 switch (Opcode) {
1207 case SPIRV::OpConvertPtrToU:
1208 SpecOpcode = static_cast<uint32_t>(SPIRV::Opcode::ConvertPtrToU);
1209 break;
1210 case SPIRV::OpConvertUToPtr:
1211 SpecOpcode = static_cast<uint32_t>(SPIRV::Opcode::ConvertUToPtr);
1212 break;
1213 }
1214 if (SpecOpcode)
1215 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
1216 TII.get(SPIRV::OpSpecConstantOp))
1217 .addDef(ResVReg)
1218 .addUse(GR.getSPIRVTypeID(ResType))
1219 .addImm(SpecOpcode)
1220 .addUse(SrcReg)
1221 .constrainAllUses(TII, TRI, RBI);
1222 }
1223 }
1224 return selectOpWithSrcs(ResVReg, ResType, I, {I.getOperand(1).getReg()},
1225 Opcode);
1226}
1227
1228bool SPIRVInstructionSelector::selectBitcast(Register ResVReg,
1229 const SPIRVType *ResType,
1230 MachineInstr &I) const {
1231 Register OpReg = I.getOperand(1).getReg();
1232 SPIRVType *OpType = OpReg.isValid() ? GR.getSPIRVTypeForVReg(OpReg) : nullptr;
1233 if (!GR.isBitcastCompatible(ResType, OpType))
1234 report_fatal_error("incompatible result and operand types in a bitcast");
1235 return selectUnOp(ResVReg, ResType, I, SPIRV::OpBitcast);
1236}
1237
1240 MachineIRBuilder &MIRBuilder,
1241 SPIRVGlobalRegistry &GR) {
1242 uint32_t SpvMemOp = static_cast<uint32_t>(SPIRV::MemoryOperand::None);
1243 if (MemOp->isVolatile())
1244 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Volatile);
1245 if (MemOp->isNonTemporal())
1246 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Nontemporal);
1247 if (MemOp->getAlign().value())
1248 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Aligned);
1249
1250 [[maybe_unused]] MachineInstr *AliasList = nullptr;
1251 [[maybe_unused]] MachineInstr *NoAliasList = nullptr;
1252 const SPIRVSubtarget *ST =
1253 static_cast<const SPIRVSubtarget *>(&MIRBuilder.getMF().getSubtarget());
1254 if (ST->canUseExtension(SPIRV::Extension::SPV_INTEL_memory_access_aliasing)) {
1255 if (auto *MD = MemOp->getAAInfo().Scope) {
1256 AliasList = GR.getOrAddMemAliasingINTELInst(MIRBuilder, MD);
1257 if (AliasList)
1258 SpvMemOp |=
1259 static_cast<uint32_t>(SPIRV::MemoryOperand::AliasScopeINTELMask);
1260 }
1261 if (auto *MD = MemOp->getAAInfo().NoAlias) {
1262 NoAliasList = GR.getOrAddMemAliasingINTELInst(MIRBuilder, MD);
1263 if (NoAliasList)
1264 SpvMemOp |=
1265 static_cast<uint32_t>(SPIRV::MemoryOperand::NoAliasINTELMask);
1266 }
1267 }
1268
1269 if (SpvMemOp != static_cast<uint32_t>(SPIRV::MemoryOperand::None)) {
1270 MIB.addImm(SpvMemOp);
1271 if (SpvMemOp & static_cast<uint32_t>(SPIRV::MemoryOperand::Aligned))
1272 MIB.addImm(MemOp->getAlign().value());
1273 if (AliasList)
1274 MIB.addUse(AliasList->getOperand(0).getReg());
1275 if (NoAliasList)
1276 MIB.addUse(NoAliasList->getOperand(0).getReg());
1277 }
1278}
1279
1281 uint32_t SpvMemOp = static_cast<uint32_t>(SPIRV::MemoryOperand::None);
1283 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Volatile);
1285 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Nontemporal);
1286
1287 if (SpvMemOp != static_cast<uint32_t>(SPIRV::MemoryOperand::None))
1288 MIB.addImm(SpvMemOp);
1289}
1290
1291bool SPIRVInstructionSelector::selectLoad(Register ResVReg,
1292 const SPIRVType *ResType,
1293 MachineInstr &I) const {
1294 unsigned OpOffset = isa<GIntrinsic>(I) ? 1 : 0;
1295 Register Ptr = I.getOperand(1 + OpOffset).getReg();
1296
1297 auto *PtrDef = getVRegDef(*MRI, Ptr);
1298 auto *IntPtrDef = dyn_cast<GIntrinsic>(PtrDef);
1299 if (IntPtrDef &&
1300 IntPtrDef->getIntrinsicID() == Intrinsic::spv_resource_getpointer) {
1301 Register HandleReg = IntPtrDef->getOperand(2).getReg();
1302 SPIRVType *HandleType = GR.getSPIRVTypeForVReg(HandleReg);
1303 if (HandleType->getOpcode() == SPIRV::OpTypeImage) {
1304 Register NewHandleReg =
1305 MRI->createVirtualRegister(MRI->getRegClass(HandleReg));
1306 auto *HandleDef = cast<GIntrinsic>(getVRegDef(*MRI, HandleReg));
1307 if (!loadHandleBeforePosition(NewHandleReg, HandleType, *HandleDef, I)) {
1308 return false;
1309 }
1310
1311 Register IdxReg = IntPtrDef->getOperand(3).getReg();
1312 return generateImageRead(ResVReg, ResType, NewHandleReg, IdxReg,
1313 I.getDebugLoc(), I);
1314 }
1315 }
1316
1317 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
1318 .addDef(ResVReg)
1319 .addUse(GR.getSPIRVTypeID(ResType))
1320 .addUse(Ptr);
1321 if (!I.getNumMemOperands()) {
1322 assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS ||
1323 I.getOpcode() ==
1324 TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS);
1325 addMemoryOperands(I.getOperand(2 + OpOffset).getImm(), MIB);
1326 } else {
1327 MachineIRBuilder MIRBuilder(I);
1328 addMemoryOperands(*I.memoperands_begin(), MIB, MIRBuilder, GR);
1329 }
1330 return MIB.constrainAllUses(TII, TRI, RBI);
1331}
1332
1333bool SPIRVInstructionSelector::selectStore(MachineInstr &I) const {
1334 unsigned OpOffset = isa<GIntrinsic>(I) ? 1 : 0;
1335 Register StoreVal = I.getOperand(0 + OpOffset).getReg();
1336 Register Ptr = I.getOperand(1 + OpOffset).getReg();
1337
1338 auto *PtrDef = getVRegDef(*MRI, Ptr);
1339 auto *IntPtrDef = dyn_cast<GIntrinsic>(PtrDef);
1340 if (IntPtrDef &&
1341 IntPtrDef->getIntrinsicID() == Intrinsic::spv_resource_getpointer) {
1342 Register HandleReg = IntPtrDef->getOperand(2).getReg();
1343 Register NewHandleReg =
1344 MRI->createVirtualRegister(MRI->getRegClass(HandleReg));
1345 auto *HandleDef = cast<GIntrinsic>(getVRegDef(*MRI, HandleReg));
1346 SPIRVType *HandleType = GR.getSPIRVTypeForVReg(HandleReg);
1347 if (!loadHandleBeforePosition(NewHandleReg, HandleType, *HandleDef, I)) {
1348 return false;
1349 }
1350
1351 Register IdxReg = IntPtrDef->getOperand(3).getReg();
1352 if (HandleType->getOpcode() == SPIRV::OpTypeImage) {
1353 auto BMI = BuildMI(*I.getParent(), I, I.getDebugLoc(),
1354 TII.get(SPIRV::OpImageWrite))
1355 .addUse(NewHandleReg)
1356 .addUse(IdxReg)
1357 .addUse(StoreVal);
1358
1359 const llvm::Type *LLVMHandleType = GR.getTypeForSPIRVType(HandleType);
1360 if (sampledTypeIsSignedInteger(LLVMHandleType))
1361 BMI.addImm(0x1000); // SignExtend
1362
1363 return BMI.constrainAllUses(TII, TRI, RBI);
1364 }
1365 }
1366
1367 MachineBasicBlock &BB = *I.getParent();
1368 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpStore))
1369 .addUse(Ptr)
1370 .addUse(StoreVal);
1371 if (!I.getNumMemOperands()) {
1372 assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS ||
1373 I.getOpcode() ==
1374 TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS);
1375 addMemoryOperands(I.getOperand(2 + OpOffset).getImm(), MIB);
1376 } else {
1377 MachineIRBuilder MIRBuilder(I);
1378 addMemoryOperands(*I.memoperands_begin(), MIB, MIRBuilder, GR);
1379 }
1380 return MIB.constrainAllUses(TII, TRI, RBI);
1381}
1382
1383bool SPIRVInstructionSelector::selectStackSave(Register ResVReg,
1384 const SPIRVType *ResType,
1385 MachineInstr &I) const {
1386 if (!STI.canUseExtension(SPIRV::Extension::SPV_INTEL_variable_length_array))
1388 "llvm.stacksave intrinsic: this instruction requires the following "
1389 "SPIR-V extension: SPV_INTEL_variable_length_array",
1390 false);
1391 MachineBasicBlock &BB = *I.getParent();
1392 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSaveMemoryINTEL))
1393 .addDef(ResVReg)
1394 .addUse(GR.getSPIRVTypeID(ResType))
1395 .constrainAllUses(TII, TRI, RBI);
1396}
1397
1398bool SPIRVInstructionSelector::selectStackRestore(MachineInstr &I) const {
1399 if (!STI.canUseExtension(SPIRV::Extension::SPV_INTEL_variable_length_array))
1401 "llvm.stackrestore intrinsic: this instruction requires the following "
1402 "SPIR-V extension: SPV_INTEL_variable_length_array",
1403 false);
1404 if (!I.getOperand(0).isReg())
1405 return false;
1406 MachineBasicBlock &BB = *I.getParent();
1407 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpRestoreMemoryINTEL))
1408 .addUse(I.getOperand(0).getReg())
1409 .constrainAllUses(TII, TRI, RBI);
1410}
1411
1412bool SPIRVInstructionSelector::selectMemOperation(Register ResVReg,
1413 MachineInstr &I) const {
1414 MachineBasicBlock &BB = *I.getParent();
1415 Register SrcReg = I.getOperand(1).getReg();
1416 bool Result = true;
1417 if (I.getOpcode() == TargetOpcode::G_MEMSET) {
1418 MachineIRBuilder MIRBuilder(I);
1419 assert(I.getOperand(1).isReg() && I.getOperand(2).isReg());
1420 unsigned Val = getIConstVal(I.getOperand(1).getReg(), MRI);
1421 unsigned Num = getIConstVal(I.getOperand(2).getReg(), MRI);
1422 Type *ValTy = Type::getInt8Ty(I.getMF()->getFunction().getContext());
1423 Type *ArrTy = ArrayType::get(ValTy, Num);
1425 ArrTy, MIRBuilder, SPIRV::StorageClass::UniformConstant);
1426
1427 SPIRVType *SpvArrTy = GR.getOrCreateSPIRVType(
1428 ArrTy, MIRBuilder, SPIRV::AccessQualifier::None, false);
1429 Register Const = GR.getOrCreateConstIntArray(Val, Num, I, SpvArrTy, TII);
1430 // TODO: check if we have such GV, add init, use buildGlobalVariable.
1431 Function &CurFunction = GR.CurMF->getFunction();
1432 Type *LLVMArrTy =
1433 ArrayType::get(IntegerType::get(CurFunction.getContext(), 8), Num);
1434 // Module takes ownership of the global var.
1435 GlobalVariable *GV = new GlobalVariable(*CurFunction.getParent(), LLVMArrTy,
1437 Constant::getNullValue(LLVMArrTy));
1438 Register VarReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
1439 auto MIBVar =
1440 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpVariable))
1441 .addDef(VarReg)
1442 .addUse(GR.getSPIRVTypeID(VarTy))
1443 .addImm(SPIRV::StorageClass::UniformConstant)
1444 .addUse(Const);
1445 Result &= MIBVar.constrainAllUses(TII, TRI, RBI);
1446
1447 GR.add(GV, MIBVar);
1448 GR.addGlobalObject(GV, GR.CurMF, VarReg);
1449
1450 buildOpDecorate(VarReg, I, TII, SPIRV::Decoration::Constant, {});
1452 ValTy, I, SPIRV::StorageClass::UniformConstant);
1453 SrcReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
1454 selectOpWithSrcs(SrcReg, SourceTy, I, {VarReg}, SPIRV::OpBitcast);
1455 }
1456 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCopyMemorySized))
1457 .addUse(I.getOperand(0).getReg())
1458 .addUse(SrcReg)
1459 .addUse(I.getOperand(2).getReg());
1460 if (I.getNumMemOperands()) {
1461 MachineIRBuilder MIRBuilder(I);
1462 addMemoryOperands(*I.memoperands_begin(), MIB, MIRBuilder, GR);
1463 }
1464 Result &= MIB.constrainAllUses(TII, TRI, RBI);
1465 if (ResVReg.isValid() && ResVReg != MIB->getOperand(0).getReg())
1466 Result &= BuildCOPY(ResVReg, MIB->getOperand(0).getReg(), I);
1467 return Result;
1468}
1469
1470bool SPIRVInstructionSelector::selectAtomicRMW(Register ResVReg,
1471 const SPIRVType *ResType,
1472 MachineInstr &I,
1473 unsigned NewOpcode,
1474 unsigned NegateOpcode) const {
1475 bool Result = true;
1476 assert(I.hasOneMemOperand());
1477 const MachineMemOperand *MemOp = *I.memoperands_begin();
1478 uint32_t Scope = static_cast<uint32_t>(getMemScope(
1479 GR.CurMF->getFunction().getContext(), MemOp->getSyncScopeID()));
1480 auto ScopeConstant = buildI32Constant(Scope, I);
1481 Register ScopeReg = ScopeConstant.first;
1482 Result &= ScopeConstant.second;
1483
1484 Register Ptr = I.getOperand(1).getReg();
1485 // TODO: Changed as it's implemented in the translator. See test/atomicrmw.ll
1486 // auto ScSem =
1487 // getMemSemanticsForStorageClass(GR.getPointerStorageClass(Ptr));
1488 AtomicOrdering AO = MemOp->getSuccessOrdering();
1489 uint32_t MemSem = static_cast<uint32_t>(getMemSemantics(AO));
1490 auto MemSemConstant = buildI32Constant(MemSem /*| ScSem*/, I);
1491 Register MemSemReg = MemSemConstant.first;
1492 Result &= MemSemConstant.second;
1493
1494 Register ValueReg = I.getOperand(2).getReg();
1495 if (NegateOpcode != 0) {
1496 // Translation with negative value operand is requested
1497 Register TmpReg = createVirtualRegister(ResType, &GR, MRI, MRI->getMF());
1498 Result &= selectOpWithSrcs(TmpReg, ResType, I, {ValueReg}, NegateOpcode);
1499 ValueReg = TmpReg;
1500 }
1501
1502 return Result &&
1503 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(NewOpcode))
1504 .addDef(ResVReg)
1505 .addUse(GR.getSPIRVTypeID(ResType))
1506 .addUse(Ptr)
1507 .addUse(ScopeReg)
1508 .addUse(MemSemReg)
1509 .addUse(ValueReg)
1510 .constrainAllUses(TII, TRI, RBI);
1511}
1512
1513bool SPIRVInstructionSelector::selectUnmergeValues(MachineInstr &I) const {
1514 unsigned ArgI = I.getNumOperands() - 1;
1515 Register SrcReg =
1516 I.getOperand(ArgI).isReg() ? I.getOperand(ArgI).getReg() : Register(0);
1517 SPIRVType *DefType =
1518 SrcReg.isValid() ? GR.getSPIRVTypeForVReg(SrcReg) : nullptr;
1519 if (!DefType || DefType->getOpcode() != SPIRV::OpTypeVector)
1521 "cannot select G_UNMERGE_VALUES with a non-vector argument");
1522
1523 SPIRVType *ScalarType =
1524 GR.getSPIRVTypeForVReg(DefType->getOperand(1).getReg());
1525 MachineBasicBlock &BB = *I.getParent();
1526 bool Res = false;
1527 for (unsigned i = 0; i < I.getNumDefs(); ++i) {
1528 Register ResVReg = I.getOperand(i).getReg();
1529 SPIRVType *ResType = GR.getSPIRVTypeForVReg(ResVReg);
1530 if (!ResType) {
1531 // There was no "assign type" actions, let's fix this now
1532 ResType = ScalarType;
1533 MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
1534 MRI->setType(ResVReg, LLT::scalar(GR.getScalarOrVectorBitWidth(ResType)));
1535 GR.assignSPIRVTypeToVReg(ResType, ResVReg, *GR.CurMF);
1536 }
1537 auto MIB =
1538 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
1539 .addDef(ResVReg)
1540 .addUse(GR.getSPIRVTypeID(ResType))
1541 .addUse(SrcReg)
1542 .addImm(static_cast<int64_t>(i));
1543 Res |= MIB.constrainAllUses(TII, TRI, RBI);
1544 }
1545 return Res;
1546}
1547
1548bool SPIRVInstructionSelector::selectFence(MachineInstr &I) const {
1549 AtomicOrdering AO = AtomicOrdering(I.getOperand(0).getImm());
1550 uint32_t MemSem = static_cast<uint32_t>(getMemSemantics(AO));
1551 auto MemSemConstant = buildI32Constant(MemSem, I);
1552 Register MemSemReg = MemSemConstant.first;
1553 bool Result = MemSemConstant.second;
1554 SyncScope::ID Ord = SyncScope::ID(I.getOperand(1).getImm());
1555 uint32_t Scope = static_cast<uint32_t>(
1556 getMemScope(GR.CurMF->getFunction().getContext(), Ord));
1557 auto ScopeConstant = buildI32Constant(Scope, I);
1558 Register ScopeReg = ScopeConstant.first;
1559 Result &= ScopeConstant.second;
1560 MachineBasicBlock &BB = *I.getParent();
1561 return Result &&
1562 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpMemoryBarrier))
1563 .addUse(ScopeReg)
1564 .addUse(MemSemReg)
1565 .constrainAllUses(TII, TRI, RBI);
1566}
1567
1568bool SPIRVInstructionSelector::selectOverflowArith(Register ResVReg,
1569 const SPIRVType *ResType,
1570 MachineInstr &I,
1571 unsigned Opcode) const {
1572 Type *ResTy = nullptr;
1573 StringRef ResName;
1574 if (!GR.findValueAttrs(&I, ResTy, ResName))
1576 "Not enough info to select the arithmetic with overflow instruction");
1577 if (!ResTy || !ResTy->isStructTy())
1578 report_fatal_error("Expect struct type result for the arithmetic "
1579 "with overflow instruction");
1580 // "Result Type must be from OpTypeStruct. The struct must have two members,
1581 // and the two members must be the same type."
1582 Type *ResElemTy = cast<StructType>(ResTy)->getElementType(0);
1583 ResTy = StructType::get(ResElemTy, ResElemTy);
1584 // Build SPIR-V types and constant(s) if needed.
1585 MachineIRBuilder MIRBuilder(I);
1586 SPIRVType *StructType = GR.getOrCreateSPIRVType(
1587 ResTy, MIRBuilder, SPIRV::AccessQualifier::ReadWrite, false);
1588 assert(I.getNumDefs() > 1 && "Not enought operands");
1589 SPIRVType *BoolType = GR.getOrCreateSPIRVBoolType(I, TII);
1590 unsigned N = GR.getScalarOrVectorComponentCount(ResType);
1591 if (N > 1)
1592 BoolType = GR.getOrCreateSPIRVVectorType(BoolType, N, I, TII);
1593 Register BoolTypeReg = GR.getSPIRVTypeID(BoolType);
1594 Register ZeroReg = buildZerosVal(ResType, I);
1595 // A new virtual register to store the result struct.
1596 Register StructVReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
1597 MRI->setRegClass(StructVReg, &SPIRV::IDRegClass);
1598 // Build the result name if needed.
1599 if (ResName.size() > 0)
1600 buildOpName(StructVReg, ResName, MIRBuilder);
1601 // Build the arithmetic with overflow instruction.
1602 MachineBasicBlock &BB = *I.getParent();
1603 auto MIB =
1604 BuildMI(BB, MIRBuilder.getInsertPt(), I.getDebugLoc(), TII.get(Opcode))
1605 .addDef(StructVReg)
1606 .addUse(GR.getSPIRVTypeID(StructType));
1607 for (unsigned i = I.getNumDefs(); i < I.getNumOperands(); ++i)
1608 MIB.addUse(I.getOperand(i).getReg());
1609 bool Result = MIB.constrainAllUses(TII, TRI, RBI);
1610 // Build instructions to extract fields of the instruction's result.
1611 // A new virtual register to store the higher part of the result struct.
1612 Register HigherVReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
1613 MRI->setRegClass(HigherVReg, &SPIRV::iIDRegClass);
1614 for (unsigned i = 0; i < I.getNumDefs(); ++i) {
1615 auto MIB =
1616 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
1617 .addDef(i == 1 ? HigherVReg : I.getOperand(i).getReg())
1618 .addUse(GR.getSPIRVTypeID(ResType))
1619 .addUse(StructVReg)
1620 .addImm(i);
1621 Result &= MIB.constrainAllUses(TII, TRI, RBI);
1622 }
1623 // Build boolean value from the higher part.
1624 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpINotEqual))
1625 .addDef(I.getOperand(1).getReg())
1626 .addUse(BoolTypeReg)
1627 .addUse(HigherVReg)
1628 .addUse(ZeroReg)
1629 .constrainAllUses(TII, TRI, RBI);
1630}
1631
1632bool SPIRVInstructionSelector::selectAtomicCmpXchg(Register ResVReg,
1633 const SPIRVType *ResType,
1634 MachineInstr &I) const {
1635 bool Result = true;
1636 Register ScopeReg;
1637 Register MemSemEqReg;
1638 Register MemSemNeqReg;
1639 Register Ptr = I.getOperand(2).getReg();
1640 if (!isa<GIntrinsic>(I)) {
1641 assert(I.hasOneMemOperand());
1642 const MachineMemOperand *MemOp = *I.memoperands_begin();
1643 unsigned Scope = static_cast<uint32_t>(getMemScope(
1644 GR.CurMF->getFunction().getContext(), MemOp->getSyncScopeID()));
1645 auto ScopeConstant = buildI32Constant(Scope, I);
1646 ScopeReg = ScopeConstant.first;
1647 Result &= ScopeConstant.second;
1648
1649 unsigned ScSem = static_cast<uint32_t>(
1651 AtomicOrdering AO = MemOp->getSuccessOrdering();
1652 unsigned MemSemEq = static_cast<uint32_t>(getMemSemantics(AO)) | ScSem;
1653 auto MemSemEqConstant = buildI32Constant(MemSemEq, I);
1654 MemSemEqReg = MemSemEqConstant.first;
1655 Result &= MemSemEqConstant.second;
1656 AtomicOrdering FO = MemOp->getFailureOrdering();
1657 unsigned MemSemNeq = static_cast<uint32_t>(getMemSemantics(FO)) | ScSem;
1658 if (MemSemEq == MemSemNeq)
1659 MemSemNeqReg = MemSemEqReg;
1660 else {
1661 auto MemSemNeqConstant = buildI32Constant(MemSemEq, I);
1662 MemSemNeqReg = MemSemNeqConstant.first;
1663 Result &= MemSemNeqConstant.second;
1664 }
1665 } else {
1666 ScopeReg = I.getOperand(5).getReg();
1667 MemSemEqReg = I.getOperand(6).getReg();
1668 MemSemNeqReg = I.getOperand(7).getReg();
1669 }
1670
1671 Register Cmp = I.getOperand(3).getReg();
1672 Register Val = I.getOperand(4).getReg();
1673 SPIRVType *SpvValTy = GR.getSPIRVTypeForVReg(Val);
1674 Register ACmpRes = createVirtualRegister(SpvValTy, &GR, MRI, *I.getMF());
1675 const DebugLoc &DL = I.getDebugLoc();
1676 Result &=
1677 BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpAtomicCompareExchange))
1678 .addDef(ACmpRes)
1679 .addUse(GR.getSPIRVTypeID(SpvValTy))
1680 .addUse(Ptr)
1681 .addUse(ScopeReg)
1682 .addUse(MemSemEqReg)
1683 .addUse(MemSemNeqReg)
1684 .addUse(Val)
1685 .addUse(Cmp)
1686 .constrainAllUses(TII, TRI, RBI);
1687 SPIRVType *BoolTy = GR.getOrCreateSPIRVBoolType(I, TII);
1688 Register CmpSuccReg = createVirtualRegister(BoolTy, &GR, MRI, *I.getMF());
1689 Result &= BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpIEqual))
1690 .addDef(CmpSuccReg)
1691 .addUse(GR.getSPIRVTypeID(BoolTy))
1692 .addUse(ACmpRes)
1693 .addUse(Cmp)
1694 .constrainAllUses(TII, TRI, RBI);
1695 Register TmpReg = createVirtualRegister(ResType, &GR, MRI, *I.getMF());
1696 Result &= BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpCompositeInsert))
1697 .addDef(TmpReg)
1698 .addUse(GR.getSPIRVTypeID(ResType))
1699 .addUse(ACmpRes)
1700 .addUse(GR.getOrCreateUndef(I, ResType, TII))
1701 .addImm(0)
1702 .constrainAllUses(TII, TRI, RBI);
1703 return Result &&
1704 BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpCompositeInsert))
1705 .addDef(ResVReg)
1706 .addUse(GR.getSPIRVTypeID(ResType))
1707 .addUse(CmpSuccReg)
1708 .addUse(TmpReg)
1709 .addImm(1)
1710 .constrainAllUses(TII, TRI, RBI);
1711}
1712
1713static bool isUSMStorageClass(SPIRV::StorageClass::StorageClass SC) {
1714 switch (SC) {
1715 case SPIRV::StorageClass::DeviceOnlyINTEL:
1716 case SPIRV::StorageClass::HostOnlyINTEL:
1717 return true;
1718 default:
1719 return false;
1720 }
1721}
1722
1723// Returns true ResVReg is referred only from global vars and OpName's.
1725 bool IsGRef = false;
1726 bool IsAllowedRefs =
1727 llvm::all_of(MRI->use_instructions(ResVReg), [&IsGRef](auto const &It) {
1728 unsigned Opcode = It.getOpcode();
1729 if (Opcode == SPIRV::OpConstantComposite ||
1730 Opcode == SPIRV::OpVariable ||
1731 isSpvIntrinsic(It, Intrinsic::spv_init_global))
1732 return IsGRef = true;
1733 return Opcode == SPIRV::OpName;
1734 });
1735 return IsAllowedRefs && IsGRef;
1736}
1737
1738Register SPIRVInstructionSelector::getUcharPtrTypeReg(
1739 MachineInstr &I, SPIRV::StorageClass::StorageClass SC) const {
1741 Type::getInt8Ty(I.getMF()->getFunction().getContext()), I, SC));
1742}
1743
1744MachineInstrBuilder
1745SPIRVInstructionSelector::buildSpecConstantOp(MachineInstr &I, Register Dest,
1746 Register Src, Register DestType,
1747 uint32_t Opcode) const {
1748 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
1749 TII.get(SPIRV::OpSpecConstantOp))
1750 .addDef(Dest)
1751 .addUse(DestType)
1752 .addImm(Opcode)
1753 .addUse(Src);
1754}
1755
1756MachineInstrBuilder
1757SPIRVInstructionSelector::buildConstGenericPtr(MachineInstr &I, Register SrcPtr,
1758 SPIRVType *SrcPtrTy) const {
1759 SPIRVType *GenericPtrTy =
1760 GR.changePointerStorageClass(SrcPtrTy, SPIRV::StorageClass::Generic, I);
1761 Register Tmp = MRI->createVirtualRegister(&SPIRV::pIDRegClass);
1763 SPIRV::StorageClass::Generic),
1764 GR.getPointerSize()));
1765 MachineFunction *MF = I.getParent()->getParent();
1766 GR.assignSPIRVTypeToVReg(GenericPtrTy, Tmp, *MF);
1767 MachineInstrBuilder MIB = buildSpecConstantOp(
1768 I, Tmp, SrcPtr, GR.getSPIRVTypeID(GenericPtrTy),
1769 static_cast<uint32_t>(SPIRV::Opcode::PtrCastToGeneric));
1770 GR.add(MIB.getInstr(), MIB);
1771 return MIB;
1772}
1773
1774// In SPIR-V address space casting can only happen to and from the Generic
1775// storage class. We can also only cast Workgroup, CrossWorkgroup, or Function
1776// pointers to and from Generic pointers. As such, we can convert e.g. from
1777// Workgroup to Function by going via a Generic pointer as an intermediary. All
1778// other combinations can only be done by a bitcast, and are probably not safe.
1779bool SPIRVInstructionSelector::selectAddrSpaceCast(Register ResVReg,
1780 const SPIRVType *ResType,
1781 MachineInstr &I) const {
1782 MachineBasicBlock &BB = *I.getParent();
1783 const DebugLoc &DL = I.getDebugLoc();
1784
1785 Register SrcPtr = I.getOperand(1).getReg();
1786 SPIRVType *SrcPtrTy = GR.getSPIRVTypeForVReg(SrcPtr);
1787
1788 // don't generate a cast for a null that may be represented by OpTypeInt
1789 if (SrcPtrTy->getOpcode() != SPIRV::OpTypePointer ||
1790 ResType->getOpcode() != SPIRV::OpTypePointer)
1791 return BuildCOPY(ResVReg, SrcPtr, I);
1792
1793 SPIRV::StorageClass::StorageClass SrcSC = GR.getPointerStorageClass(SrcPtrTy);
1794 SPIRV::StorageClass::StorageClass DstSC = GR.getPointerStorageClass(ResType);
1795
1796 if (isASCastInGVar(MRI, ResVReg)) {
1797 // AddrSpaceCast uses within OpVariable and OpConstantComposite instructions
1798 // are expressed by OpSpecConstantOp with an Opcode.
1799 // TODO: maybe insert a check whether the Kernel capability was declared and
1800 // so PtrCastToGeneric/GenericCastToPtr are available.
1801 unsigned SpecOpcode =
1802 DstSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(SrcSC)
1803 ? static_cast<uint32_t>(SPIRV::Opcode::PtrCastToGeneric)
1804 : (SrcSC == SPIRV::StorageClass::Generic &&
1806 ? static_cast<uint32_t>(SPIRV::Opcode::GenericCastToPtr)
1807 : 0);
1808 // TODO: OpConstantComposite expects i8*, so we are forced to forget a
1809 // correct value of ResType and use general i8* instead. Maybe this should
1810 // be addressed in the emit-intrinsic step to infer a correct
1811 // OpConstantComposite type.
1812 if (SpecOpcode) {
1813 return buildSpecConstantOp(I, ResVReg, SrcPtr,
1814 getUcharPtrTypeReg(I, DstSC), SpecOpcode)
1815 .constrainAllUses(TII, TRI, RBI);
1816 } else if (isGenericCastablePtr(SrcSC) && isGenericCastablePtr(DstSC)) {
1817 MachineInstrBuilder MIB = buildConstGenericPtr(I, SrcPtr, SrcPtrTy);
1818 return MIB.constrainAllUses(TII, TRI, RBI) &&
1819 buildSpecConstantOp(
1820 I, ResVReg, MIB->getOperand(0).getReg(),
1821 getUcharPtrTypeReg(I, DstSC),
1822 static_cast<uint32_t>(SPIRV::Opcode::GenericCastToPtr))
1823 .constrainAllUses(TII, TRI, RBI);
1824 }
1825 }
1826
1827 // don't generate a cast between identical storage classes
1828 if (SrcSC == DstSC)
1829 return BuildCOPY(ResVReg, SrcPtr, I);
1830
1831 if ((SrcSC == SPIRV::StorageClass::Function &&
1832 DstSC == SPIRV::StorageClass::Private) ||
1833 (DstSC == SPIRV::StorageClass::Function &&
1834 SrcSC == SPIRV::StorageClass::Private))
1835 return BuildCOPY(ResVReg, SrcPtr, I);
1836
1837 // Casting from an eligible pointer to Generic.
1838 if (DstSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(SrcSC))
1839 return selectUnOp(ResVReg, ResType, I, SPIRV::OpPtrCastToGeneric);
1840 // Casting from Generic to an eligible pointer.
1841 if (SrcSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(DstSC))
1842 return selectUnOp(ResVReg, ResType, I, SPIRV::OpGenericCastToPtr);
1843 // Casting between 2 eligible pointers using Generic as an intermediary.
1844 if (isGenericCastablePtr(SrcSC) && isGenericCastablePtr(DstSC)) {
1845 SPIRVType *GenericPtrTy =
1846 GR.changePointerStorageClass(SrcPtrTy, SPIRV::StorageClass::Generic, I);
1847 Register Tmp = createVirtualRegister(GenericPtrTy, &GR, MRI, MRI->getMF());
1848 bool Result = BuildMI(BB, I, DL, TII.get(SPIRV::OpPtrCastToGeneric))
1849 .addDef(Tmp)
1850 .addUse(GR.getSPIRVTypeID(GenericPtrTy))
1851 .addUse(SrcPtr)
1852 .constrainAllUses(TII, TRI, RBI);
1853 return Result && BuildMI(BB, I, DL, TII.get(SPIRV::OpGenericCastToPtr))
1854 .addDef(ResVReg)
1855 .addUse(GR.getSPIRVTypeID(ResType))
1856 .addUse(Tmp)
1857 .constrainAllUses(TII, TRI, RBI);
1858 }
1859
1860 // Check if instructions from the SPV_INTEL_usm_storage_classes extension may
1861 // be applied
1862 if (isUSMStorageClass(SrcSC) && DstSC == SPIRV::StorageClass::CrossWorkgroup)
1863 return selectUnOp(ResVReg, ResType, I,
1864 SPIRV::OpPtrCastToCrossWorkgroupINTEL);
1865 if (SrcSC == SPIRV::StorageClass::CrossWorkgroup && isUSMStorageClass(DstSC))
1866 return selectUnOp(ResVReg, ResType, I,
1867 SPIRV::OpCrossWorkgroupCastToPtrINTEL);
1868 if (isUSMStorageClass(SrcSC) && DstSC == SPIRV::StorageClass::Generic)
1869 return selectUnOp(ResVReg, ResType, I, SPIRV::OpPtrCastToGeneric);
1870 if (SrcSC == SPIRV::StorageClass::Generic && isUSMStorageClass(DstSC))
1871 return selectUnOp(ResVReg, ResType, I, SPIRV::OpGenericCastToPtr);
1872
1873 // Bitcast for pointers requires that the address spaces must match
1874 return false;
1875}
1876
1877static unsigned getFCmpOpcode(unsigned PredNum) {
1878 auto Pred = static_cast<CmpInst::Predicate>(PredNum);
1879 switch (Pred) {
1880 case CmpInst::FCMP_OEQ:
1881 return SPIRV::OpFOrdEqual;
1882 case CmpInst::FCMP_OGE:
1883 return SPIRV::OpFOrdGreaterThanEqual;
1884 case CmpInst::FCMP_OGT:
1885 return SPIRV::OpFOrdGreaterThan;
1886 case CmpInst::FCMP_OLE:
1887 return SPIRV::OpFOrdLessThanEqual;
1888 case CmpInst::FCMP_OLT:
1889 return SPIRV::OpFOrdLessThan;
1890 case CmpInst::FCMP_ONE:
1891 return SPIRV::OpFOrdNotEqual;
1892 case CmpInst::FCMP_ORD:
1893 return SPIRV::OpOrdered;
1894 case CmpInst::FCMP_UEQ:
1895 return SPIRV::OpFUnordEqual;
1896 case CmpInst::FCMP_UGE:
1897 return SPIRV::OpFUnordGreaterThanEqual;
1898 case CmpInst::FCMP_UGT:
1899 return SPIRV::OpFUnordGreaterThan;
1900 case CmpInst::FCMP_ULE:
1901 return SPIRV::OpFUnordLessThanEqual;
1902 case CmpInst::FCMP_ULT:
1903 return SPIRV::OpFUnordLessThan;
1904 case CmpInst::FCMP_UNE:
1905 return SPIRV::OpFUnordNotEqual;
1906 case CmpInst::FCMP_UNO:
1907 return SPIRV::OpUnordered;
1908 default:
1909 llvm_unreachable("Unknown predicate type for FCmp");
1910 }
1911}
1912
1913static unsigned getICmpOpcode(unsigned PredNum) {
1914 auto Pred = static_cast<CmpInst::Predicate>(PredNum);
1915 switch (Pred) {
1916 case CmpInst::ICMP_EQ:
1917 return SPIRV::OpIEqual;
1918 case CmpInst::ICMP_NE:
1919 return SPIRV::OpINotEqual;
1920 case CmpInst::ICMP_SGE:
1921 return SPIRV::OpSGreaterThanEqual;
1922 case CmpInst::ICMP_SGT:
1923 return SPIRV::OpSGreaterThan;
1924 case CmpInst::ICMP_SLE:
1925 return SPIRV::OpSLessThanEqual;
1926 case CmpInst::ICMP_SLT:
1927 return SPIRV::OpSLessThan;
1928 case CmpInst::ICMP_UGE:
1929 return SPIRV::OpUGreaterThanEqual;
1930 case CmpInst::ICMP_UGT:
1931 return SPIRV::OpUGreaterThan;
1932 case CmpInst::ICMP_ULE:
1933 return SPIRV::OpULessThanEqual;
1934 case CmpInst::ICMP_ULT:
1935 return SPIRV::OpULessThan;
1936 default:
1937 llvm_unreachable("Unknown predicate type for ICmp");
1938 }
1939}
1940
1941static unsigned getPtrCmpOpcode(unsigned Pred) {
1942 switch (static_cast<CmpInst::Predicate>(Pred)) {
1943 case CmpInst::ICMP_EQ:
1944 return SPIRV::OpPtrEqual;
1945 case CmpInst::ICMP_NE:
1946 return SPIRV::OpPtrNotEqual;
1947 default:
1948 llvm_unreachable("Unknown predicate type for pointer comparison");
1949 }
1950}
1951
1952// Return the logical operation, or abort if none exists.
1953static unsigned getBoolCmpOpcode(unsigned PredNum) {
1954 auto Pred = static_cast<CmpInst::Predicate>(PredNum);
1955 switch (Pred) {
1956 case CmpInst::ICMP_EQ:
1957 return SPIRV::OpLogicalEqual;
1958 case CmpInst::ICMP_NE:
1959 return SPIRV::OpLogicalNotEqual;
1960 default:
1961 llvm_unreachable("Unknown predicate type for Bool comparison");
1962 }
1963}
1964
1965static APFloat getZeroFP(const Type *LLVMFloatTy) {
1966 if (!LLVMFloatTy)
1968 switch (LLVMFloatTy->getScalarType()->getTypeID()) {
1969 case Type::HalfTyID:
1971 default:
1972 case Type::FloatTyID:
1974 case Type::DoubleTyID:
1976 }
1977}
1978
1979static APFloat getOneFP(const Type *LLVMFloatTy) {
1980 if (!LLVMFloatTy)
1982 switch (LLVMFloatTy->getScalarType()->getTypeID()) {
1983 case Type::HalfTyID:
1985 default:
1986 case Type::FloatTyID:
1988 case Type::DoubleTyID:
1990 }
1991}
1992
1993bool SPIRVInstructionSelector::selectAnyOrAll(Register ResVReg,
1994 const SPIRVType *ResType,
1995 MachineInstr &I,
1996 unsigned OpAnyOrAll) const {
1997 assert(I.getNumOperands() == 3);
1998 assert(I.getOperand(2).isReg());
1999 MachineBasicBlock &BB = *I.getParent();
2000 Register InputRegister = I.getOperand(2).getReg();
2001 SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
2002
2003 if (!InputType)
2004 report_fatal_error("Input Type could not be determined.");
2005
2006 bool IsBoolTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeBool);
2007 bool IsVectorTy = InputType->getOpcode() == SPIRV::OpTypeVector;
2008 if (IsBoolTy && !IsVectorTy) {
2009 assert(ResVReg == I.getOperand(0).getReg());
2010 return BuildCOPY(ResVReg, InputRegister, I);
2011 }
2012
2013 bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
2014 unsigned SpirvNotEqualId =
2015 IsFloatTy ? SPIRV::OpFOrdNotEqual : SPIRV::OpINotEqual;
2016 SPIRVType *SpvBoolScalarTy = GR.getOrCreateSPIRVBoolType(I, TII);
2017 SPIRVType *SpvBoolTy = SpvBoolScalarTy;
2018 Register NotEqualReg = ResVReg;
2019
2020 if (IsVectorTy) {
2021 NotEqualReg =
2022 IsBoolTy ? InputRegister
2023 : createVirtualRegister(SpvBoolTy, &GR, MRI, MRI->getMF());
2024 const unsigned NumElts = InputType->getOperand(2).getImm();
2025 SpvBoolTy = GR.getOrCreateSPIRVVectorType(SpvBoolTy, NumElts, I, TII);
2026 }
2027
2028 bool Result = true;
2029 if (!IsBoolTy) {
2030 Register ConstZeroReg =
2031 IsFloatTy ? buildZerosValF(InputType, I) : buildZerosVal(InputType, I);
2032
2033 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SpirvNotEqualId))
2034 .addDef(NotEqualReg)
2035 .addUse(GR.getSPIRVTypeID(SpvBoolTy))
2036 .addUse(InputRegister)
2037 .addUse(ConstZeroReg)
2038 .constrainAllUses(TII, TRI, RBI);
2039 }
2040
2041 if (!IsVectorTy)
2042 return Result;
2043
2044 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(OpAnyOrAll))
2045 .addDef(ResVReg)
2046 .addUse(GR.getSPIRVTypeID(SpvBoolScalarTy))
2047 .addUse(NotEqualReg)
2048 .constrainAllUses(TII, TRI, RBI);
2049}
2050
2051bool SPIRVInstructionSelector::selectAll(Register ResVReg,
2052 const SPIRVType *ResType,
2053 MachineInstr &I) const {
2054 return selectAnyOrAll(ResVReg, ResType, I, SPIRV::OpAll);
2055}
2056
2057bool SPIRVInstructionSelector::selectAny(Register ResVReg,
2058 const SPIRVType *ResType,
2059 MachineInstr &I) const {
2060 return selectAnyOrAll(ResVReg, ResType, I, SPIRV::OpAny);
2061}
2062
2063// Select the OpDot instruction for the given float dot
2064bool SPIRVInstructionSelector::selectFloatDot(Register ResVReg,
2065 const SPIRVType *ResType,
2066 MachineInstr &I) const {
2067 assert(I.getNumOperands() == 4);
2068 assert(I.getOperand(2).isReg());
2069 assert(I.getOperand(3).isReg());
2070
2071 [[maybe_unused]] SPIRVType *VecType =
2072 GR.getSPIRVTypeForVReg(I.getOperand(2).getReg());
2073
2074 assert(VecType->getOpcode() == SPIRV::OpTypeVector &&
2075 GR.getScalarOrVectorComponentCount(VecType) > 1 &&
2076 "dot product requires a vector of at least 2 components");
2077
2078 [[maybe_unused]] SPIRVType *EltType =
2079 GR.getSPIRVTypeForVReg(VecType->getOperand(1).getReg());
2080
2081 assert(EltType->getOpcode() == SPIRV::OpTypeFloat);
2082
2083 MachineBasicBlock &BB = *I.getParent();
2084 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpDot))
2085 .addDef(ResVReg)
2086 .addUse(GR.getSPIRVTypeID(ResType))
2087 .addUse(I.getOperand(2).getReg())
2088 .addUse(I.getOperand(3).getReg())
2089 .constrainAllUses(TII, TRI, RBI);
2090}
2091
2092bool SPIRVInstructionSelector::selectIntegerDot(Register ResVReg,
2093 const SPIRVType *ResType,
2094 MachineInstr &I,
2095 bool Signed) const {
2096 assert(I.getNumOperands() == 4);
2097 assert(I.getOperand(2).isReg());
2098 assert(I.getOperand(3).isReg());
2099 MachineBasicBlock &BB = *I.getParent();
2100
2101 auto DotOp = Signed ? SPIRV::OpSDot : SPIRV::OpUDot;
2102 return BuildMI(BB, I, I.getDebugLoc(), TII.get(DotOp))
2103 .addDef(ResVReg)
2104 .addUse(GR.getSPIRVTypeID(ResType))
2105 .addUse(I.getOperand(2).getReg())
2106 .addUse(I.getOperand(3).getReg())
2107 .constrainAllUses(TII, TRI, RBI);
2108}
2109
2110// Since pre-1.6 SPIRV has no integer dot implementation,
2111// expand by piecewise multiplying and adding the results
2112bool SPIRVInstructionSelector::selectIntegerDotExpansion(
2113 Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
2114 assert(I.getNumOperands() == 4);
2115 assert(I.getOperand(2).isReg());
2116 assert(I.getOperand(3).isReg());
2117 MachineBasicBlock &BB = *I.getParent();
2118
2119 // Multiply the vectors, then sum the results
2120 Register Vec0 = I.getOperand(2).getReg();
2121 Register Vec1 = I.getOperand(3).getReg();
2122 Register TmpVec = MRI->createVirtualRegister(GR.getRegClass(ResType));
2123 SPIRVType *VecType = GR.getSPIRVTypeForVReg(Vec0);
2124
2125 bool Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIMulV))
2126 .addDef(TmpVec)
2127 .addUse(GR.getSPIRVTypeID(VecType))
2128 .addUse(Vec0)
2129 .addUse(Vec1)
2130 .constrainAllUses(TII, TRI, RBI);
2131
2132 assert(VecType->getOpcode() == SPIRV::OpTypeVector &&
2133 GR.getScalarOrVectorComponentCount(VecType) > 1 &&
2134 "dot product requires a vector of at least 2 components");
2135
2136 Register Res = MRI->createVirtualRegister(GR.getRegClass(ResType));
2137 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
2138 .addDef(Res)
2139 .addUse(GR.getSPIRVTypeID(ResType))
2140 .addUse(TmpVec)
2141 .addImm(0)
2142 .constrainAllUses(TII, TRI, RBI);
2143
2144 for (unsigned i = 1; i < GR.getScalarOrVectorComponentCount(VecType); i++) {
2145 Register Elt = MRI->createVirtualRegister(GR.getRegClass(ResType));
2146
2147 Result &=
2148 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
2149 .addDef(Elt)
2150 .addUse(GR.getSPIRVTypeID(ResType))
2151 .addUse(TmpVec)
2152 .addImm(i)
2153 .constrainAllUses(TII, TRI, RBI);
2154
2155 Register Sum = i < GR.getScalarOrVectorComponentCount(VecType) - 1
2156 ? MRI->createVirtualRegister(GR.getRegClass(ResType))
2157 : ResVReg;
2158
2159 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS))
2160 .addDef(Sum)
2161 .addUse(GR.getSPIRVTypeID(ResType))
2162 .addUse(Res)
2163 .addUse(Elt)
2164 .constrainAllUses(TII, TRI, RBI);
2165 Res = Sum;
2166 }
2167
2168 return Result;
2169}
2170
2171bool SPIRVInstructionSelector::selectOpIsInf(Register ResVReg,
2172 const SPIRVType *ResType,
2173 MachineInstr &I) const {
2174 MachineBasicBlock &BB = *I.getParent();
2175 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIsInf))
2176 .addDef(ResVReg)
2177 .addUse(GR.getSPIRVTypeID(ResType))
2178 .addUse(I.getOperand(2).getReg())
2179 .constrainAllUses(TII, TRI, RBI);
2180}
2181
2182bool SPIRVInstructionSelector::selectOpIsNan(Register ResVReg,
2183 const SPIRVType *ResType,
2184 MachineInstr &I) const {
2185 MachineBasicBlock &BB = *I.getParent();
2186 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIsNan))
2187 .addDef(ResVReg)
2188 .addUse(GR.getSPIRVTypeID(ResType))
2189 .addUse(I.getOperand(2).getReg())
2190 .constrainAllUses(TII, TRI, RBI);
2191}
2192
2193template <bool Signed>
2194bool SPIRVInstructionSelector::selectDot4AddPacked(Register ResVReg,
2195 const SPIRVType *ResType,
2196 MachineInstr &I) const {
2197 assert(I.getNumOperands() == 5);
2198 assert(I.getOperand(2).isReg());
2199 assert(I.getOperand(3).isReg());
2200 assert(I.getOperand(4).isReg());
2201 MachineBasicBlock &BB = *I.getParent();
2202
2203 Register Acc = I.getOperand(2).getReg();
2204 Register X = I.getOperand(3).getReg();
2205 Register Y = I.getOperand(4).getReg();
2206
2207 auto DotOp = Signed ? SPIRV::OpSDot : SPIRV::OpUDot;
2208 Register Dot = MRI->createVirtualRegister(GR.getRegClass(ResType));
2209 bool Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(DotOp))
2210 .addDef(Dot)
2211 .addUse(GR.getSPIRVTypeID(ResType))
2212 .addUse(X)
2213 .addUse(Y)
2214 .constrainAllUses(TII, TRI, RBI);
2215
2216 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS))
2217 .addDef(ResVReg)
2218 .addUse(GR.getSPIRVTypeID(ResType))
2219 .addUse(Dot)
2220 .addUse(Acc)
2221 .constrainAllUses(TII, TRI, RBI);
2222}
2223
2224// Since pre-1.6 SPIRV has no DotProductInput4x8BitPacked implementation,
2225// extract the elements of the packed inputs, multiply them and add the result
2226// to the accumulator.
2227template <bool Signed>
2228bool SPIRVInstructionSelector::selectDot4AddPackedExpansion(
2229 Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
2230 assert(I.getNumOperands() == 5);
2231 assert(I.getOperand(2).isReg());
2232 assert(I.getOperand(3).isReg());
2233 assert(I.getOperand(4).isReg());
2234 MachineBasicBlock &BB = *I.getParent();
2235
2236 bool Result = true;
2237
2238 Register Acc = I.getOperand(2).getReg();
2239 Register X = I.getOperand(3).getReg();
2240 Register Y = I.getOperand(4).getReg();
2241
2242 SPIRVType *EltType = GR.getOrCreateSPIRVIntegerType(8, I, TII);
2243 auto ExtractOp =
2244 Signed ? SPIRV::OpBitFieldSExtract : SPIRV::OpBitFieldUExtract;
2245
2246 bool ZeroAsNull = !STI.isShader();
2247 // Extract the i8 element, multiply and add it to the accumulator
2248 for (unsigned i = 0; i < 4; i++) {
2249 // A[i]
2250 Register AElt = MRI->createVirtualRegister(&SPIRV::IDRegClass);
2251 Result &=
2252 BuildMI(BB, I, I.getDebugLoc(), TII.get(ExtractOp))
2253 .addDef(AElt)
2254 .addUse(GR.getSPIRVTypeID(ResType))
2255 .addUse(X)
2256 .addUse(GR.getOrCreateConstInt(i * 8, I, EltType, TII, ZeroAsNull))
2257 .addUse(GR.getOrCreateConstInt(8, I, EltType, TII, ZeroAsNull))
2258 .constrainAllUses(TII, TRI, RBI);
2259
2260 // B[i]
2261 Register BElt = MRI->createVirtualRegister(&SPIRV::IDRegClass);
2262 Result &=
2263 BuildMI(BB, I, I.getDebugLoc(), TII.get(ExtractOp))
2264 .addDef(BElt)
2265 .addUse(GR.getSPIRVTypeID(ResType))
2266 .addUse(Y)
2267 .addUse(GR.getOrCreateConstInt(i * 8, I, EltType, TII, ZeroAsNull))
2268 .addUse(GR.getOrCreateConstInt(8, I, EltType, TII, ZeroAsNull))
2269 .constrainAllUses(TII, TRI, RBI);
2270
2271 // A[i] * B[i]
2272 Register Mul = MRI->createVirtualRegister(&SPIRV::IDRegClass);
2273 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIMulS))
2274 .addDef(Mul)
2275 .addUse(GR.getSPIRVTypeID(ResType))
2276 .addUse(AElt)
2277 .addUse(BElt)
2278 .constrainAllUses(TII, TRI, RBI);
2279
2280 // Discard 24 highest-bits so that stored i32 register is i8 equivalent
2281 Register MaskMul = MRI->createVirtualRegister(&SPIRV::IDRegClass);
2282 Result &=
2283 BuildMI(BB, I, I.getDebugLoc(), TII.get(ExtractOp))
2284 .addDef(MaskMul)
2285 .addUse(GR.getSPIRVTypeID(ResType))
2286 .addUse(Mul)
2287 .addUse(GR.getOrCreateConstInt(0, I, EltType, TII, ZeroAsNull))
2288 .addUse(GR.getOrCreateConstInt(8, I, EltType, TII, ZeroAsNull))
2289 .constrainAllUses(TII, TRI, RBI);
2290
2291 // Acc = Acc + A[i] * B[i]
2292 Register Sum =
2293 i < 3 ? MRI->createVirtualRegister(&SPIRV::IDRegClass) : ResVReg;
2294 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS))
2295 .addDef(Sum)
2296 .addUse(GR.getSPIRVTypeID(ResType))
2297 .addUse(Acc)
2298 .addUse(MaskMul)
2299 .constrainAllUses(TII, TRI, RBI);
2300
2301 Acc = Sum;
2302 }
2303
2304 return Result;
2305}
2306
2307/// Transform saturate(x) to clamp(x, 0.0f, 1.0f) as SPIRV
2308/// does not have a saturate builtin.
2309bool SPIRVInstructionSelector::selectSaturate(Register ResVReg,
2310 const SPIRVType *ResType,
2311 MachineInstr &I) const {
2312 assert(I.getNumOperands() == 3);
2313 assert(I.getOperand(2).isReg());
2314 MachineBasicBlock &BB = *I.getParent();
2315 Register VZero = buildZerosValF(ResType, I);
2316 Register VOne = buildOnesValF(ResType, I);
2317
2318 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
2319 .addDef(ResVReg)
2320 .addUse(GR.getSPIRVTypeID(ResType))
2321 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
2322 .addImm(GL::FClamp)
2323 .addUse(I.getOperand(2).getReg())
2324 .addUse(VZero)
2325 .addUse(VOne)
2326 .constrainAllUses(TII, TRI, RBI);
2327}
2328
2329bool SPIRVInstructionSelector::selectSign(Register ResVReg,
2330 const SPIRVType *ResType,
2331 MachineInstr &I) const {
2332 assert(I.getNumOperands() == 3);
2333 assert(I.getOperand(2).isReg());
2334 MachineBasicBlock &BB = *I.getParent();
2335 Register InputRegister = I.getOperand(2).getReg();
2336 SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
2337 auto &DL = I.getDebugLoc();
2338
2339 if (!InputType)
2340 report_fatal_error("Input Type could not be determined.");
2341
2342 bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
2343
2344 unsigned SignBitWidth = GR.getScalarOrVectorBitWidth(InputType);
2345 unsigned ResBitWidth = GR.getScalarOrVectorBitWidth(ResType);
2346
2347 bool NeedsConversion = IsFloatTy || SignBitWidth != ResBitWidth;
2348
2349 auto SignOpcode = IsFloatTy ? GL::FSign : GL::SSign;
2350 Register SignReg = NeedsConversion
2351 ? MRI->createVirtualRegister(&SPIRV::IDRegClass)
2352 : ResVReg;
2353
2354 bool Result =
2355 BuildMI(BB, I, DL, TII.get(SPIRV::OpExtInst))
2356 .addDef(SignReg)
2357 .addUse(GR.getSPIRVTypeID(InputType))
2358 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
2359 .addImm(SignOpcode)
2360 .addUse(InputRegister)
2361 .constrainAllUses(TII, TRI, RBI);
2362
2363 if (NeedsConversion) {
2364 auto ConvertOpcode = IsFloatTy ? SPIRV::OpConvertFToS : SPIRV::OpSConvert;
2365 Result &= BuildMI(*I.getParent(), I, DL, TII.get(ConvertOpcode))
2366 .addDef(ResVReg)
2367 .addUse(GR.getSPIRVTypeID(ResType))
2368 .addUse(SignReg)
2369 .constrainAllUses(TII, TRI, RBI);
2370 }
2371
2372 return Result;
2373}
2374
2375bool SPIRVInstructionSelector::selectWaveOpInst(Register ResVReg,
2376 const SPIRVType *ResType,
2377 MachineInstr &I,
2378 unsigned Opcode) const {
2379 MachineBasicBlock &BB = *I.getParent();
2380 SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
2381
2382 auto BMI = BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2383 .addDef(ResVReg)
2384 .addUse(GR.getSPIRVTypeID(ResType))
2385 .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I,
2386 IntTy, TII, !STI.isShader()));
2387
2388 for (unsigned J = 2; J < I.getNumOperands(); J++) {
2389 BMI.addUse(I.getOperand(J).getReg());
2390 }
2391
2392 return BMI.constrainAllUses(TII, TRI, RBI);
2393}
2394
2395bool SPIRVInstructionSelector::selectWaveActiveCountBits(
2396 Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
2397
2398 SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
2399 SPIRVType *BallotType = GR.getOrCreateSPIRVVectorType(IntTy, 4, I, TII);
2400 Register BallotReg = MRI->createVirtualRegister(GR.getRegClass(BallotType));
2401 bool Result = selectWaveOpInst(BallotReg, BallotType, I,
2402 SPIRV::OpGroupNonUniformBallot);
2403
2404 MachineBasicBlock &BB = *I.getParent();
2405 Result &= BuildMI(BB, I, I.getDebugLoc(),
2406 TII.get(SPIRV::OpGroupNonUniformBallotBitCount))
2407 .addDef(ResVReg)
2408 .addUse(GR.getSPIRVTypeID(ResType))
2409 .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, IntTy,
2410 TII, !STI.isShader()))
2411 .addImm(SPIRV::GroupOperation::Reduce)
2412 .addUse(BallotReg)
2413 .constrainAllUses(TII, TRI, RBI);
2414
2415 return Result;
2416}
2417
2418bool SPIRVInstructionSelector::selectWaveReduceMax(Register ResVReg,
2419 const SPIRVType *ResType,
2420 MachineInstr &I,
2421 bool IsUnsigned) const {
2422 assert(I.getNumOperands() == 3);
2423 assert(I.getOperand(2).isReg());
2424 MachineBasicBlock &BB = *I.getParent();
2425 Register InputRegister = I.getOperand(2).getReg();
2426 SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
2427
2428 if (!InputType)
2429 report_fatal_error("Input Type could not be determined.");
2430
2431 SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
2432 // Retreive the operation to use based on input type
2433 bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
2434 auto IntegerOpcodeType =
2435 IsUnsigned ? SPIRV::OpGroupNonUniformUMax : SPIRV::OpGroupNonUniformSMax;
2436 auto Opcode = IsFloatTy ? SPIRV::OpGroupNonUniformFMax : IntegerOpcodeType;
2437 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2438 .addDef(ResVReg)
2439 .addUse(GR.getSPIRVTypeID(ResType))
2440 .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, IntTy, TII,
2441 !STI.isShader()))
2442 .addImm(SPIRV::GroupOperation::Reduce)
2443 .addUse(I.getOperand(2).getReg())
2444 .constrainAllUses(TII, TRI, RBI);
2445}
2446
2447bool SPIRVInstructionSelector::selectWaveReduceSum(Register ResVReg,
2448 const SPIRVType *ResType,
2449 MachineInstr &I) const {
2450 assert(I.getNumOperands() == 3);
2451 assert(I.getOperand(2).isReg());
2452 MachineBasicBlock &BB = *I.getParent();
2453 Register InputRegister = I.getOperand(2).getReg();
2454 SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
2455
2456 if (!InputType)
2457 report_fatal_error("Input Type could not be determined.");
2458
2459 SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
2460 // Retreive the operation to use based on input type
2461 bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
2462 auto Opcode =
2463 IsFloatTy ? SPIRV::OpGroupNonUniformFAdd : SPIRV::OpGroupNonUniformIAdd;
2464 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2465 .addDef(ResVReg)
2466 .addUse(GR.getSPIRVTypeID(ResType))
2467 .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, IntTy, TII,
2468 !STI.isShader()))
2469 .addImm(SPIRV::GroupOperation::Reduce)
2470 .addUse(I.getOperand(2).getReg());
2471}
2472
2473bool SPIRVInstructionSelector::selectBitreverse(Register ResVReg,
2474 const SPIRVType *ResType,
2475 MachineInstr &I) const {
2476 MachineBasicBlock &BB = *I.getParent();
2477 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpBitReverse))
2478 .addDef(ResVReg)
2479 .addUse(GR.getSPIRVTypeID(ResType))
2480 .addUse(I.getOperand(1).getReg())
2481 .constrainAllUses(TII, TRI, RBI);
2482}
2483
2484bool SPIRVInstructionSelector::selectFreeze(Register ResVReg,
2485 const SPIRVType *ResType,
2486 MachineInstr &I) const {
2487 // There is no way to implement `freeze` correctly without support on SPIR-V
2488 // standard side, but we may at least address a simple (static) case when
2489 // undef/poison value presence is obvious. The main benefit of even
2490 // incomplete `freeze` support is preventing of translation from crashing due
2491 // to lack of support on legalization and instruction selection steps.
2492 if (!I.getOperand(0).isReg() || !I.getOperand(1).isReg())
2493 return false;
2494 Register OpReg = I.getOperand(1).getReg();
2495 if (MachineInstr *Def = MRI->getVRegDef(OpReg)) {
2496 if (Def->getOpcode() == TargetOpcode::COPY)
2497 Def = MRI->getVRegDef(Def->getOperand(1).getReg());
2498 Register Reg;
2499 switch (Def->getOpcode()) {
2500 case SPIRV::ASSIGN_TYPE:
2501 if (MachineInstr *AssignToDef =
2502 MRI->getVRegDef(Def->getOperand(1).getReg())) {
2503 if (AssignToDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF)
2504 Reg = Def->getOperand(2).getReg();
2505 }
2506 break;
2507 case SPIRV::OpUndef:
2508 Reg = Def->getOperand(1).getReg();
2509 break;
2510 }
2511 unsigned DestOpCode;
2512 if (Reg.isValid()) {
2513 DestOpCode = SPIRV::OpConstantNull;
2514 } else {
2515 DestOpCode = TargetOpcode::COPY;
2516 Reg = OpReg;
2517 }
2518 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(DestOpCode))
2519 .addDef(I.getOperand(0).getReg())
2520 .addUse(Reg)
2521 .constrainAllUses(TII, TRI, RBI);
2522 }
2523 return false;
2524}
2525
2526bool SPIRVInstructionSelector::selectBuildVector(Register ResVReg,
2527 const SPIRVType *ResType,
2528 MachineInstr &I) const {
2529 unsigned N = 0;
2530 if (ResType->getOpcode() == SPIRV::OpTypeVector)
2531 N = GR.getScalarOrVectorComponentCount(ResType);
2532 else if (ResType->getOpcode() == SPIRV::OpTypeArray)
2533 N = getArrayComponentCount(MRI, ResType);
2534 else
2535 report_fatal_error("Cannot select G_BUILD_VECTOR with a non-vector result");
2536 if (I.getNumExplicitOperands() - I.getNumExplicitDefs() != N)
2537 report_fatal_error("G_BUILD_VECTOR and the result type are inconsistent");
2538
2539 // check if we may construct a constant vector
2540 bool IsConst = true;
2541 for (unsigned i = I.getNumExplicitDefs();
2542 i < I.getNumExplicitOperands() && IsConst; ++i)
2543 if (!isConstReg(MRI, I.getOperand(i).getReg()))
2544 IsConst = false;
2545
2546 if (!IsConst && N < 2)
2548 "There must be at least two constituent operands in a vector");
2549
2550 MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
2551 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
2552 TII.get(IsConst ? SPIRV::OpConstantComposite
2553 : SPIRV::OpCompositeConstruct))
2554 .addDef(ResVReg)
2555 .addUse(GR.getSPIRVTypeID(ResType));
2556 for (unsigned i = I.getNumExplicitDefs(); i < I.getNumExplicitOperands(); ++i)
2557 MIB.addUse(I.getOperand(i).getReg());
2558 return MIB.constrainAllUses(TII, TRI, RBI);
2559}
2560
2561bool SPIRVInstructionSelector::selectSplatVector(Register ResVReg,
2562 const SPIRVType *ResType,
2563 MachineInstr &I) const {
2564 unsigned N = 0;
2565 if (ResType->getOpcode() == SPIRV::OpTypeVector)
2566 N = GR.getScalarOrVectorComponentCount(ResType);
2567 else if (ResType->getOpcode() == SPIRV::OpTypeArray)
2568 N = getArrayComponentCount(MRI, ResType);
2569 else
2570 report_fatal_error("Cannot select G_SPLAT_VECTOR with a non-vector result");
2571
2572 unsigned OpIdx = I.getNumExplicitDefs();
2573 if (!I.getOperand(OpIdx).isReg())
2574 report_fatal_error("Unexpected argument in G_SPLAT_VECTOR");
2575
2576 // check if we may construct a constant vector
2577 Register OpReg = I.getOperand(OpIdx).getReg();
2578 bool IsConst = isConstReg(MRI, OpReg);
2579
2580 if (!IsConst && N < 2)
2582 "There must be at least two constituent operands in a vector");
2583
2584 MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
2585 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
2586 TII.get(IsConst ? SPIRV::OpConstantComposite
2587 : SPIRV::OpCompositeConstruct))
2588 .addDef(ResVReg)
2589 .addUse(GR.getSPIRVTypeID(ResType));
2590 for (unsigned i = 0; i < N; ++i)
2591 MIB.addUse(OpReg);
2592 return MIB.constrainAllUses(TII, TRI, RBI);
2593}
2594
2595bool SPIRVInstructionSelector::selectDiscard(Register ResVReg,
2596 const SPIRVType *ResType,
2597 MachineInstr &I) const {
2598
2599 unsigned Opcode;
2600
2601 if (STI.canUseExtension(
2602 SPIRV::Extension::SPV_EXT_demote_to_helper_invocation) ||
2603 STI.isAtLeastSPIRVVer(llvm::VersionTuple(1, 6))) {
2604 Opcode = SPIRV::OpDemoteToHelperInvocation;
2605 } else {
2606 Opcode = SPIRV::OpKill;
2607 // OpKill must be the last operation of any basic block.
2608 if (MachineInstr *NextI = I.getNextNode()) {
2609 GR.invalidateMachineInstr(NextI);
2610 NextI->removeFromParent();
2611 }
2612 }
2613
2614 MachineBasicBlock &BB = *I.getParent();
2615 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2616 .constrainAllUses(TII, TRI, RBI);
2617}
2618
2619bool SPIRVInstructionSelector::selectCmp(Register ResVReg,
2620 const SPIRVType *ResType,
2621 unsigned CmpOpc,
2622 MachineInstr &I) const {
2623 Register Cmp0 = I.getOperand(2).getReg();
2624 Register Cmp1 = I.getOperand(3).getReg();
2625 assert(GR.getSPIRVTypeForVReg(Cmp0)->getOpcode() ==
2626 GR.getSPIRVTypeForVReg(Cmp1)->getOpcode() &&
2627 "CMP operands should have the same type");
2628 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(CmpOpc))
2629 .addDef(ResVReg)
2630 .addUse(GR.getSPIRVTypeID(ResType))
2631 .addUse(Cmp0)
2632 .addUse(Cmp1)
2633 .setMIFlags(I.getFlags())
2634 .constrainAllUses(TII, TRI, RBI);
2635}
2636
2637bool SPIRVInstructionSelector::selectICmp(Register ResVReg,
2638 const SPIRVType *ResType,
2639 MachineInstr &I) const {
2640 auto Pred = I.getOperand(1).getPredicate();
2641 unsigned CmpOpc;
2642
2643 Register CmpOperand = I.getOperand(2).getReg();
2644 if (GR.isScalarOfType(CmpOperand, SPIRV::OpTypePointer))
2645 CmpOpc = getPtrCmpOpcode(Pred);
2646 else if (GR.isScalarOrVectorOfType(CmpOperand, SPIRV::OpTypeBool))
2647 CmpOpc = getBoolCmpOpcode(Pred);
2648 else
2649 CmpOpc = getICmpOpcode(Pred);
2650 return selectCmp(ResVReg, ResType, CmpOpc, I);
2651}
2652
2653std::pair<Register, bool>
2654SPIRVInstructionSelector::buildI32Constant(uint32_t Val, MachineInstr &I,
2655 const SPIRVType *ResType) const {
2656 Type *LLVMTy = IntegerType::get(GR.CurMF->getFunction().getContext(), 32);
2657 const SPIRVType *SpvI32Ty =
2658 ResType ? ResType : GR.getOrCreateSPIRVIntegerType(32, I, TII);
2659 // Find a constant in DT or build a new one.
2660 auto ConstInt = ConstantInt::get(LLVMTy, Val);
2661 Register NewReg = GR.find(ConstInt, GR.CurMF);
2662 bool Result = true;
2663 if (!NewReg.isValid()) {
2664 NewReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
2665 MachineBasicBlock &BB = *I.getParent();
2666 MachineInstr *MI =
2667 Val == 0
2668 ? BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull))
2669 .addDef(NewReg)
2670 .addUse(GR.getSPIRVTypeID(SpvI32Ty))
2671 : BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantI))
2672 .addDef(NewReg)
2673 .addUse(GR.getSPIRVTypeID(SpvI32Ty))
2674 .addImm(APInt(32, Val).getZExtValue());
2676 GR.add(ConstInt, MI);
2677 }
2678 return {NewReg, Result};
2679}
2680
2681bool SPIRVInstructionSelector::selectFCmp(Register ResVReg,
2682 const SPIRVType *ResType,
2683 MachineInstr &I) const {
2684 unsigned CmpOp = getFCmpOpcode(I.getOperand(1).getPredicate());
2685 return selectCmp(ResVReg, ResType, CmpOp, I);
2686}
2687
2688Register SPIRVInstructionSelector::buildZerosVal(const SPIRVType *ResType,
2689 MachineInstr &I) const {
2690 // OpenCL uses nulls for Zero. In HLSL we don't use null constants.
2691 bool ZeroAsNull = !STI.isShader();
2692 if (ResType->getOpcode() == SPIRV::OpTypeVector)
2693 return GR.getOrCreateConstVector(0UL, I, ResType, TII, ZeroAsNull);
2694 return GR.getOrCreateConstInt(0, I, ResType, TII, ZeroAsNull);
2695}
2696
2697Register SPIRVInstructionSelector::buildZerosValF(const SPIRVType *ResType,
2698 MachineInstr &I) const {
2699 // OpenCL uses nulls for Zero. In HLSL we don't use null constants.
2700 bool ZeroAsNull = !STI.isShader();
2701 APFloat VZero = getZeroFP(GR.getTypeForSPIRVType(ResType));
2702 if (ResType->getOpcode() == SPIRV::OpTypeVector)
2703 return GR.getOrCreateConstVector(VZero, I, ResType, TII, ZeroAsNull);
2704 return GR.getOrCreateConstFP(VZero, I, ResType, TII, ZeroAsNull);
2705}
2706
2707Register SPIRVInstructionSelector::buildOnesValF(const SPIRVType *ResType,
2708 MachineInstr &I) const {
2709 // OpenCL uses nulls for Zero. In HLSL we don't use null constants.
2710 bool ZeroAsNull = !STI.isShader();
2711 APFloat VOne = getOneFP(GR.getTypeForSPIRVType(ResType));
2712 if (ResType->getOpcode() == SPIRV::OpTypeVector)
2713 return GR.getOrCreateConstVector(VOne, I, ResType, TII, ZeroAsNull);
2714 return GR.getOrCreateConstFP(VOne, I, ResType, TII, ZeroAsNull);
2715}
2716
2717Register SPIRVInstructionSelector::buildOnesVal(bool AllOnes,
2718 const SPIRVType *ResType,
2719 MachineInstr &I) const {
2720 unsigned BitWidth = GR.getScalarOrVectorBitWidth(ResType);
2721 APInt One =
2722 AllOnes ? APInt::getAllOnes(BitWidth) : APInt::getOneBitSet(BitWidth, 0);
2723 if (ResType->getOpcode() == SPIRV::OpTypeVector)
2724 return GR.getOrCreateConstVector(One.getZExtValue(), I, ResType, TII);
2725 return GR.getOrCreateConstInt(One.getZExtValue(), I, ResType, TII);
2726}
2727
2728bool SPIRVInstructionSelector::selectSelect(Register ResVReg,
2729 const SPIRVType *ResType,
2730 MachineInstr &I) const {
2731 Register SelectFirstArg = I.getOperand(2).getReg();
2732 Register SelectSecondArg = I.getOperand(3).getReg();
2733 assert(ResType == GR.getSPIRVTypeForVReg(SelectFirstArg) &&
2734 ResType == GR.getSPIRVTypeForVReg(SelectSecondArg));
2735
2736 bool IsFloatTy =
2737 GR.isScalarOrVectorOfType(SelectFirstArg, SPIRV::OpTypeFloat);
2738 bool IsPtrTy =
2739 GR.isScalarOrVectorOfType(SelectFirstArg, SPIRV::OpTypePointer);
2740 bool IsVectorTy = GR.getSPIRVTypeForVReg(SelectFirstArg)->getOpcode() ==
2741 SPIRV::OpTypeVector;
2742
2743 bool IsScalarBool =
2744 GR.isScalarOfType(I.getOperand(1).getReg(), SPIRV::OpTypeBool);
2745 unsigned Opcode;
2746 if (IsVectorTy) {
2747 if (IsFloatTy) {
2748 Opcode = IsScalarBool ? SPIRV::OpSelectVFSCond : SPIRV::OpSelectVFVCond;
2749 } else if (IsPtrTy) {
2750 Opcode = IsScalarBool ? SPIRV::OpSelectVPSCond : SPIRV::OpSelectVPVCond;
2751 } else {
2752 Opcode = IsScalarBool ? SPIRV::OpSelectVISCond : SPIRV::OpSelectVIVCond;
2753 }
2754 } else {
2755 if (IsFloatTy) {
2756 Opcode = IsScalarBool ? SPIRV::OpSelectSFSCond : SPIRV::OpSelectVFVCond;
2757 } else if (IsPtrTy) {
2758 Opcode = IsScalarBool ? SPIRV::OpSelectSPSCond : SPIRV::OpSelectVPVCond;
2759 } else {
2760 Opcode = IsScalarBool ? SPIRV::OpSelectSISCond : SPIRV::OpSelectVIVCond;
2761 }
2762 }
2763 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
2764 .addDef(ResVReg)
2765 .addUse(GR.getSPIRVTypeID(ResType))
2766 .addUse(I.getOperand(1).getReg())
2767 .addUse(SelectFirstArg)
2768 .addUse(SelectSecondArg)
2769 .constrainAllUses(TII, TRI, RBI);
2770}
2771
2772bool SPIRVInstructionSelector::selectSelectDefaultArgs(Register ResVReg,
2773 const SPIRVType *ResType,
2774 MachineInstr &I,
2775 bool IsSigned) const {
2776 // To extend a bool, we need to use OpSelect between constants.
2777 Register ZeroReg = buildZerosVal(ResType, I);
2778 Register OneReg = buildOnesVal(IsSigned, ResType, I);
2779 bool IsScalarBool =
2780 GR.isScalarOfType(I.getOperand(1).getReg(), SPIRV::OpTypeBool);
2781 unsigned Opcode =
2782 IsScalarBool ? SPIRV::OpSelectSISCond : SPIRV::OpSelectVIVCond;
2783 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
2784 .addDef(ResVReg)
2785 .addUse(GR.getSPIRVTypeID(ResType))
2786 .addUse(I.getOperand(1).getReg())
2787 .addUse(OneReg)
2788 .addUse(ZeroReg)
2789 .constrainAllUses(TII, TRI, RBI);
2790}
2791
2792bool SPIRVInstructionSelector::selectIToF(Register ResVReg,
2793 const SPIRVType *ResType,
2794 MachineInstr &I, bool IsSigned,
2795 unsigned Opcode) const {
2796 Register SrcReg = I.getOperand(1).getReg();
2797 // We can convert bool value directly to float type without OpConvert*ToF,
2798 // however the translator generates OpSelect+OpConvert*ToF, so we do the same.
2799 if (GR.isScalarOrVectorOfType(I.getOperand(1).getReg(), SPIRV::OpTypeBool)) {
2800 unsigned BitWidth = GR.getScalarOrVectorBitWidth(ResType);
2802 if (ResType->getOpcode() == SPIRV::OpTypeVector) {
2803 const unsigned NumElts = ResType->getOperand(2).getImm();
2804 TmpType = GR.getOrCreateSPIRVVectorType(TmpType, NumElts, I, TII);
2805 }
2806 SrcReg = createVirtualRegister(TmpType, &GR, MRI, MRI->getMF());
2807 selectSelectDefaultArgs(SrcReg, TmpType, I, false);
2808 }
2809 return selectOpWithSrcs(ResVReg, ResType, I, {SrcReg}, Opcode);
2810}
2811
2812bool SPIRVInstructionSelector::selectExt(Register ResVReg,
2813 const SPIRVType *ResType,
2814 MachineInstr &I, bool IsSigned) const {
2815 Register SrcReg = I.getOperand(1).getReg();
2816 if (GR.isScalarOrVectorOfType(SrcReg, SPIRV::OpTypeBool))
2817 return selectSelectDefaultArgs(ResVReg, ResType, I, IsSigned);
2818
2819 SPIRVType *SrcType = GR.getSPIRVTypeForVReg(SrcReg);
2820 if (SrcType == ResType)
2821 return BuildCOPY(ResVReg, SrcReg, I);
2822
2823 unsigned Opcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert;
2824 return selectUnOp(ResVReg, ResType, I, Opcode);
2825}
2826
2827bool SPIRVInstructionSelector::selectSUCmp(Register ResVReg,
2828 const SPIRVType *ResType,
2829 MachineInstr &I,
2830 bool IsSigned) const {
2831 MachineIRBuilder MIRBuilder(I);
2832 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
2833 MachineBasicBlock &BB = *I.getParent();
2834 // Ensure we have bool.
2835 SPIRVType *BoolType = GR.getOrCreateSPIRVBoolType(I, TII);
2836 unsigned N = GR.getScalarOrVectorComponentCount(ResType);
2837 if (N > 1)
2838 BoolType = GR.getOrCreateSPIRVVectorType(BoolType, N, I, TII);
2839 Register BoolTypeReg = GR.getSPIRVTypeID(BoolType);
2840 // Build less-than-equal and less-than.
2841 // TODO: replace with one-liner createVirtualRegister() from
2842 // llvm/lib/Target/SPIRV/SPIRVUtils.cpp when PR #116609 is merged.
2843 Register IsLessEqReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
2844 MRI->setType(IsLessEqReg, LLT::scalar(64));
2845 GR.assignSPIRVTypeToVReg(ResType, IsLessEqReg, MIRBuilder.getMF());
2846 bool Result = BuildMI(BB, I, I.getDebugLoc(),
2847 TII.get(IsSigned ? SPIRV::OpSLessThanEqual
2848 : SPIRV::OpULessThanEqual))
2849 .addDef(IsLessEqReg)
2850 .addUse(BoolTypeReg)
2851 .addUse(I.getOperand(1).getReg())
2852 .addUse(I.getOperand(2).getReg())
2853 .constrainAllUses(TII, TRI, RBI);
2854 Register IsLessReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
2855 MRI->setType(IsLessReg, LLT::scalar(64));
2856 GR.assignSPIRVTypeToVReg(ResType, IsLessReg, MIRBuilder.getMF());
2857 Result &= BuildMI(BB, I, I.getDebugLoc(),
2858 TII.get(IsSigned ? SPIRV::OpSLessThan : SPIRV::OpULessThan))
2859 .addDef(IsLessReg)
2860 .addUse(BoolTypeReg)
2861 .addUse(I.getOperand(1).getReg())
2862 .addUse(I.getOperand(2).getReg())
2863 .constrainAllUses(TII, TRI, RBI);
2864 // Build selects.
2865 Register ResTypeReg = GR.getSPIRVTypeID(ResType);
2866 Register NegOneOrZeroReg =
2867 MRI->createVirtualRegister(GR.getRegClass(ResType));
2868 MRI->setType(NegOneOrZeroReg, LLT::scalar(64));
2869 GR.assignSPIRVTypeToVReg(ResType, NegOneOrZeroReg, MIRBuilder.getMF());
2870 unsigned SelectOpcode =
2871 N > 1 ? SPIRV::OpSelectVIVCond : SPIRV::OpSelectSISCond;
2872 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SelectOpcode))
2873 .addDef(NegOneOrZeroReg)
2874 .addUse(ResTypeReg)
2875 .addUse(IsLessReg)
2876 .addUse(buildOnesVal(true, ResType, I)) // -1
2877 .addUse(buildZerosVal(ResType, I))
2878 .constrainAllUses(TII, TRI, RBI);
2879 return Result & BuildMI(BB, I, I.getDebugLoc(), TII.get(SelectOpcode))
2880 .addDef(ResVReg)
2881 .addUse(ResTypeReg)
2882 .addUse(IsLessEqReg)
2883 .addUse(NegOneOrZeroReg) // -1 or 0
2884 .addUse(buildOnesVal(false, ResType, I))
2885 .constrainAllUses(TII, TRI, RBI);
2886}
2887
2888bool SPIRVInstructionSelector::selectIntToBool(Register IntReg,
2889 Register ResVReg,
2890 MachineInstr &I,
2891 const SPIRVType *IntTy,
2892 const SPIRVType *BoolTy) const {
2893 // To truncate to a bool, we use OpBitwiseAnd 1 and OpINotEqual to zero.
2894 Register BitIntReg = createVirtualRegister(IntTy, &GR, MRI, MRI->getMF());
2895 bool IsVectorTy = IntTy->getOpcode() == SPIRV::OpTypeVector;
2896 unsigned Opcode = IsVectorTy ? SPIRV::OpBitwiseAndV : SPIRV::OpBitwiseAndS;
2897 Register Zero = buildZerosVal(IntTy, I);
2898 Register One = buildOnesVal(false, IntTy, I);
2899 MachineBasicBlock &BB = *I.getParent();
2900 bool Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2901 .addDef(BitIntReg)
2902 .addUse(GR.getSPIRVTypeID(IntTy))
2903 .addUse(IntReg)
2904 .addUse(One)
2905 .constrainAllUses(TII, TRI, RBI);
2906 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpINotEqual))
2907 .addDef(ResVReg)
2908 .addUse(GR.getSPIRVTypeID(BoolTy))
2909 .addUse(BitIntReg)
2910 .addUse(Zero)
2911 .constrainAllUses(TII, TRI, RBI);
2912}
2913
2914bool SPIRVInstructionSelector::selectTrunc(Register ResVReg,
2915 const SPIRVType *ResType,
2916 MachineInstr &I) const {
2917 Register IntReg = I.getOperand(1).getReg();
2918 const SPIRVType *ArgType = GR.getSPIRVTypeForVReg(IntReg);
2919 if (GR.isScalarOrVectorOfType(ResVReg, SPIRV::OpTypeBool))
2920 return selectIntToBool(IntReg, ResVReg, I, ArgType, ResType);
2921 if (ArgType == ResType)
2922 return BuildCOPY(ResVReg, IntReg, I);
2923 bool IsSigned = GR.isScalarOrVectorSigned(ResType);
2924 unsigned Opcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert;
2925 return selectUnOp(ResVReg, ResType, I, Opcode);
2926}
2927
2928bool SPIRVInstructionSelector::selectConst(Register ResVReg,
2929 const SPIRVType *ResType,
2930 MachineInstr &I) const {
2931 unsigned Opcode = I.getOpcode();
2932 unsigned TpOpcode = ResType->getOpcode();
2933 Register Reg;
2934 if (TpOpcode == SPIRV::OpTypePointer || TpOpcode == SPIRV::OpTypeEvent) {
2935 assert(Opcode == TargetOpcode::G_CONSTANT &&
2936 I.getOperand(1).getCImm()->isZero());
2937 MachineBasicBlock &DepMBB = I.getMF()->front();
2938 MachineIRBuilder MIRBuilder(DepMBB, DepMBB.getFirstNonPHI());
2939 Reg = GR.getOrCreateConstNullPtr(MIRBuilder, ResType);
2940 } else if (Opcode == TargetOpcode::G_FCONSTANT) {
2941 Reg = GR.getOrCreateConstFP(I.getOperand(1).getFPImm()->getValue(), I,
2942 ResType, TII, !STI.isShader());
2943 } else {
2944 Reg = GR.getOrCreateConstInt(I.getOperand(1).getCImm()->getZExtValue(), I,
2945 ResType, TII, !STI.isShader());
2946 }
2947 return Reg == ResVReg ? true : BuildCOPY(ResVReg, Reg, I);
2948}
2949
2950bool SPIRVInstructionSelector::selectOpUndef(Register ResVReg,
2951 const SPIRVType *ResType,
2952 MachineInstr &I) const {
2953 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpUndef))
2954 .addDef(ResVReg)
2955 .addUse(GR.getSPIRVTypeID(ResType))
2956 .constrainAllUses(TII, TRI, RBI);
2957}
2958
2959bool SPIRVInstructionSelector::selectInsertVal(Register ResVReg,
2960 const SPIRVType *ResType,
2961 MachineInstr &I) const {
2962 MachineBasicBlock &BB = *I.getParent();
2963 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeInsert))
2964 .addDef(ResVReg)
2965 .addUse(GR.getSPIRVTypeID(ResType))
2966 // object to insert
2967 .addUse(I.getOperand(3).getReg())
2968 // composite to insert into
2969 .addUse(I.getOperand(2).getReg());
2970 for (unsigned i = 4; i < I.getNumOperands(); i++)
2971 MIB.addImm(foldImm(I.getOperand(i), MRI));
2972 return MIB.constrainAllUses(TII, TRI, RBI);
2973}
2974
2975bool SPIRVInstructionSelector::selectExtractVal(Register ResVReg,
2976 const SPIRVType *ResType,
2977 MachineInstr &I) const {
2978 MachineBasicBlock &BB = *I.getParent();
2979 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
2980 .addDef(ResVReg)
2981 .addUse(GR.getSPIRVTypeID(ResType))
2982 .addUse(I.getOperand(2).getReg());
2983 for (unsigned i = 3; i < I.getNumOperands(); i++)
2984 MIB.addImm(foldImm(I.getOperand(i), MRI));
2985 return MIB.constrainAllUses(TII, TRI, RBI);
2986}
2987
2988bool SPIRVInstructionSelector::selectInsertElt(Register ResVReg,
2989 const SPIRVType *ResType,
2990 MachineInstr &I) const {
2991 if (getImm(I.getOperand(4), MRI))
2992 return selectInsertVal(ResVReg, ResType, I);
2993 MachineBasicBlock &BB = *I.getParent();
2994 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorInsertDynamic))
2995 .addDef(ResVReg)
2996 .addUse(GR.getSPIRVTypeID(ResType))
2997 .addUse(I.getOperand(2).getReg())
2998 .addUse(I.getOperand(3).getReg())
2999 .addUse(I.getOperand(4).getReg())
3000 .constrainAllUses(TII, TRI, RBI);
3001}
3002
3003bool SPIRVInstructionSelector::selectExtractElt(Register ResVReg,
3004 const SPIRVType *ResType,
3005 MachineInstr &I) const {
3006 if (getImm(I.getOperand(3), MRI))
3007 return selectExtractVal(ResVReg, ResType, I);
3008 MachineBasicBlock &BB = *I.getParent();
3009 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorExtractDynamic))
3010 .addDef(ResVReg)
3011 .addUse(GR.getSPIRVTypeID(ResType))
3012 .addUse(I.getOperand(2).getReg())
3013 .addUse(I.getOperand(3).getReg())
3014 .constrainAllUses(TII, TRI, RBI);
3015}
3016
3017bool SPIRVInstructionSelector::selectGEP(Register ResVReg,
3018 const SPIRVType *ResType,
3019 MachineInstr &I) const {
3020 const bool IsGEPInBounds = I.getOperand(2).getImm();
3021
3022 // OpAccessChain could be used for OpenCL, but the SPIRV-LLVM Translator only
3023 // relies on PtrAccessChain, so we'll try not to deviate. For Vulkan however,
3024 // we have to use Op[InBounds]AccessChain.
3025 const unsigned Opcode = STI.isLogicalSPIRV()
3026 ? (IsGEPInBounds ? SPIRV::OpInBoundsAccessChain
3027 : SPIRV::OpAccessChain)
3028 : (IsGEPInBounds ? SPIRV::OpInBoundsPtrAccessChain
3029 : SPIRV::OpPtrAccessChain);
3030
3031 auto Res = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
3032 .addDef(ResVReg)
3033 .addUse(GR.getSPIRVTypeID(ResType))
3034 // Object to get a pointer to.
3035 .addUse(I.getOperand(3).getReg());
3036 // Adding indices.
3037 const unsigned StartingIndex =
3038 (Opcode == SPIRV::OpAccessChain || Opcode == SPIRV::OpInBoundsAccessChain)
3039 ? 5
3040 : 4;
3041 for (unsigned i = StartingIndex; i < I.getNumExplicitOperands(); ++i)
3042 Res.addUse(I.getOperand(i).getReg());
3043 return Res.constrainAllUses(TII, TRI, RBI);
3044}
3045
3046// Maybe wrap a value into OpSpecConstantOp
3047bool SPIRVInstructionSelector::wrapIntoSpecConstantOp(
3048 MachineInstr &I, SmallVector<Register> &CompositeArgs) const {
3049 bool Result = true;
3050 unsigned Lim = I.getNumExplicitOperands();
3051 for (unsigned i = I.getNumExplicitDefs() + 1; i < Lim; ++i) {
3052 Register OpReg = I.getOperand(i).getReg();
3053 MachineInstr *OpDefine = MRI->getVRegDef(OpReg);
3054 SPIRVType *OpType = GR.getSPIRVTypeForVReg(OpReg);
3055 SmallPtrSet<SPIRVType *, 4> Visited;
3056 if (!OpDefine || !OpType || isConstReg(MRI, OpDefine, Visited) ||
3057 OpDefine->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST ||
3058 GR.isAggregateType(OpType)) {
3059 // The case of G_ADDRSPACE_CAST inside spv_const_composite() is processed
3060 // by selectAddrSpaceCast()
3061 CompositeArgs.push_back(OpReg);
3062 continue;
3063 }
3064 MachineFunction *MF = I.getMF();
3065 Register WrapReg = GR.find(OpDefine, MF);
3066 if (WrapReg.isValid()) {
3067 CompositeArgs.push_back(WrapReg);
3068 continue;
3069 }
3070 // Create a new register for the wrapper
3071 WrapReg = MRI->createVirtualRegister(GR.getRegClass(OpType));
3072 CompositeArgs.push_back(WrapReg);
3073 // Decorate the wrapper register and generate a new instruction
3074 MRI->setType(WrapReg, LLT::pointer(0, 64));
3075 GR.assignSPIRVTypeToVReg(OpType, WrapReg, *MF);
3076 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
3077 TII.get(SPIRV::OpSpecConstantOp))
3078 .addDef(WrapReg)
3079 .addUse(GR.getSPIRVTypeID(OpType))
3080 .addImm(static_cast<uint32_t>(SPIRV::Opcode::Bitcast))
3081 .addUse(OpReg);
3082 GR.add(OpDefine, MIB);
3083 Result = MIB.constrainAllUses(TII, TRI, RBI);
3084 if (!Result)
3085 break;
3086 }
3087 return Result;
3088}
3089
3090bool SPIRVInstructionSelector::selectIntrinsic(Register ResVReg,
3091 const SPIRVType *ResType,
3092 MachineInstr &I) const {
3093 MachineBasicBlock &BB = *I.getParent();
3094 Intrinsic::ID IID = cast<GIntrinsic>(I).getIntrinsicID();
3095 switch (IID) {
3096 case Intrinsic::spv_load:
3097 return selectLoad(ResVReg, ResType, I);
3098 case Intrinsic::spv_store:
3099 return selectStore(I);
3100 case Intrinsic::spv_extractv:
3101 return selectExtractVal(ResVReg, ResType, I);
3102 case Intrinsic::spv_insertv:
3103 return selectInsertVal(ResVReg, ResType, I);
3104 case Intrinsic::spv_extractelt:
3105 return selectExtractElt(ResVReg, ResType, I);
3106 case Intrinsic::spv_insertelt:
3107 return selectInsertElt(ResVReg, ResType, I);
3108 case Intrinsic::spv_gep:
3109 return selectGEP(ResVReg, ResType, I);
3110 case Intrinsic::spv_unref_global:
3111 case Intrinsic::spv_init_global: {
3112 MachineInstr *MI = MRI->getVRegDef(I.getOperand(1).getReg());
3113 MachineInstr *Init = I.getNumExplicitOperands() > 2
3114 ? MRI->getVRegDef(I.getOperand(2).getReg())
3115 : nullptr;
3116 assert(MI);
3117 Register GVarVReg = MI->getOperand(0).getReg();
3118 bool Res = selectGlobalValue(GVarVReg, *MI, Init);
3119 // We violate SSA form by inserting OpVariable and still having a gMIR
3120 // instruction %vreg = G_GLOBAL_VALUE @gvar. We need to fix this by erasing
3121 // the duplicated definition.
3122 if (MI->getOpcode() == TargetOpcode::G_GLOBAL_VALUE) {
3124 MI->removeFromParent();
3125 }
3126 return Res;
3127 }
3128 case Intrinsic::spv_undef: {
3129 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpUndef))
3130 .addDef(ResVReg)
3131 .addUse(GR.getSPIRVTypeID(ResType));
3132 return MIB.constrainAllUses(TII, TRI, RBI);
3133 }
3134 case Intrinsic::spv_const_composite: {
3135 // If no values are attached, the composite is null constant.
3136 bool IsNull = I.getNumExplicitDefs() + 1 == I.getNumExplicitOperands();
3137 SmallVector<Register> CompositeArgs;
3138 MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
3139
3140 // skip type MD node we already used when generated assign.type for this
3141 if (!IsNull) {
3142 if (!wrapIntoSpecConstantOp(I, CompositeArgs))
3143 return false;
3144 MachineIRBuilder MIR(I);
3145 SmallVector<MachineInstr *, 4> Instructions = createContinuedInstructions(
3146 MIR, SPIRV::OpConstantComposite, 3,
3147 SPIRV::OpConstantCompositeContinuedINTEL, CompositeArgs, ResVReg,
3148 GR.getSPIRVTypeID(ResType));
3149 for (auto *Instr : Instructions) {
3150 Instr->setDebugLoc(I.getDebugLoc());
3151 if (!constrainSelectedInstRegOperands(*Instr, TII, TRI, RBI))
3152 return false;
3153 }
3154 return true;
3155 } else {
3156 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull))
3157 .addDef(ResVReg)
3158 .addUse(GR.getSPIRVTypeID(ResType));
3159 return MIB.constrainAllUses(TII, TRI, RBI);
3160 }
3161 }
3162 case Intrinsic::spv_assign_name: {
3163 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpName));
3164 MIB.addUse(I.getOperand(I.getNumExplicitDefs() + 1).getReg());
3165 for (unsigned i = I.getNumExplicitDefs() + 2;
3166 i < I.getNumExplicitOperands(); ++i) {
3167 MIB.addImm(I.getOperand(i).getImm());
3168 }
3169 return MIB.constrainAllUses(TII, TRI, RBI);
3170 }
3171 case Intrinsic::spv_switch: {
3172 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSwitch));
3173 for (unsigned i = 1; i < I.getNumExplicitOperands(); ++i) {
3174 if (I.getOperand(i).isReg())
3175 MIB.addReg(I.getOperand(i).getReg());
3176 else if (I.getOperand(i).isCImm())
3177 addNumImm(I.getOperand(i).getCImm()->getValue(), MIB);
3178 else if (I.getOperand(i).isMBB())
3179 MIB.addMBB(I.getOperand(i).getMBB());
3180 else
3181 llvm_unreachable("Unexpected OpSwitch operand");
3182 }
3183 return MIB.constrainAllUses(TII, TRI, RBI);
3184 }
3185 case Intrinsic::spv_loop_merge: {
3186 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpLoopMerge));
3187 for (unsigned i = 1; i < I.getNumExplicitOperands(); ++i) {
3188 if (I.getOperand(i).isMBB())
3189 MIB.addMBB(I.getOperand(i).getMBB());
3190 else
3191 MIB.addImm(foldImm(I.getOperand(i), MRI));
3192 }
3193 return MIB.constrainAllUses(TII, TRI, RBI);
3194 }
3195 case Intrinsic::spv_selection_merge: {
3196 auto MIB =
3197 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSelectionMerge));
3198 assert(I.getOperand(1).isMBB() &&
3199 "operand 1 to spv_selection_merge must be a basic block");
3200 MIB.addMBB(I.getOperand(1).getMBB());
3201 MIB.addImm(getSelectionOperandForImm(I.getOperand(2).getImm()));
3202 return MIB.constrainAllUses(TII, TRI, RBI);
3203 }
3204 case Intrinsic::spv_cmpxchg:
3205 return selectAtomicCmpXchg(ResVReg, ResType, I);
3206 case Intrinsic::spv_unreachable:
3207 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpUnreachable))
3208 .constrainAllUses(TII, TRI, RBI);
3209 case Intrinsic::spv_alloca:
3210 return selectFrameIndex(ResVReg, ResType, I);
3211 case Intrinsic::spv_alloca_array:
3212 return selectAllocaArray(ResVReg, ResType, I);
3213 case Intrinsic::spv_assume:
3214 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume))
3215 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpAssumeTrueKHR))
3216 .addUse(I.getOperand(1).getReg())
3217 .constrainAllUses(TII, TRI, RBI);
3218 break;
3219 case Intrinsic::spv_expect:
3220 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume))
3221 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExpectKHR))
3222 .addDef(ResVReg)
3223 .addUse(GR.getSPIRVTypeID(ResType))
3224 .addUse(I.getOperand(2).getReg())
3225 .addUse(I.getOperand(3).getReg())
3226 .constrainAllUses(TII, TRI, RBI);
3227 break;
3228 case Intrinsic::arithmetic_fence:
3229 if (STI.canUseExtension(SPIRV::Extension::SPV_EXT_arithmetic_fence))
3230 return BuildMI(BB, I, I.getDebugLoc(),
3231 TII.get(SPIRV::OpArithmeticFenceEXT))
3232 .addDef(ResVReg)
3233 .addUse(GR.getSPIRVTypeID(ResType))
3234 .addUse(I.getOperand(2).getReg())
3235 .constrainAllUses(TII, TRI, RBI);
3236 else
3237 return BuildCOPY(ResVReg, I.getOperand(2).getReg(), I);
3238 break;
3239 case Intrinsic::spv_thread_id:
3240 // The HLSL SV_DispatchThreadID semantic is lowered to llvm.spv.thread.id
3241 // intrinsic in LLVM IR for SPIR-V backend.
3242 //
3243 // In SPIR-V backend, llvm.spv.thread.id is now correctly translated to a
3244 // `GlobalInvocationId` builtin variable
3245 return loadVec3BuiltinInputID(SPIRV::BuiltIn::GlobalInvocationId, ResVReg,
3246 ResType, I);
3247 case Intrinsic::spv_thread_id_in_group:
3248 // The HLSL SV_GroupThreadId semantic is lowered to
3249 // llvm.spv.thread.id.in.group intrinsic in LLVM IR for SPIR-V backend.
3250 //
3251 // In SPIR-V backend, llvm.spv.thread.id.in.group is now correctly
3252 // translated to a `LocalInvocationId` builtin variable
3253 return loadVec3BuiltinInputID(SPIRV::BuiltIn::LocalInvocationId, ResVReg,
3254 ResType, I);
3255 case Intrinsic::spv_group_id:
3256 // The HLSL SV_GroupId semantic is lowered to
3257 // llvm.spv.group.id intrinsic in LLVM IR for SPIR-V backend.
3258 //
3259 // In SPIR-V backend, llvm.spv.group.id is now translated to a `WorkgroupId`
3260 // builtin variable
3261 return loadVec3BuiltinInputID(SPIRV::BuiltIn::WorkgroupId, ResVReg, ResType,
3262 I);
3263 case Intrinsic::spv_flattened_thread_id_in_group:
3264 // The HLSL SV_GroupIndex semantic is lowered to
3265 // llvm.spv.flattened.thread.id.in.group() intrinsic in LLVM IR for SPIR-V
3266 // backend.
3267 //
3268 // In SPIR-V backend, llvm.spv.flattened.thread.id.in.group is translated to
3269 // a `LocalInvocationIndex` builtin variable
3270 return loadBuiltinInputID(SPIRV::BuiltIn::LocalInvocationIndex, ResVReg,
3271 ResType, I);
3272 case Intrinsic::spv_workgroup_size:
3273 return loadVec3BuiltinInputID(SPIRV::BuiltIn::WorkgroupSize, ResVReg,
3274 ResType, I);
3275 case Intrinsic::spv_global_size:
3276 return loadVec3BuiltinInputID(SPIRV::BuiltIn::GlobalSize, ResVReg, ResType,
3277 I);
3278 case Intrinsic::spv_global_offset:
3279 return loadVec3BuiltinInputID(SPIRV::BuiltIn::GlobalOffset, ResVReg,
3280 ResType, I);
3281 case Intrinsic::spv_num_workgroups:
3282 return loadVec3BuiltinInputID(SPIRV::BuiltIn::NumWorkgroups, ResVReg,
3283 ResType, I);
3284 case Intrinsic::spv_subgroup_size:
3285 return loadBuiltinInputID(SPIRV::BuiltIn::SubgroupSize, ResVReg, ResType,
3286 I);
3287 case Intrinsic::spv_num_subgroups:
3288 return loadBuiltinInputID(SPIRV::BuiltIn::NumSubgroups, ResVReg, ResType,
3289 I);
3290 case Intrinsic::spv_subgroup_id:
3291 return loadBuiltinInputID(SPIRV::BuiltIn::SubgroupId, ResVReg, ResType, I);
3292 case Intrinsic::spv_subgroup_local_invocation_id:
3293 return loadBuiltinInputID(SPIRV::BuiltIn::SubgroupLocalInvocationId,
3294 ResVReg, ResType, I);
3295 case Intrinsic::spv_subgroup_max_size:
3296 return loadBuiltinInputID(SPIRV::BuiltIn::SubgroupMaxSize, ResVReg, ResType,
3297 I);
3298 case Intrinsic::spv_fdot:
3299 return selectFloatDot(ResVReg, ResType, I);
3300 case Intrinsic::spv_udot:
3301 case Intrinsic::spv_sdot:
3302 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product) ||
3303 STI.isAtLeastSPIRVVer(VersionTuple(1, 6)))
3304 return selectIntegerDot(ResVReg, ResType, I,
3305 /*Signed=*/IID == Intrinsic::spv_sdot);
3306 return selectIntegerDotExpansion(ResVReg, ResType, I);
3307 case Intrinsic::spv_dot4add_i8packed:
3308 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product) ||
3309 STI.isAtLeastSPIRVVer(VersionTuple(1, 6)))
3310 return selectDot4AddPacked<true>(ResVReg, ResType, I);
3311 return selectDot4AddPackedExpansion<true>(ResVReg, ResType, I);
3312 case Intrinsic::spv_dot4add_u8packed:
3313 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product) ||
3314 STI.isAtLeastSPIRVVer(VersionTuple(1, 6)))
3315 return selectDot4AddPacked<false>(ResVReg, ResType, I);
3316 return selectDot4AddPackedExpansion<false>(ResVReg, ResType, I);
3317 case Intrinsic::spv_all:
3318 return selectAll(ResVReg, ResType, I);
3319 case Intrinsic::spv_any:
3320 return selectAny(ResVReg, ResType, I);
3321 case Intrinsic::spv_cross:
3322 return selectExtInst(ResVReg, ResType, I, CL::cross, GL::Cross);
3323 case Intrinsic::spv_distance:
3324 return selectExtInst(ResVReg, ResType, I, CL::distance, GL::Distance);
3325 case Intrinsic::spv_lerp:
3326 return selectExtInst(ResVReg, ResType, I, CL::mix, GL::FMix);
3327 case Intrinsic::spv_length:
3328 return selectExtInst(ResVReg, ResType, I, CL::length, GL::Length);
3329 case Intrinsic::spv_degrees:
3330 return selectExtInst(ResVReg, ResType, I, CL::degrees, GL::Degrees);
3331 case Intrinsic::spv_faceforward:
3332 return selectExtInst(ResVReg, ResType, I, GL::FaceForward);
3333 case Intrinsic::spv_frac:
3334 return selectExtInst(ResVReg, ResType, I, CL::fract, GL::Fract);
3335 case Intrinsic::spv_isinf:
3336 return selectOpIsInf(ResVReg, ResType, I);
3337 case Intrinsic::spv_isnan:
3338 return selectOpIsNan(ResVReg, ResType, I);
3339 case Intrinsic::spv_normalize:
3340 return selectExtInst(ResVReg, ResType, I, CL::normalize, GL::Normalize);
3341 case Intrinsic::spv_refract:
3342 return selectExtInst(ResVReg, ResType, I, GL::Refract);
3343 case Intrinsic::spv_reflect:
3344 return selectExtInst(ResVReg, ResType, I, GL::Reflect);
3345 case Intrinsic::spv_rsqrt:
3346 return selectExtInst(ResVReg, ResType, I, CL::rsqrt, GL::InverseSqrt);
3347 case Intrinsic::spv_sign:
3348 return selectSign(ResVReg, ResType, I);
3349 case Intrinsic::spv_smoothstep:
3350 return selectExtInst(ResVReg, ResType, I, CL::smoothstep, GL::SmoothStep);
3351 case Intrinsic::spv_firstbituhigh: // There is no CL equivalent of FindUMsb
3352 return selectFirstBitHigh(ResVReg, ResType, I, /*IsSigned=*/false);
3353 case Intrinsic::spv_firstbitshigh: // There is no CL equivalent of FindSMsb
3354 return selectFirstBitHigh(ResVReg, ResType, I, /*IsSigned=*/true);
3355 case Intrinsic::spv_firstbitlow: // There is no CL equivlent of FindILsb
3356 return selectFirstBitLow(ResVReg, ResType, I);
3357 case Intrinsic::spv_group_memory_barrier_with_group_sync: {
3358 bool Result = true;
3359 auto MemSemConstant =
3360 buildI32Constant(SPIRV::MemorySemantics::SequentiallyConsistent, I);
3361 Register MemSemReg = MemSemConstant.first;
3362 Result &= MemSemConstant.second;
3363 auto ScopeConstant = buildI32Constant(SPIRV::Scope::Workgroup, I);
3364 Register ScopeReg = ScopeConstant.first;
3365 Result &= ScopeConstant.second;
3366 MachineBasicBlock &BB = *I.getParent();
3367 return Result &&
3368 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpControlBarrier))
3369 .addUse(ScopeReg)
3370 .addUse(ScopeReg)
3371 .addUse(MemSemReg)
3372 .constrainAllUses(TII, TRI, RBI);
3373 }
3374 case Intrinsic::spv_generic_cast_to_ptr_explicit: {
3375 Register PtrReg = I.getOperand(I.getNumExplicitDefs() + 1).getReg();
3376 SPIRV::StorageClass::StorageClass ResSC =
3377 GR.getPointerStorageClass(ResType);
3378 if (!isGenericCastablePtr(ResSC))
3379 report_fatal_error("The target storage class is not castable from the "
3380 "Generic storage class");
3381 return BuildMI(BB, I, I.getDebugLoc(),
3382 TII.get(SPIRV::OpGenericCastToPtrExplicit))
3383 .addDef(ResVReg)
3384 .addUse(GR.getSPIRVTypeID(ResType))
3385 .addUse(PtrReg)
3386 .addImm(ResSC)
3387 .constrainAllUses(TII, TRI, RBI);
3388 }
3389 case Intrinsic::spv_lifetime_start:
3390 case Intrinsic::spv_lifetime_end: {
3391 unsigned Op = IID == Intrinsic::spv_lifetime_start ? SPIRV::OpLifetimeStart
3392 : SPIRV::OpLifetimeStop;
3393 int64_t Size = I.getOperand(I.getNumExplicitDefs() + 1).getImm();
3394 Register PtrReg = I.getOperand(I.getNumExplicitDefs() + 2).getReg();
3395 if (Size == -1)
3396 Size = 0;
3397 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Op))
3398 .addUse(PtrReg)
3399 .addImm(Size)
3400 .constrainAllUses(TII, TRI, RBI);
3401 }
3402 case Intrinsic::spv_saturate:
3403 return selectSaturate(ResVReg, ResType, I);
3404 case Intrinsic::spv_nclamp:
3405 return selectExtInst(ResVReg, ResType, I, CL::fclamp, GL::NClamp);
3406 case Intrinsic::spv_uclamp:
3407 return selectExtInst(ResVReg, ResType, I, CL::u_clamp, GL::UClamp);
3408 case Intrinsic::spv_sclamp:
3409 return selectExtInst(ResVReg, ResType, I, CL::s_clamp, GL::SClamp);
3410 case Intrinsic::spv_wave_active_countbits:
3411 return selectWaveActiveCountBits(ResVReg, ResType, I);
3412 case Intrinsic::spv_wave_all:
3413 return selectWaveOpInst(ResVReg, ResType, I, SPIRV::OpGroupNonUniformAll);
3414 case Intrinsic::spv_wave_any:
3415 return selectWaveOpInst(ResVReg, ResType, I, SPIRV::OpGroupNonUniformAny);
3416 case Intrinsic::spv_wave_is_first_lane:
3417 return selectWaveOpInst(ResVReg, ResType, I, SPIRV::OpGroupNonUniformElect);
3418 case Intrinsic::spv_wave_reduce_umax:
3419 return selectWaveReduceMax(ResVReg, ResType, I, /*IsUnsigned*/ true);
3420 case Intrinsic::spv_wave_reduce_max:
3421 return selectWaveReduceMax(ResVReg, ResType, I, /*IsUnsigned*/ false);
3422 case Intrinsic::spv_wave_reduce_sum:
3423 return selectWaveReduceSum(ResVReg, ResType, I);
3424 case Intrinsic::spv_wave_readlane:
3425 return selectWaveOpInst(ResVReg, ResType, I,
3426 SPIRV::OpGroupNonUniformShuffle);
3427 case Intrinsic::spv_step:
3428 return selectExtInst(ResVReg, ResType, I, CL::step, GL::Step);
3429 case Intrinsic::spv_radians:
3430 return selectExtInst(ResVReg, ResType, I, CL::radians, GL::Radians);
3431 // Discard intrinsics which we do not expect to actually represent code after
3432 // lowering or intrinsics which are not implemented but should not crash when
3433 // found in a customer's LLVM IR input.
3434 case Intrinsic::instrprof_increment:
3435 case Intrinsic::instrprof_increment_step:
3436 case Intrinsic::instrprof_value_profile:
3437 break;
3438 // Discard internal intrinsics.
3439 case Intrinsic::spv_value_md:
3440 break;
3441 case Intrinsic::spv_resource_handlefrombinding: {
3442 return selectHandleFromBinding(ResVReg, ResType, I);
3443 }
3444 case Intrinsic::spv_resource_store_typedbuffer: {
3445 return selectImageWriteIntrinsic(I);
3446 }
3447 case Intrinsic::spv_resource_load_typedbuffer: {
3448 return selectReadImageIntrinsic(ResVReg, ResType, I);
3449 }
3450 case Intrinsic::spv_resource_getpointer: {
3451 return selectResourceGetPointer(ResVReg, ResType, I);
3452 }
3453 case Intrinsic::spv_discard: {
3454 return selectDiscard(ResVReg, ResType, I);
3455 }
3456 case Intrinsic::modf: {
3457 return selectModf(ResVReg, ResType, I);
3458 }
3459 default: {
3460 std::string DiagMsg;
3461 raw_string_ostream OS(DiagMsg);
3462 I.print(OS);
3463 DiagMsg = "Intrinsic selection not implemented: " + DiagMsg;
3464 report_fatal_error(DiagMsg.c_str(), false);
3465 }
3466 }
3467 return true;
3468}
3469
3470bool SPIRVInstructionSelector::selectHandleFromBinding(Register &ResVReg,
3471 const SPIRVType *ResType,
3472 MachineInstr &I) const {
3473 // The images need to be loaded in the same basic block as their use. We defer
3474 // loading the image to the intrinsic that uses it.
3475 if (ResType->getOpcode() == SPIRV::OpTypeImage)
3476 return true;
3477
3478 return loadHandleBeforePosition(ResVReg, GR.getSPIRVTypeForVReg(ResVReg),
3479 *cast<GIntrinsic>(&I), I);
3480}
3481
3482bool SPIRVInstructionSelector::selectReadImageIntrinsic(
3483 Register &ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
3484
3485 // If the load of the image is in a different basic block, then
3486 // this will generate invalid code. A proper solution is to move
3487 // the OpLoad from selectHandleFromBinding here. However, to do
3488 // that we will need to change the return type of the intrinsic.
3489 // We will do that when we can, but for now trying to move forward with other
3490 // issues.
3491 Register ImageReg = I.getOperand(2).getReg();
3492 auto *ImageDef = cast<GIntrinsic>(getVRegDef(*MRI, ImageReg));
3493 Register NewImageReg = MRI->createVirtualRegister(MRI->getRegClass(ImageReg));
3494 if (!loadHandleBeforePosition(NewImageReg, GR.getSPIRVTypeForVReg(ImageReg),
3495 *ImageDef, I)) {
3496 return false;
3497 }
3498
3499 Register IdxReg = I.getOperand(3).getReg();
3500 DebugLoc Loc = I.getDebugLoc();
3501 MachineInstr &Pos = I;
3502
3503 return generateImageRead(ResVReg, ResType, NewImageReg, IdxReg, Loc, Pos);
3504}
3505
3506bool SPIRVInstructionSelector::generateImageRead(Register &ResVReg,
3507 const SPIRVType *ResType,
3508 Register ImageReg,
3509 Register IdxReg, DebugLoc Loc,
3510 MachineInstr &Pos) const {
3511 SPIRVType *ImageType = GR.getSPIRVTypeForVReg(ImageReg);
3512 assert(ImageType && ImageType->getOpcode() == SPIRV::OpTypeImage &&
3513 "ImageReg is not an image type.");
3514 bool IsSignedInteger =
3515 sampledTypeIsSignedInteger(GR.getTypeForSPIRVType(ImageType));
3516
3517 uint64_t ResultSize = GR.getScalarOrVectorComponentCount(ResType);
3518 if (ResultSize == 4) {
3519 auto BMI = BuildMI(*Pos.getParent(), Pos, Loc, TII.get(SPIRV::OpImageRead))
3520 .addDef(ResVReg)
3521 .addUse(GR.getSPIRVTypeID(ResType))
3522 .addUse(ImageReg)
3523 .addUse(IdxReg);
3524
3525 if (IsSignedInteger)
3526 BMI.addImm(0x1000); // SignExtend
3527 return BMI.constrainAllUses(TII, TRI, RBI);
3528 }
3529
3530 SPIRVType *ReadType = widenTypeToVec4(ResType, Pos);
3531 Register ReadReg = MRI->createVirtualRegister(GR.getRegClass(ReadType));
3532 auto BMI = BuildMI(*Pos.getParent(), Pos, Loc, TII.get(SPIRV::OpImageRead))
3533 .addDef(ReadReg)
3534 .addUse(GR.getSPIRVTypeID(ReadType))
3535 .addUse(ImageReg)
3536 .addUse(IdxReg);
3537 if (IsSignedInteger)
3538 BMI.addImm(0x1000); // SignExtend
3539 bool Succeed = BMI.constrainAllUses(TII, TRI, RBI);
3540 if (!Succeed)
3541 return false;
3542
3543 if (ResultSize == 1) {
3544 return BuildMI(*Pos.getParent(), Pos, Loc,
3545 TII.get(SPIRV::OpCompositeExtract))
3546 .addDef(ResVReg)
3547 .addUse(GR.getSPIRVTypeID(ResType))
3548 .addUse(ReadReg)
3549 .addImm(0)
3550 .constrainAllUses(TII, TRI, RBI);
3551 }
3552 return extractSubvector(ResVReg, ResType, ReadReg, Pos);
3553}
3554
3555bool SPIRVInstructionSelector::selectResourceGetPointer(
3556 Register &ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
3557 Register ResourcePtr = I.getOperand(2).getReg();
3558 SPIRVType *RegType = GR.getSPIRVTypeForVReg(ResourcePtr, I.getMF());
3559 if (RegType->getOpcode() == SPIRV::OpTypeImage) {
3560 // For texel buffers, the index into the image is part of the OpImageRead or
3561 // OpImageWrite instructions. So we will do nothing in this case. This
3562 // intrinsic will be combined with the load or store when selecting the load
3563 // or store.
3564 return true;
3565 }
3566
3567 assert(ResType->getOpcode() == SPIRV::OpTypePointer);
3568 MachineIRBuilder MIRBuilder(I);
3569
3570 Register IndexReg = I.getOperand(3).getReg();
3571 Register ZeroReg =
3572 buildZerosVal(GR.getOrCreateSPIRVIntegerType(32, I, TII), I);
3573 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
3574 TII.get(SPIRV::OpAccessChain))
3575 .addDef(ResVReg)
3576 .addUse(GR.getSPIRVTypeID(ResType))
3577 .addUse(ResourcePtr)
3578 .addUse(ZeroReg)
3579 .addUse(IndexReg)
3580 .constrainAllUses(TII, TRI, RBI);
3581}
3582
3583bool SPIRVInstructionSelector::extractSubvector(
3584 Register &ResVReg, const SPIRVType *ResType, Register &ReadReg,
3585 MachineInstr &InsertionPoint) const {
3586 SPIRVType *InputType = GR.getResultType(ReadReg);
3587 [[maybe_unused]] uint64_t InputSize =
3588 GR.getScalarOrVectorComponentCount(InputType);
3589 uint64_t ResultSize = GR.getScalarOrVectorComponentCount(ResType);
3590 assert(InputSize > 1 && "The input must be a vector.");
3591 assert(ResultSize > 1 && "The result must be a vector.");
3592 assert(ResultSize < InputSize &&
3593 "Cannot extract more element than there are in the input.");
3594 SmallVector<Register> ComponentRegisters;
3595 SPIRVType *ScalarType = GR.getScalarOrVectorComponentType(ResType);
3596 const TargetRegisterClass *ScalarRegClass = GR.getRegClass(ScalarType);
3597 for (uint64_t I = 0; I < ResultSize; I++) {
3598 Register ComponentReg = MRI->createVirtualRegister(ScalarRegClass);
3599 bool Succeed = BuildMI(*InsertionPoint.getParent(), InsertionPoint,
3600 InsertionPoint.getDebugLoc(),
3601 TII.get(SPIRV::OpCompositeExtract))
3602 .addDef(ComponentReg)
3603 .addUse(ScalarType->getOperand(0).getReg())
3604 .addUse(ReadReg)
3605 .addImm(I)
3606 .constrainAllUses(TII, TRI, RBI);
3607 if (!Succeed)
3608 return false;
3609 ComponentRegisters.emplace_back(ComponentReg);
3610 }
3611
3612 MachineInstrBuilder MIB = BuildMI(*InsertionPoint.getParent(), InsertionPoint,
3613 InsertionPoint.getDebugLoc(),
3614 TII.get(SPIRV::OpCompositeConstruct))
3615 .addDef(ResVReg)
3616 .addUse(GR.getSPIRVTypeID(ResType));
3617
3618 for (Register ComponentReg : ComponentRegisters)
3619 MIB.addUse(ComponentReg);
3620 return MIB.constrainAllUses(TII, TRI, RBI);
3621}
3622
3623bool SPIRVInstructionSelector::selectImageWriteIntrinsic(
3624 MachineInstr &I) const {
3625 // If the load of the image is in a different basic block, then
3626 // this will generate invalid code. A proper solution is to move
3627 // the OpLoad from selectHandleFromBinding here. However, to do
3628 // that we will need to change the return type of the intrinsic.
3629 // We will do that when we can, but for now trying to move forward with other
3630 // issues.
3631 Register ImageReg = I.getOperand(1).getReg();
3632 auto *ImageDef = cast<GIntrinsic>(getVRegDef(*MRI, ImageReg));
3633 Register NewImageReg = MRI->createVirtualRegister(MRI->getRegClass(ImageReg));
3634 if (!loadHandleBeforePosition(NewImageReg, GR.getSPIRVTypeForVReg(ImageReg),
3635 *ImageDef, I)) {
3636 return false;
3637 }
3638
3639 Register CoordinateReg = I.getOperand(2).getReg();
3640 Register DataReg = I.getOperand(3).getReg();
3641 assert(GR.getResultType(DataReg)->getOpcode() == SPIRV::OpTypeVector);
3643 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
3644 TII.get(SPIRV::OpImageWrite))
3645 .addUse(NewImageReg)
3646 .addUse(CoordinateReg)
3647 .addUse(DataReg)
3648 .constrainAllUses(TII, TRI, RBI);
3649}
3650
3651Register SPIRVInstructionSelector::buildPointerToResource(
3652 const SPIRVType *SpirvResType, SPIRV::StorageClass::StorageClass SC,
3653 uint32_t Set, uint32_t Binding, uint32_t ArraySize, Register IndexReg,
3654 bool IsNonUniform, StringRef Name, MachineIRBuilder MIRBuilder) const {
3655 const Type *ResType = GR.getTypeForSPIRVType(SpirvResType);
3656 if (ArraySize == 1) {
3657 SPIRVType *PtrType =
3658 GR.getOrCreateSPIRVPointerType(ResType, MIRBuilder, SC);
3659 assert(GR.getPointeeType(PtrType) == SpirvResType &&
3660 "SpirvResType did not have an explicit layout.");
3661 return GR.getOrCreateGlobalVariableWithBinding(PtrType, Set, Binding, Name,
3662 MIRBuilder);
3663 }
3664
3665 const Type *VarType = ArrayType::get(const_cast<Type *>(ResType), ArraySize);
3666 SPIRVType *VarPointerType =
3667 GR.getOrCreateSPIRVPointerType(VarType, MIRBuilder, SC);
3669 VarPointerType, Set, Binding, Name, MIRBuilder);
3670
3671 SPIRVType *ResPointerType =
3672 GR.getOrCreateSPIRVPointerType(ResType, MIRBuilder, SC);
3673
3674 Register AcReg = MRI->createVirtualRegister(GR.getRegClass(ResPointerType));
3675 if (IsNonUniform) {
3676 // It is unclear which value needs to be marked an non-uniform, so both
3677 // the index and the access changed are decorated as non-uniform.
3678 buildOpDecorate(IndexReg, MIRBuilder, SPIRV::Decoration::NonUniformEXT, {});
3679 buildOpDecorate(AcReg, MIRBuilder, SPIRV::Decoration::NonUniformEXT, {});
3680 }
3681
3682 MIRBuilder.buildInstr(SPIRV::OpAccessChain)
3683 .addDef(AcReg)
3684 .addUse(GR.getSPIRVTypeID(ResPointerType))
3685 .addUse(VarReg)
3686 .addUse(IndexReg);
3687
3688 return AcReg;
3689}
3690
3691bool SPIRVInstructionSelector::selectFirstBitSet16(
3692 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
3693 unsigned ExtendOpcode, unsigned BitSetOpcode) const {
3694 Register ExtReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
3695 bool Result = selectOpWithSrcs(ExtReg, ResType, I, {I.getOperand(2).getReg()},
3696 ExtendOpcode);
3697
3698 return Result &&
3699 selectFirstBitSet32(ResVReg, ResType, I, ExtReg, BitSetOpcode);
3700}
3701
3702bool SPIRVInstructionSelector::selectFirstBitSet32(
3703 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
3704 Register SrcReg, unsigned BitSetOpcode) const {
3705 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
3706 .addDef(ResVReg)
3707 .addUse(GR.getSPIRVTypeID(ResType))
3708 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
3709 .addImm(BitSetOpcode)
3710 .addUse(SrcReg)
3711 .constrainAllUses(TII, TRI, RBI);
3712}
3713
3714bool SPIRVInstructionSelector::selectFirstBitSet64Overflow(
3715 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
3716 Register SrcReg, unsigned BitSetOpcode, bool SwapPrimarySide) const {
3717
3718 // SPIR-V allow vectors of size 2,3,4 only. Calling with a larger vectors
3719 // requires creating a param register and return register with an invalid
3720 // vector size. If that is resolved, then this function can be used for
3721 // vectors of any component size.
3722 unsigned ComponentCount = GR.getScalarOrVectorComponentCount(ResType);
3723 assert(ComponentCount < 5 && "Vec 5+ will generate invalid SPIR-V ops");
3724
3725 MachineIRBuilder MIRBuilder(I);
3727 SPIRVType *I64Type = GR.getOrCreateSPIRVIntegerType(64, MIRBuilder);
3728 SPIRVType *I64x2Type =
3729 GR.getOrCreateSPIRVVectorType(I64Type, 2, MIRBuilder, false);
3730 SPIRVType *Vec2ResType =
3731 GR.getOrCreateSPIRVVectorType(BaseType, 2, MIRBuilder, false);
3732
3733 std::vector<Register> PartialRegs;
3734
3735 // Loops 0, 2, 4, ... but stops one loop early when ComponentCount is odd
3736 unsigned CurrentComponent = 0;
3737 for (; CurrentComponent + 1 < ComponentCount; CurrentComponent += 2) {
3738 // This register holds the firstbitX result for each of the i64x2 vectors
3739 // extracted from SrcReg
3740 Register BitSetResult =
3741 MRI->createVirtualRegister(GR.getRegClass(I64x2Type));
3742
3743 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
3744 TII.get(SPIRV::OpVectorShuffle))
3745 .addDef(BitSetResult)
3746 .addUse(GR.getSPIRVTypeID(I64x2Type))
3747 .addUse(SrcReg)
3748 .addUse(SrcReg)
3749 .addImm(CurrentComponent)
3750 .addImm(CurrentComponent + 1);
3751
3752 if (!MIB.constrainAllUses(TII, TRI, RBI))
3753 return false;
3754
3755 Register SubVecBitSetReg =
3756 MRI->createVirtualRegister(GR.getRegClass(Vec2ResType));
3757
3758 if (!selectFirstBitSet64(SubVecBitSetReg, Vec2ResType, I, BitSetResult,
3759 BitSetOpcode, SwapPrimarySide))
3760 return false;
3761
3762 PartialRegs.push_back(SubVecBitSetReg);
3763 }
3764
3765 // On odd component counts we need to handle one more component
3766 if (CurrentComponent != ComponentCount) {
3767 bool ZeroAsNull = !STI.isShader();
3768 Register FinalElemReg = MRI->createVirtualRegister(GR.getRegClass(I64Type));
3769 Register ConstIntLastIdx = GR.getOrCreateConstInt(
3770 ComponentCount - 1, I, BaseType, TII, ZeroAsNull);
3771
3772 if (!selectOpWithSrcs(FinalElemReg, I64Type, I, {SrcReg, ConstIntLastIdx},
3773 SPIRV::OpVectorExtractDynamic))
3774 return false;
3775
3776 Register FinalElemBitSetReg =
3777 MRI->createVirtualRegister(GR.getRegClass(BaseType));
3778
3779 if (!selectFirstBitSet64(FinalElemBitSetReg, BaseType, I, FinalElemReg,
3780 BitSetOpcode, SwapPrimarySide))
3781 return false;
3782
3783 PartialRegs.push_back(FinalElemBitSetReg);
3784 }
3785
3786 // Join all the resulting registers back into the return type in order
3787 // (ie i32x2, i32x2, i32x1 -> i32x5)
3788 return selectOpWithSrcs(ResVReg, ResType, I, std::move(PartialRegs),
3789 SPIRV::OpCompositeConstruct);
3790}
3791
3792bool SPIRVInstructionSelector::selectFirstBitSet64(
3793 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
3794 Register SrcReg, unsigned BitSetOpcode, bool SwapPrimarySide) const {
3795 unsigned ComponentCount = GR.getScalarOrVectorComponentCount(ResType);
3797 bool ZeroAsNull = !STI.isShader();
3798 Register ConstIntZero =
3799 GR.getOrCreateConstInt(0, I, BaseType, TII, ZeroAsNull);
3800 Register ConstIntOne =
3801 GR.getOrCreateConstInt(1, I, BaseType, TII, ZeroAsNull);
3802
3803 // SPIRV doesn't support vectors with more than 4 components. Since the
3804 // algoritm below converts i64 -> i32x2 and i64x4 -> i32x8 it can only
3805 // operate on vectors with 2 or less components. When largers vectors are
3806 // seen. Split them, recurse, then recombine them.
3807 if (ComponentCount > 2) {
3808 return selectFirstBitSet64Overflow(ResVReg, ResType, I, SrcReg,
3809 BitSetOpcode, SwapPrimarySide);
3810 }
3811
3812 // 1. Split int64 into 2 pieces using a bitcast
3813 MachineIRBuilder MIRBuilder(I);
3814 SPIRVType *PostCastType = GR.getOrCreateSPIRVVectorType(
3815 BaseType, 2 * ComponentCount, MIRBuilder, false);
3816 Register BitcastReg =
3817 MRI->createVirtualRegister(GR.getRegClass(PostCastType));
3818
3819 if (!selectOpWithSrcs(BitcastReg, PostCastType, I, {SrcReg},
3820 SPIRV::OpBitcast))
3821 return false;
3822
3823 // 2. Find the first set bit from the primary side for all the pieces in #1
3824 Register FBSReg = MRI->createVirtualRegister(GR.getRegClass(PostCastType));
3825 if (!selectFirstBitSet32(FBSReg, PostCastType, I, BitcastReg, BitSetOpcode))
3826 return false;
3827
3828 // 3. Split result vector into high bits and low bits
3829 Register HighReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
3830 Register LowReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
3831
3832 bool IsScalarRes = ResType->getOpcode() != SPIRV::OpTypeVector;
3833 if (IsScalarRes) {
3834 // if scalar do a vector extract
3835 if (!selectOpWithSrcs(HighReg, ResType, I, {FBSReg, ConstIntZero},
3836 SPIRV::OpVectorExtractDynamic))
3837 return false;
3838 if (!selectOpWithSrcs(LowReg, ResType, I, {FBSReg, ConstIntOne},
3839 SPIRV::OpVectorExtractDynamic))
3840 return false;
3841 } else {
3842 // if vector do a shufflevector
3843 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
3844 TII.get(SPIRV::OpVectorShuffle))
3845 .addDef(HighReg)
3846 .addUse(GR.getSPIRVTypeID(ResType))
3847 .addUse(FBSReg)
3848 // Per the spec, repeat the vector if only one vec is needed
3849 .addUse(FBSReg);
3850
3851 // high bits are stored in even indexes. Extract them from FBSReg
3852 for (unsigned J = 0; J < ComponentCount * 2; J += 2) {
3853 MIB.addImm(J);
3854 }
3855
3856 if (!MIB.constrainAllUses(TII, TRI, RBI))
3857 return false;
3858
3859 MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
3860 TII.get(SPIRV::OpVectorShuffle))
3861 .addDef(LowReg)
3862 .addUse(GR.getSPIRVTypeID(ResType))
3863 .addUse(FBSReg)
3864 // Per the spec, repeat the vector if only one vec is needed
3865 .addUse(FBSReg);
3866
3867 // low bits are stored in odd indexes. Extract them from FBSReg
3868 for (unsigned J = 1; J < ComponentCount * 2; J += 2) {
3869 MIB.addImm(J);
3870 }
3871 if (!MIB.constrainAllUses(TII, TRI, RBI))
3872 return false;
3873 }
3874
3875 // 4. Check the result. When primary bits == -1 use secondary, otherwise use
3876 // primary
3877 SPIRVType *BoolType = GR.getOrCreateSPIRVBoolType(I, TII);
3878 Register NegOneReg;
3879 Register Reg0;
3880 Register Reg32;
3881 unsigned SelectOp;
3882 unsigned AddOp;
3883
3884 if (IsScalarRes) {
3885 NegOneReg =
3886 GR.getOrCreateConstInt((unsigned)-1, I, ResType, TII, ZeroAsNull);
3887 Reg0 = GR.getOrCreateConstInt(0, I, ResType, TII, ZeroAsNull);
3888 Reg32 = GR.getOrCreateConstInt(32, I, ResType, TII, ZeroAsNull);
3889 SelectOp = SPIRV::OpSelectSISCond;
3890 AddOp = SPIRV::OpIAddS;
3891 } else {
3892 BoolType = GR.getOrCreateSPIRVVectorType(BoolType, ComponentCount,
3893 MIRBuilder, false);
3894 NegOneReg =
3895 GR.getOrCreateConstVector((unsigned)-1, I, ResType, TII, ZeroAsNull);
3896 Reg0 = GR.getOrCreateConstVector(0, I, ResType, TII, ZeroAsNull);
3897 Reg32 = GR.getOrCreateConstVector(32, I, ResType, TII, ZeroAsNull);
3898 SelectOp = SPIRV::OpSelectVIVCond;
3899 AddOp = SPIRV::OpIAddV;
3900 }
3901
3902 Register PrimaryReg = HighReg;
3903 Register SecondaryReg = LowReg;
3904 Register PrimaryShiftReg = Reg32;
3905 Register SecondaryShiftReg = Reg0;
3906
3907 // By default the emitted opcodes check for the set bit from the MSB side.
3908 // Setting SwapPrimarySide checks the set bit from the LSB side
3909 if (SwapPrimarySide) {
3910 PrimaryReg = LowReg;
3911 SecondaryReg = HighReg;
3912 PrimaryShiftReg = Reg0;
3913 SecondaryShiftReg = Reg32;
3914 }
3915
3916 // Check if the primary bits are == -1
3917 Register BReg = MRI->createVirtualRegister(GR.getRegClass(BoolType));
3918 if (!selectOpWithSrcs(BReg, BoolType, I, {PrimaryReg, NegOneReg},
3919 SPIRV::OpIEqual))
3920 return false;
3921
3922 // Select secondary bits if true in BReg, otherwise primary bits
3923 Register TmpReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
3924 if (!selectOpWithSrcs(TmpReg, ResType, I, {BReg, SecondaryReg, PrimaryReg},
3925 SelectOp))
3926 return false;
3927
3928 // 5. Add 32 when high bits are used, otherwise 0 for low bits
3929 Register ValReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
3930 if (!selectOpWithSrcs(ValReg, ResType, I,
3931 {BReg, SecondaryShiftReg, PrimaryShiftReg}, SelectOp))
3932 return false;
3933
3934 return selectOpWithSrcs(ResVReg, ResType, I, {ValReg, TmpReg}, AddOp);
3935}
3936
3937bool SPIRVInstructionSelector::selectFirstBitHigh(Register ResVReg,
3938 const SPIRVType *ResType,
3939 MachineInstr &I,
3940 bool IsSigned) const {
3941 // FindUMsb and FindSMsb intrinsics only support 32 bit integers
3942 Register OpReg = I.getOperand(2).getReg();
3943 SPIRVType *OpType = GR.getSPIRVTypeForVReg(OpReg);
3944 // zero or sign extend
3945 unsigned ExtendOpcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert;
3946 unsigned BitSetOpcode = IsSigned ? GL::FindSMsb : GL::FindUMsb;
3947
3948 switch (GR.getScalarOrVectorBitWidth(OpType)) {
3949 case 16:
3950 return selectFirstBitSet16(ResVReg, ResType, I, ExtendOpcode, BitSetOpcode);
3951 case 32:
3952 return selectFirstBitSet32(ResVReg, ResType, I, OpReg, BitSetOpcode);
3953 case 64:
3954 return selectFirstBitSet64(ResVReg, ResType, I, OpReg, BitSetOpcode,
3955 /*SwapPrimarySide=*/false);
3956 default:
3958 "spv_firstbituhigh and spv_firstbitshigh only support 16,32,64 bits.");
3959 }
3960}
3961
3962bool SPIRVInstructionSelector::selectFirstBitLow(Register ResVReg,
3963 const SPIRVType *ResType,
3964 MachineInstr &I) const {
3965 // FindILsb intrinsic only supports 32 bit integers
3966 Register OpReg = I.getOperand(2).getReg();
3967 SPIRVType *OpType = GR.getSPIRVTypeForVReg(OpReg);
3968 // OpUConvert treats the operand bits as an unsigned i16 and zero extends it
3969 // to an unsigned i32. As this leaves all the least significant bits unchanged
3970 // so the first set bit from the LSB side doesn't change.
3971 unsigned ExtendOpcode = SPIRV::OpUConvert;
3972 unsigned BitSetOpcode = GL::FindILsb;
3973
3974 switch (GR.getScalarOrVectorBitWidth(OpType)) {
3975 case 16:
3976 return selectFirstBitSet16(ResVReg, ResType, I, ExtendOpcode, BitSetOpcode);
3977 case 32:
3978 return selectFirstBitSet32(ResVReg, ResType, I, OpReg, BitSetOpcode);
3979 case 64:
3980 return selectFirstBitSet64(ResVReg, ResType, I, OpReg, BitSetOpcode,
3981 /*SwapPrimarySide=*/true);
3982 default:
3983 report_fatal_error("spv_firstbitlow only supports 16,32,64 bits.");
3984 }
3985}
3986
3987bool SPIRVInstructionSelector::selectAllocaArray(Register ResVReg,
3988 const SPIRVType *ResType,
3989 MachineInstr &I) const {
3990 // there was an allocation size parameter to the allocation instruction
3991 // that is not 1
3992 MachineBasicBlock &BB = *I.getParent();
3993 bool Res = BuildMI(BB, I, I.getDebugLoc(),
3994 TII.get(SPIRV::OpVariableLengthArrayINTEL))
3995 .addDef(ResVReg)
3996 .addUse(GR.getSPIRVTypeID(ResType))
3997 .addUse(I.getOperand(2).getReg())
3998 .constrainAllUses(TII, TRI, RBI);
3999 if (!STI.isShader()) {
4000 unsigned Alignment = I.getOperand(3).getImm();
4001 buildOpDecorate(ResVReg, I, TII, SPIRV::Decoration::Alignment, {Alignment});
4002 }
4003 return Res;
4004}
4005
4006bool SPIRVInstructionSelector::selectFrameIndex(Register ResVReg,
4007 const SPIRVType *ResType,
4008 MachineInstr &I) const {
4009 // Change order of instructions if needed: all OpVariable instructions in a
4010 // function must be the first instructions in the first block
4011 auto It = getOpVariableMBBIt(I);
4012 bool Res = BuildMI(*It->getParent(), It, It->getDebugLoc(),
4013 TII.get(SPIRV::OpVariable))
4014 .addDef(ResVReg)
4015 .addUse(GR.getSPIRVTypeID(ResType))
4016 .addImm(static_cast<uint32_t>(SPIRV::StorageClass::Function))
4017 .constrainAllUses(TII, TRI, RBI);
4018 if (!STI.isShader()) {
4019 unsigned Alignment = I.getOperand(2).getImm();
4020 buildOpDecorate(ResVReg, *It, TII, SPIRV::Decoration::Alignment,
4021 {Alignment});
4022 }
4023 return Res;
4024}
4025
4026bool SPIRVInstructionSelector::selectBranch(MachineInstr &I) const {
4027 // InstructionSelector walks backwards through the instructions. We can use
4028 // both a G_BR and a G_BRCOND to create an OpBranchConditional. We hit G_BR
4029 // first, so can generate an OpBranchConditional here. If there is no
4030 // G_BRCOND, we just use OpBranch for a regular unconditional branch.
4031 const MachineInstr *PrevI = I.getPrevNode();
4032 MachineBasicBlock &MBB = *I.getParent();
4033 if (PrevI != nullptr && PrevI->getOpcode() == TargetOpcode::G_BRCOND) {
4034 return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranchConditional))
4035 .addUse(PrevI->getOperand(0).getReg())
4036 .addMBB(PrevI->getOperand(1).getMBB())
4037 .addMBB(I.getOperand(0).getMBB())
4038 .constrainAllUses(TII, TRI, RBI);
4039 }
4040 return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranch))
4041 .addMBB(I.getOperand(0).getMBB())
4042 .constrainAllUses(TII, TRI, RBI);
4043}
4044
4045bool SPIRVInstructionSelector::selectBranchCond(MachineInstr &I) const {
4046 // InstructionSelector walks backwards through the instructions. For an
4047 // explicit conditional branch with no fallthrough, we use both a G_BR and a
4048 // G_BRCOND to create an OpBranchConditional. We should hit G_BR first, and
4049 // generate the OpBranchConditional in selectBranch above.
4050 //
4051 // If an OpBranchConditional has been generated, we simply return, as the work
4052 // is alread done. If there is no OpBranchConditional, LLVM must be relying on
4053 // implicit fallthrough to the next basic block, so we need to create an
4054 // OpBranchConditional with an explicit "false" argument pointing to the next
4055 // basic block that LLVM would fall through to.
4056 const MachineInstr *NextI = I.getNextNode();
4057 // Check if this has already been successfully selected.
4058 if (NextI != nullptr && NextI->getOpcode() == SPIRV::OpBranchConditional)
4059 return true;
4060 // Must be relying on implicit block fallthrough, so generate an
4061 // OpBranchConditional with the "next" basic block as the "false" target.
4062 MachineBasicBlock &MBB = *I.getParent();
4063 unsigned NextMBBNum = MBB.getNextNode()->getNumber();
4064 MachineBasicBlock *NextMBB = I.getMF()->getBlockNumbered(NextMBBNum);
4065 return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranchConditional))
4066 .addUse(I.getOperand(0).getReg())
4067 .addMBB(I.getOperand(1).getMBB())
4068 .addMBB(NextMBB)
4069 .constrainAllUses(TII, TRI, RBI);
4070}
4071
4072bool SPIRVInstructionSelector::selectPhi(Register ResVReg,
4073 const SPIRVType *ResType,
4074 MachineInstr &I) const {
4075 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpPhi))
4076 .addDef(ResVReg)
4077 .addUse(GR.getSPIRVTypeID(ResType));
4078 const unsigned NumOps = I.getNumOperands();
4079 for (unsigned i = 1; i < NumOps; i += 2) {
4080 MIB.addUse(I.getOperand(i + 0).getReg());
4081 MIB.addMBB(I.getOperand(i + 1).getMBB());
4082 }
4083 bool Res = MIB.constrainAllUses(TII, TRI, RBI);
4084 MIB->setDesc(TII.get(TargetOpcode::PHI));
4085 MIB->removeOperand(1);
4086 return Res;
4087}
4088
4089bool SPIRVInstructionSelector::selectGlobalValue(
4090 Register ResVReg, MachineInstr &I, const MachineInstr *Init) const {
4091 // FIXME: don't use MachineIRBuilder here, replace it with BuildMI.
4092 MachineIRBuilder MIRBuilder(I);
4093 const GlobalValue *GV = I.getOperand(1).getGlobal();
4095
4096 std::string GlobalIdent;
4097 if (!GV->hasName()) {
4098 unsigned &ID = UnnamedGlobalIDs[GV];
4099 if (ID == 0)
4100 ID = UnnamedGlobalIDs.size();
4101 GlobalIdent = "__unnamed_" + Twine(ID).str();
4102 } else {
4103 GlobalIdent = GV->getName();
4104 }
4105
4106 // Behaviour of functions as operands depends on availability of the
4107 // corresponding extension (SPV_INTEL_function_pointers):
4108 // - If there is an extension to operate with functions as operands:
4109 // We create a proper constant operand and evaluate a correct type for a
4110 // function pointer.
4111 // - Without the required extension:
4112 // We have functions as operands in tests with blocks of instruction e.g. in
4113 // transcoding/global_block.ll. These operands are not used and should be
4114 // substituted by zero constants. Their type is expected to be always
4115 // OpTypePointer Function %uchar.
4116 if (isa<Function>(GV)) {
4117 const Constant *ConstVal = GV;
4118 MachineBasicBlock &BB = *I.getParent();
4119 Register NewReg = GR.find(ConstVal, GR.CurMF);
4120 if (!NewReg.isValid()) {
4121 Register NewReg = ResVReg;
4122 const Function *GVFun =
4123 STI.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers)
4124 ? dyn_cast<Function>(GV)
4125 : nullptr;
4127 GVType, I,
4128 GVFun ? SPIRV::StorageClass::CodeSectionINTEL
4130 if (GVFun) {
4131 // References to a function via function pointers generate virtual
4132 // registers without a definition. We will resolve it later, during
4133 // module analysis stage.
4134 Register ResTypeReg = GR.getSPIRVTypeID(ResType);
4135 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
4136 Register FuncVReg =
4137 MRI->createGenericVirtualRegister(GR.getRegType(ResType));
4138 MRI->setRegClass(FuncVReg, &SPIRV::pIDRegClass);
4139 MachineInstrBuilder MIB1 =
4140 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpUndef))
4141 .addDef(FuncVReg)
4142 .addUse(ResTypeReg);
4143 MachineInstrBuilder MIB2 =
4144 BuildMI(BB, I, I.getDebugLoc(),
4145 TII.get(SPIRV::OpConstantFunctionPointerINTEL))
4146 .addDef(NewReg)
4147 .addUse(ResTypeReg)
4148 .addUse(FuncVReg);
4149 GR.add(ConstVal, MIB2);
4150 // mapping the function pointer to the used Function
4151 GR.recordFunctionPointer(&MIB2.getInstr()->getOperand(2), GVFun);
4152 return MIB1.constrainAllUses(TII, TRI, RBI) &&
4153 MIB2.constrainAllUses(TII, TRI, RBI);
4154 }
4155 MachineInstrBuilder MIB3 =
4156 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull))
4157 .addDef(NewReg)
4158 .addUse(GR.getSPIRVTypeID(ResType));
4159 GR.add(ConstVal, MIB3);
4160 return MIB3.constrainAllUses(TII, TRI, RBI);
4161 }
4162 assert(NewReg != ResVReg);
4163 return BuildCOPY(ResVReg, NewReg, I);
4164 }
4166 assert(GlobalVar->getName() != "llvm.global.annotations");
4167
4168 // Skip empty declaration for GVs with initializers till we get the decl with
4169 // passed initializer.
4170 if (hasInitializer(GlobalVar) && !Init)
4171 return true;
4172
4173 bool HasLnkTy = !GV->hasInternalLinkage() && !GV->hasPrivateLinkage() &&
4174 !GV->hasHiddenVisibility();
4175 SPIRV::LinkageType::LinkageType LnkType =
4177 ? SPIRV::LinkageType::Import
4178 : (GV->hasLinkOnceODRLinkage() &&
4179 STI.canUseExtension(SPIRV::Extension::SPV_KHR_linkonce_odr)
4180 ? SPIRV::LinkageType::LinkOnceODR
4181 : SPIRV::LinkageType::Export);
4182
4183 const unsigned AddrSpace = GV->getAddressSpace();
4184 SPIRV::StorageClass::StorageClass StorageClass =
4185 addressSpaceToStorageClass(AddrSpace, STI);
4186 SPIRVType *ResType = GR.getOrCreateSPIRVPointerType(GVType, I, StorageClass);
4188 ResVReg, ResType, GlobalIdent, GV, StorageClass, Init,
4189 GlobalVar->isConstant(), HasLnkTy, LnkType, MIRBuilder, true);
4190 return Reg.isValid();
4191}
4192
4193bool SPIRVInstructionSelector::selectLog10(Register ResVReg,
4194 const SPIRVType *ResType,
4195 MachineInstr &I) const {
4196 if (STI.canUseExtInstSet(SPIRV::InstructionSet::OpenCL_std)) {
4197 return selectExtInst(ResVReg, ResType, I, CL::log10);
4198 }
4199
4200 // There is no log10 instruction in the GLSL Extended Instruction set, so it
4201 // is implemented as:
4202 // log10(x) = log2(x) * (1 / log2(10))
4203 // = log2(x) * 0.30103
4204
4205 MachineIRBuilder MIRBuilder(I);
4206 MachineBasicBlock &BB = *I.getParent();
4207
4208 // Build log2(x).
4209 Register VarReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
4210 bool Result =
4211 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
4212 .addDef(VarReg)
4213 .addUse(GR.getSPIRVTypeID(ResType))
4214 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
4215 .addImm(GL::Log2)
4216 .add(I.getOperand(1))
4217 .constrainAllUses(TII, TRI, RBI);
4218
4219 // Build 0.30103.
4220 assert(ResType->getOpcode() == SPIRV::OpTypeVector ||
4221 ResType->getOpcode() == SPIRV::OpTypeFloat);
4222 // TODO: Add matrix implementation once supported by the HLSL frontend.
4223 const SPIRVType *SpirvScalarType =
4224 ResType->getOpcode() == SPIRV::OpTypeVector
4225 ? GR.getSPIRVTypeForVReg(ResType->getOperand(1).getReg())
4226 : ResType;
4227 Register ScaleReg =
4228 GR.buildConstantFP(APFloat(0.30103f), MIRBuilder, SpirvScalarType);
4229
4230 // Multiply log2(x) by 0.30103 to get log10(x) result.
4231 auto Opcode = ResType->getOpcode() == SPIRV::OpTypeVector
4232 ? SPIRV::OpVectorTimesScalar
4233 : SPIRV::OpFMulS;
4234 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
4235 .addDef(ResVReg)
4236 .addUse(GR.getSPIRVTypeID(ResType))
4237 .addUse(VarReg)
4238 .addUse(ScaleReg)
4239 .constrainAllUses(TII, TRI, RBI);
4240}
4241
4242bool SPIRVInstructionSelector::selectModf(Register ResVReg,
4243 const SPIRVType *ResType,
4244 MachineInstr &I) const {
4245 // llvm.modf has a single arg --the number to be decomposed-- and returns a
4246 // struct { restype, restype }, while OpenCLLIB::modf has two args --the
4247 // number to be decomposed and a pointer--, returns the fractional part and
4248 // the integral part is stored in the pointer argument. Therefore, we can't
4249 // use directly the OpenCLLIB::modf intrinsic. However, we can do some
4250 // scaffolding to make it work. The idea is to create an alloca instruction
4251 // to get a ptr, pass this ptr to OpenCL::modf, and then load the value
4252 // from this ptr to place it in the struct. llvm.modf returns the fractional
4253 // part as the first element of the result, and the integral part as the
4254 // second element of the result.
4255
4256 // At this point, the return type is not a struct anymore, but rather two
4257 // independent elements of SPIRVResType. We can get each independent element
4258 // from I.getDefs() or I.getOperands().
4259 if (STI.canUseExtInstSet(SPIRV::InstructionSet::OpenCL_std)) {
4260 MachineIRBuilder MIRBuilder(I);
4261 // Get pointer type for alloca variable.
4262 const SPIRVType *PtrType = GR.getOrCreateSPIRVPointerType(
4263 ResType, MIRBuilder, SPIRV::StorageClass::Function);
4264 // Create new register for the pointer type of alloca variable.
4265 Register PtrTyReg =
4266 MIRBuilder.getMRI()->createVirtualRegister(&SPIRV::iIDRegClass);
4267 MIRBuilder.getMRI()->setType(
4268 PtrTyReg,
4269 LLT::pointer(storageClassToAddressSpace(SPIRV::StorageClass::Function),
4270 GR.getPointerSize()));
4271 // Assign SPIR-V type of the pointer type of the alloca variable to the
4272 // new register.
4273 GR.assignSPIRVTypeToVReg(PtrType, PtrTyReg, MIRBuilder.getMF());
4274 MachineBasicBlock &EntryBB = I.getMF()->front();
4277 auto AllocaMIB =
4278 BuildMI(EntryBB, VarPos, I.getDebugLoc(), TII.get(SPIRV::OpVariable))
4279 .addDef(PtrTyReg)
4280 .addUse(GR.getSPIRVTypeID(PtrType))
4281 .addImm(static_cast<uint32_t>(SPIRV::StorageClass::Function));
4282 Register Variable = AllocaMIB->getOperand(0).getReg();
4283 // Modf must have 4 operands, the first two are the 2 parts of the result,
4284 // the third is the operand, and the last one is the floating point value.
4285 assert(I.getNumOperands() == 4 &&
4286 "Expected 4 operands for modf instruction");
4287 MachineBasicBlock &BB = *I.getParent();
4288 // Create the OpenCLLIB::modf instruction.
4289 auto MIB =
4290 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
4291 .addDef(ResVReg)
4292 .addUse(GR.getSPIRVTypeID(ResType))
4293 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::OpenCL_std))
4294 .addImm(CL::modf)
4295 .setMIFlags(I.getFlags())
4296 .add(I.getOperand(3)) // Floating point value.
4297 .addUse(Variable); // Pointer to integral part.
4298 // Assign the integral part stored in the ptr to the second element of the
4299 // result.
4300 Register IntegralPartReg = I.getOperand(1).getReg();
4301 if (IntegralPartReg.isValid()) {
4302 // Load the value from the pointer to integral part.
4303 auto LoadMIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
4304 .addDef(IntegralPartReg)
4305 .addUse(GR.getSPIRVTypeID(ResType))
4306 .addUse(Variable);
4307 return LoadMIB.constrainAllUses(TII, TRI, RBI);
4308 }
4309
4310 return MIB.constrainAllUses(TII, TRI, RBI);
4311 } else if (STI.canUseExtInstSet(SPIRV::InstructionSet::GLSL_std_450)) {
4312 assert(false && "GLSL::Modf is deprecated.");
4313 // FIXME: GL::Modf is deprecated, use Modfstruct instead.
4314 return false;
4315 }
4316 return false;
4317}
4318
4319// Generate the instructions to load 3-element vector builtin input
4320// IDs/Indices.
4321// Like: GlobalInvocationId, LocalInvocationId, etc....
4322
4323bool SPIRVInstructionSelector::loadVec3BuiltinInputID(
4324 SPIRV::BuiltIn::BuiltIn BuiltInValue, Register ResVReg,
4325 const SPIRVType *ResType, MachineInstr &I) const {
4326 MachineIRBuilder MIRBuilder(I);
4327 const SPIRVType *Vec3Ty =
4328 GR.getOrCreateSPIRVVectorType(ResType, 3, MIRBuilder, false);
4329 const SPIRVType *PtrType = GR.getOrCreateSPIRVPointerType(
4330 Vec3Ty, MIRBuilder, SPIRV::StorageClass::Input);
4331
4332 // Create new register for the input ID builtin variable.
4333 Register NewRegister =
4334 MIRBuilder.getMRI()->createVirtualRegister(&SPIRV::iIDRegClass);
4335 MIRBuilder.getMRI()->setType(NewRegister, LLT::pointer(0, 64));
4336 GR.assignSPIRVTypeToVReg(PtrType, NewRegister, MIRBuilder.getMF());
4337
4338 // Build global variable with the necessary decorations for the input ID
4339 // builtin variable.
4341 NewRegister, PtrType, getLinkStringForBuiltIn(BuiltInValue), nullptr,
4342 SPIRV::StorageClass::Input, nullptr, true, false,
4343 SPIRV::LinkageType::Import, MIRBuilder, false);
4344
4345 // Create new register for loading value.
4346 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
4347 Register LoadedRegister = MRI->createVirtualRegister(&SPIRV::iIDRegClass);
4348 MIRBuilder.getMRI()->setType(LoadedRegister, LLT::pointer(0, 64));
4349 GR.assignSPIRVTypeToVReg(Vec3Ty, LoadedRegister, MIRBuilder.getMF());
4350
4351 // Load v3uint value from the global variable.
4352 bool Result =
4353 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
4354 .addDef(LoadedRegister)
4355 .addUse(GR.getSPIRVTypeID(Vec3Ty))
4356 .addUse(Variable);
4357
4358 // Get the input ID index. Expecting operand is a constant immediate value,
4359 // wrapped in a type assignment.
4360 assert(I.getOperand(2).isReg());
4361 const uint32_t ThreadId = foldImm(I.getOperand(2), MRI);
4362
4363 // Extract the input ID from the loaded vector value.
4364 MachineBasicBlock &BB = *I.getParent();
4365 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
4366 .addDef(ResVReg)
4367 .addUse(GR.getSPIRVTypeID(ResType))
4368 .addUse(LoadedRegister)
4369 .addImm(ThreadId);
4370 return Result && MIB.constrainAllUses(TII, TRI, RBI);
4371}
4372
4373// Generate the instructions to load 32-bit integer builtin input IDs/Indices.
4374// Like LocalInvocationIndex
4375bool SPIRVInstructionSelector::loadBuiltinInputID(
4376 SPIRV::BuiltIn::BuiltIn BuiltInValue, Register ResVReg,
4377 const SPIRVType *ResType, MachineInstr &I) const {
4378 MachineIRBuilder MIRBuilder(I);
4379 const SPIRVType *PtrType = GR.getOrCreateSPIRVPointerType(
4380 ResType, MIRBuilder, SPIRV::StorageClass::Input);
4381
4382 // Create new register for the input ID builtin variable.
4383 Register NewRegister =
4384 MIRBuilder.getMRI()->createVirtualRegister(GR.getRegClass(PtrType));
4385 MIRBuilder.getMRI()->setType(
4386 NewRegister,
4387 LLT::pointer(storageClassToAddressSpace(SPIRV::StorageClass::Input),
4388 GR.getPointerSize()));
4389 GR.assignSPIRVTypeToVReg(PtrType, NewRegister, MIRBuilder.getMF());
4390
4391 // Build global variable with the necessary decorations for the input ID
4392 // builtin variable.
4394 NewRegister, PtrType, getLinkStringForBuiltIn(BuiltInValue), nullptr,
4395 SPIRV::StorageClass::Input, nullptr, true, false,
4396 SPIRV::LinkageType::Import, MIRBuilder, false);
4397
4398 // Load uint value from the global variable.
4399 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
4400 .addDef(ResVReg)
4401 .addUse(GR.getSPIRVTypeID(ResType))
4402 .addUse(Variable);
4403
4404 return MIB.constrainAllUses(TII, TRI, RBI);
4405}
4406
4407SPIRVType *SPIRVInstructionSelector::widenTypeToVec4(const SPIRVType *Type,
4408 MachineInstr &I) const {
4409 MachineIRBuilder MIRBuilder(I);
4410 if (Type->getOpcode() != SPIRV::OpTypeVector)
4411 return GR.getOrCreateSPIRVVectorType(Type, 4, MIRBuilder, false);
4412
4413 uint64_t VectorSize = Type->getOperand(2).getImm();
4414 if (VectorSize == 4)
4415 return Type;
4416
4417 Register ScalarTypeReg = Type->getOperand(1).getReg();
4418 const SPIRVType *ScalarType = GR.getSPIRVTypeForVReg(ScalarTypeReg);
4419 return GR.getOrCreateSPIRVVectorType(ScalarType, 4, MIRBuilder, false);
4420}
4421
4422bool SPIRVInstructionSelector::loadHandleBeforePosition(
4423 Register &HandleReg, const SPIRVType *ResType, GIntrinsic &HandleDef,
4424 MachineInstr &Pos) const {
4425
4426 assert(HandleDef.getIntrinsicID() ==
4427 Intrinsic::spv_resource_handlefrombinding);
4428 uint32_t Set = foldImm(HandleDef.getOperand(2), MRI);
4429 uint32_t Binding = foldImm(HandleDef.getOperand(3), MRI);
4430 uint32_t ArraySize = foldImm(HandleDef.getOperand(4), MRI);
4431 Register IndexReg = HandleDef.getOperand(5).getReg();
4432 // FIXME: The IsNonUniform flag needs to be set based on resource analysis.
4433 // https://github.com/llvm/llvm-project/issues/155701
4434 bool IsNonUniform = false;
4435 std::string Name =
4436 getStringValueFromReg(HandleDef.getOperand(6).getReg(), *MRI);
4437
4438 bool IsStructuredBuffer = ResType->getOpcode() == SPIRV::OpTypePointer;
4439 MachineIRBuilder MIRBuilder(HandleDef);
4440 SPIRVType *VarType = ResType;
4441 SPIRV::StorageClass::StorageClass SC = SPIRV::StorageClass::UniformConstant;
4442
4443 if (IsStructuredBuffer) {
4444 VarType = GR.getPointeeType(ResType);
4445 SC = GR.getPointerStorageClass(ResType);
4446 }
4447
4448 Register VarReg =
4449 buildPointerToResource(VarType, SC, Set, Binding, ArraySize, IndexReg,
4450 IsNonUniform, Name, MIRBuilder);
4451
4452 if (IsNonUniform)
4453 buildOpDecorate(HandleReg, HandleDef, TII, SPIRV::Decoration::NonUniformEXT,
4454 {});
4455
4456 // The handle for the buffer is the pointer to the resource. For an image, the
4457 // handle is the image object. So images get an extra load.
4458 uint32_t LoadOpcode =
4459 IsStructuredBuffer ? SPIRV::OpCopyObject : SPIRV::OpLoad;
4460 GR.assignSPIRVTypeToVReg(ResType, HandleReg, *Pos.getMF());
4461 return BuildMI(*Pos.getParent(), Pos, HandleDef.getDebugLoc(),
4462 TII.get(LoadOpcode))
4463 .addDef(HandleReg)
4464 .addUse(GR.getSPIRVTypeID(ResType))
4465 .addUse(VarReg)
4466 .constrainAllUses(TII, TRI, RBI);
4467}
4468
4469namespace llvm {
4470InstructionSelector *
4472 const SPIRVSubtarget &Subtarget,
4473 const RegisterBankInfo &RBI) {
4474 return new SPIRVInstructionSelector(TM, Subtarget, RBI);
4475}
4476} // namespace llvm
unsigned const MachineRegisterInfo * MRI
#define GET_GLOBALISEL_PREDICATES_INIT
#define GET_GLOBALISEL_TEMPORARIES_INIT
@ Generic
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file declares a class to represent arbitrary precision floating point values and provide a varie...
static bool selectUnmergeValues(MachineInstrBuilder &MIB, const ARMBaseInstrInfo &TII, MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI)
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
basic Basic Alias true
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
DXIL Resource Implicit Binding
#define DEBUG_TYPE
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
#define I(x, y, z)
Definition MD5.cpp:58
Register Reg
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
static StringRef getName(Value *V)
static unsigned getFCmpOpcode(CmpInst::Predicate Pred, unsigned Size)
static APFloat getOneFP(const Type *LLVMFloatTy)
static bool isUSMStorageClass(SPIRV::StorageClass::StorageClass SC)
static bool isASCastInGVar(MachineRegisterInfo *MRI, Register ResVReg)
static bool mayApplyGenericSelection(unsigned Opcode)
static APFloat getZeroFP(const Type *LLVMFloatTy)
std::vector< std::pair< SPIRV::InstructionSet::InstructionSet, uint32_t > > ExtInstList
static unsigned getBoolCmpOpcode(unsigned PredNum)
static unsigned getICmpOpcode(unsigned PredNum)
static void addMemoryOperands(MachineMemOperand *MemOp, MachineInstrBuilder &MIB, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry &GR)
static bool isConstReg(MachineRegisterInfo *MRI, MachineInstr *OpDef, SmallPtrSet< SPIRVType *, 4 > &Visited)
static unsigned getPtrCmpOpcode(unsigned Pred)
bool isDead(const MachineInstr &MI, const MachineRegisterInfo &MRI)
spirv structurize SPIRV
BaseType
A given derived pointer can have multiple base pointers through phi/selects.
This file contains some functions that are useful when dealing with strings.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
BinaryOperator * Mul
static APFloat getOne(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative One.
Definition APFloat.h:1088
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Definition APFloat.h:1079
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:234
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1540
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:678
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
Definition InstrTypes.h:681
@ ICMP_SLT
signed less than
Definition InstrTypes.h:707
@ ICMP_SLE
signed less or equal
Definition InstrTypes.h:708
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition InstrTypes.h:684
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
Definition InstrTypes.h:693
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition InstrTypes.h:682
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
Definition InstrTypes.h:683
@ ICMP_UGE
unsigned greater or equal
Definition InstrTypes.h:702
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:701
@ ICMP_SGT
signed greater than
Definition InstrTypes.h:705
@ FCMP_ULT
1 1 0 0 True if unordered or less than
Definition InstrTypes.h:692
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
Definition InstrTypes.h:686
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
Definition InstrTypes.h:689
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:703
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
Definition InstrTypes.h:690
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
Definition InstrTypes.h:685
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
Definition InstrTypes.h:687
@ ICMP_NE
not equal
Definition InstrTypes.h:700
@ ICMP_SGE
signed greater or equal
Definition InstrTypes.h:706
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
Definition InstrTypes.h:694
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:704
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
Definition InstrTypes.h:691
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition InstrTypes.h:688
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A debug info location.
Definition DebugLoc.h:124
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Definition Function.cpp:359
Represents a call to an intrinsic.
Intrinsic::ID getIntrinsicID() const
bool hasPrivateLinkage() const
bool hasHiddenVisibility() const
bool isDeclarationForLinker() const
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
bool hasInternalLinkage() const
bool hasLinkOnceODRLinkage() const
@ InternalLinkage
Rename collisions when linking (static functions).
Definition GlobalValue.h:60
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:319
constexpr bool isScalar() const
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
constexpr bool isVector() const
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
constexpr bool isPointer() const
static constexpr LLT fixed_vector(unsigned NumElements, unsigned ScalarSizeInBits)
Get a low-level fixed-width vector of some number of elements and element width.
int getNumber() const
MachineBasicBlocks are uniquely numbered at the function level, unless they're not in a MachineFuncti...
LLVM_ABI iterator getFirstNonPHI()
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
MachineInstrBundleIterator< MachineInstr > iterator
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Helper class to build MachineInstr.
MachineInstrBuilder buildInstr(unsigned Opcode)
Build and insert <empty> = Opcode <empty>.
MachineFunction & getMF()
Getter for the function we currently build.
MachineRegisterInfo * getMRI()
Getter for MRI.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
bool constrainAllUses(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI) const
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
const MachineInstrBuilder & addUse(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register use operand.
const MachineInstrBuilder & setMIFlags(unsigned Flags) const
MachineInstr * getInstr() const
If conversion operators fail, use this method to get the MachineInstr explicitly.
const MachineInstrBuilder & addDef(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register definition operand.
Representation of each machine instruction.
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
const MachineBasicBlock * getParent() const
LLVM_ABI void setDesc(const MCInstrDesc &TID)
Replace the instruction descriptor (thus opcode) of the current instruction with a new one.
LLVM_ABI unsigned getNumExplicitDefs() const
Returns the number of non-implicit definitions.
LLVM_ABI const MachineFunction * getMF() const
Return the function that contains the basic block that this instruction belongs to.
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
LLVM_ABI void removeOperand(unsigned OpNo)
Erase an operand from an instruction, leaving it with one fewer operand than it started with.
const MachineOperand & getOperand(unsigned i) const
A description of a memory reference used in the backend.
@ MOVolatile
The memory access is volatile.
@ MONonTemporal
The memory access is non-temporal.
int64_t getImm() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineBasicBlock * getMBB() const
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
defusechain_instr_iterator< true, false, false, true > use_instr_iterator
use_instr_iterator/use_instr_begin/use_instr_end - Walk all uses of the specified register,...
defusechain_instr_iterator< false, true, false, true > def_instr_iterator
def_instr_iterator/def_instr_begin/def_instr_end - Walk all defs of the specified register,...
LLVM_ABI Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
LLVM_ABI void setType(Register VReg, LLT Ty)
Set the low-level type of VReg to Ty.
Analysis providing profile information.
Holds all the information related to register banks.
Wrapper class representing virtual and physical registers.
Definition Register.h:19
constexpr bool isValid() const
Definition Register.h:107
SPIRVType * getSPIRVTypeForVReg(Register VReg, const MachineFunction *MF=nullptr) const
Register getOrCreateConstInt(uint64_t Val, MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII, bool ZeroAsNull=true)
SPIRVType * getResultType(Register VReg, MachineFunction *MF=nullptr)
SPIRVType * getOrCreateSPIRVBoolType(MachineIRBuilder &MIRBuilder, bool EmitIR)
MachineInstr * getOrAddMemAliasingINTELInst(MachineIRBuilder &MIRBuilder, const MDNode *AliasingListMD)
void assignSPIRVTypeToVReg(SPIRVType *Type, Register VReg, const MachineFunction &MF)
Register getOrCreateUndef(MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII)
SPIRVType * changePointerStorageClass(SPIRVType *PtrType, SPIRV::StorageClass::StorageClass SC, MachineInstr &I)
const Type * getTypeForSPIRVType(const SPIRVType *Ty) const
bool isBitcastCompatible(const SPIRVType *Type1, const SPIRVType *Type2) const
unsigned getScalarOrVectorComponentCount(Register VReg) const
bool isScalarOrVectorSigned(const SPIRVType *Type) const
Register getOrCreateGlobalVariableWithBinding(const SPIRVType *VarType, uint32_t Set, uint32_t Binding, StringRef Name, MachineIRBuilder &MIRBuilder)
SPIRVType * getOrCreateSPIRVType(const Type *Type, MachineInstr &I, SPIRV::AccessQualifier::AccessQualifier AQ, bool EmitIR)
SPIRVType * getOrCreateSPIRVPointerType(const Type *BaseType, MachineIRBuilder &MIRBuilder, SPIRV::StorageClass::StorageClass SC)
Register buildConstantFP(APFloat Val, MachineIRBuilder &MIRBuilder, SPIRVType *SpvType=nullptr)
SPIRVType * getPointeeType(SPIRVType *PtrType)
void invalidateMachineInstr(MachineInstr *MI)
Register getSPIRVTypeID(const SPIRVType *SpirvType) const
bool isScalarOfType(Register VReg, unsigned TypeOpcode) const
Register buildGlobalVariable(Register Reg, SPIRVType *BaseType, StringRef Name, const GlobalValue *GV, SPIRV::StorageClass::StorageClass Storage, const MachineInstr *Init, bool IsConst, bool HasLinkageTy, SPIRV::LinkageType::LinkageType LinkageType, MachineIRBuilder &MIRBuilder, bool IsInstSelector)
bool findValueAttrs(const MachineInstr *Key, Type *&Ty, StringRef &Name)
void addGlobalObject(const Value *V, const MachineFunction *MF, Register R)
SPIRVType * getScalarOrVectorComponentType(Register VReg) const
void recordFunctionPointer(const MachineOperand *MO, const Function *F)
bool isAggregateType(SPIRVType *Type) const
const TargetRegisterClass * getRegClass(SPIRVType *SpvType) const
SPIRVType * getOrCreateSPIRVVectorType(SPIRVType *BaseType, unsigned NumElements, MachineIRBuilder &MIRBuilder, bool EmitIR)
bool isScalarOrVectorOfType(Register VReg, unsigned TypeOpcode) const
Register getOrCreateConstIntArray(uint64_t Val, size_t Num, MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII)
MachineFunction * setCurrentFunc(MachineFunction &MF)
Register getOrCreateConstVector(uint64_t Val, MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII, bool ZeroAsNull=true)
SPIRVType * getOrCreateSPIRVIntegerType(unsigned BitWidth, MachineIRBuilder &MIRBuilder)
Type * getDeducedGlobalValueType(const GlobalValue *Global)
LLT getRegType(SPIRVType *SpvType) const
SPIRV::StorageClass::StorageClass getPointerStorageClass(Register VReg) const
Register getOrCreateConstFP(APFloat Val, MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII, bool ZeroAsNull=true)
Register getOrCreateConstNullPtr(MachineIRBuilder &MIRBuilder, SPIRVType *SpvType)
unsigned getScalarOrVectorBitWidth(const SPIRVType *Type) const
const SPIRVType * retrieveScalarOrVectorIntType(const SPIRVType *Type) const
bool erase(const MachineInstr *MI)
bool add(SPIRV::IRHandle Handle, const MachineInstr *MI)
Register find(SPIRV::IRHandle Handle, const MachineFunction *MF)
bool isPhysicalSPIRV() const
bool isAtLeastSPIRVVer(VersionTuple VerToCompareTo) const
bool canUseExtInstSet(SPIRV::InstructionSet::InstructionSet E) const
bool isLogicalSPIRV() const
bool canUseExtension(SPIRV::Extension::Extension E) const
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:146
static LLVM_ABI StructType * get(LLVMContext &Context, ArrayRef< Type * > Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
Definition Type.cpp:414
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
@ HalfTyID
16-bit floating point type
Definition Type.h:56
@ FloatTyID
32-bit floating point type
Definition Type.h:58
@ DoubleTyID
64-bit floating point type
Definition Type.h:59
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
bool isStructTy() const
True if this is an instance of StructType.
Definition Type.h:261
TypeID getTypeID() const
Return the type id for the type.
Definition Type.h:136
Value * getOperand(unsigned i) const
Definition User.h:232
bool hasName() const
Definition Value.h:262
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition ilist_node.h:348
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char IsConst[]
Key for Kernel::Arg::Metadata::mIsConst.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
NodeAddr< DefNode * > Def
Definition RDFGraph.h:384
NodeAddr< InstrNode * > Instr
Definition RDFGraph.h:389
This is an optimization pass for GlobalISel generic memory operations.
void buildOpName(Register Target, const StringRef &Name, MachineIRBuilder &MIRBuilder)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1705
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
bool isTypeFoldingSupported(unsigned Opcode)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:644
void addNumImm(const APInt &Imm, MachineInstrBuilder &MIB)
LLVM_ABI void salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI)
Assuming the instruction MI is going to be deleted, attempt to salvage debug users of MI by writing t...
Definition Utils.cpp:1725
LLVM_ABI bool constrainSelectedInstRegOperands(MachineInstr &I, const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI)
Mutate the newly-selected instruction I to constrain its (possibly generic) virtual register operands...
Definition Utils.cpp:155
bool isPreISelGenericOpcode(unsigned Opcode)
Check whether the given Opcode is a generic opcode that is not supposed to appear after ISel.
unsigned getArrayComponentCount(const MachineRegisterInfo *MRI, const MachineInstr *ResType)
uint64_t getIConstVal(Register ConstReg, const MachineRegisterInfo *MRI)
SmallVector< MachineInstr *, 4 > createContinuedInstructions(MachineIRBuilder &MIRBuilder, unsigned Opcode, unsigned MinWC, unsigned ContinuedOpcode, ArrayRef< Register > Args, Register ReturnRegister, Register TypeID)
SPIRV::MemorySemantics::MemorySemantics getMemSemanticsForStorageClass(SPIRV::StorageClass::StorageClass SC)
constexpr unsigned storageClassToAddressSpace(SPIRV::StorageClass::StorageClass SC)
Definition SPIRVUtils.h:239
MachineBasicBlock::iterator getFirstValidInstructionInsertPoint(MachineBasicBlock &BB)
void buildOpDecorate(Register Reg, MachineIRBuilder &MIRBuilder, SPIRV::Decoration::Decoration Dec, const std::vector< uint32_t > &DecArgs, StringRef StrImm)
MachineBasicBlock::iterator getOpVariableMBBIt(MachineInstr &I)
Register createVirtualRegister(SPIRVType *SpvType, SPIRVGlobalRegistry *GR, MachineRegisterInfo *MRI, const MachineFunction &MF)
MachineInstr * getImm(const MachineOperand &MO, const MachineRegisterInfo *MRI)
Type * toTypedPointer(Type *Ty)
Definition SPIRVUtils.h:433
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
const MachineInstr SPIRVType
constexpr bool isGenericCastablePtr(SPIRV::StorageClass::StorageClass SC)
Definition SPIRVUtils.h:224
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
MachineInstr * passCopy(MachineInstr *Def, const MachineRegisterInfo *MRI)
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
SPIRV::StorageClass::StorageClass addressSpaceToStorageClass(unsigned AddrSpace, const SPIRVSubtarget &STI)
AtomicOrdering
Atomic ordering for LLVM's memory model.
SPIRV::Scope::Scope getMemScope(LLVMContext &Ctx, SyncScope::ID Id)
InstructionSelector * createSPIRVInstructionSelector(const SPIRVTargetMachine &TM, const SPIRVSubtarget &Subtarget, const RegisterBankInfo &RBI)
std::string getStringValueFromReg(Register Reg, MachineRegisterInfo &MRI)
int64_t foldImm(const MachineOperand &MO, const MachineRegisterInfo *MRI)
DWARFExpression::Operation Op
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:560
bool hasInitializer(const GlobalVariable *GV)
Definition SPIRVUtils.h:321
MachineInstr * getVRegDef(MachineRegisterInfo &MRI, Register Reg)
SPIRV::MemorySemantics::MemorySemantics getMemSemantics(AtomicOrdering Ord)
std::string getLinkStringForBuiltIn(SPIRV::BuiltIn::BuiltIn BuiltInValue)
LLVM_ABI bool isTriviallyDead(const MachineInstr &MI, const MachineRegisterInfo &MRI)
Check whether an instruction MI is dead: it only defines dead virtual registers, and doesn't have oth...
Definition Utils.cpp:222
#define N
static LLVM_ABI const fltSemantics & IEEEsingle() LLVM_READNONE
Definition APFloat.cpp:266
static LLVM_ABI const fltSemantics & IEEEdouble() LLVM_READNONE
Definition APFloat.cpp:267
static LLVM_ABI const fltSemantics & IEEEhalf() LLVM_READNONE
Definition APFloat.cpp:264