Thanks to visit codestin.com
Credit goes to llvm.org

LLVM 22.0.0git
VPlan.cpp
Go to the documentation of this file.
1//===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This is the LLVM vectorization plan. It represents a candidate for
11/// vectorization, allowing to plan and optimize how to vectorize a given loop
12/// before generating LLVM-IR.
13/// The vectorizer uses vectorization plans to estimate the costs of potential
14/// candidates and if profitable to execute the desired plan, generating vector
15/// LLVM-IR code.
16///
17//===----------------------------------------------------------------------===//
18
19#include "VPlan.h"
21#include "VPlanCFG.h"
22#include "VPlanDominatorTree.h"
23#include "VPlanHelpers.h"
24#include "VPlanPatternMatch.h"
25#include "VPlanTransforms.h"
26#include "VPlanUtils.h"
28#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/Twine.h"
34#include "llvm/IR/BasicBlock.h"
35#include "llvm/IR/CFG.h"
36#include "llvm/IR/IRBuilder.h"
37#include "llvm/IR/Instruction.h"
39#include "llvm/IR/Type.h"
40#include "llvm/IR/Value.h"
43#include "llvm/Support/Debug.h"
49#include <cassert>
50#include <string>
51
52using namespace llvm;
53using namespace llvm::VPlanPatternMatch;
54
55namespace llvm {
57}
58
59/// @{
60/// Metadata attribute names
61const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
63 "llvm.loop.vectorize.followup_vectorized";
65 "llvm.loop.vectorize.followup_epilogue";
66/// @}
67
69
71 "vplan-print-in-dot-format", cl::Hidden,
72 cl::desc("Use dot format instead of plain text when dumping VPlans"));
73
74#define DEBUG_TYPE "loop-vectorize"
75
76#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
78 const VPBasicBlock *Parent = R.getParent();
79 VPSlotTracker SlotTracker(Parent ? Parent->getPlan() : nullptr);
80 R.print(OS, "", SlotTracker);
81 return OS;
82}
83#endif
84
86 const ElementCount &VF) const {
87 switch (LaneKind) {
89 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
90 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
91 Builder.getInt32(VF.getKnownMinValue() - Lane));
93 return Builder.getInt32(Lane);
94 }
95 llvm_unreachable("Unknown lane kind");
96}
97
98VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
99 : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
100 if (Def)
101 Def->addDefinedValue(this);
102}
103
105 assert(Users.empty() && "trying to delete a VPValue with remaining users");
106 if (Def)
107 Def->removeDefinedValue(this);
108}
109
110#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
113 R->print(OS, "", SlotTracker);
114 else
116}
117
118void VPValue::dump() const {
119 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
121 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
123 dbgs() << "\n";
124}
125
126void VPDef::dump() const {
127 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
129 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
130 print(dbgs(), "", SlotTracker);
131 dbgs() << "\n";
132}
133#endif
134
138
142
143// Get the top-most entry block of \p Start. This is the entry block of the
144// containing VPlan. This function is templated to support both const and non-const blocks
145template <typename T> static T *getPlanEntry(T *Start) {
146 T *Next = Start;
147 T *Current = Start;
148 while ((Next = Next->getParent()))
149 Current = Next;
150
151 SmallSetVector<T *, 8> WorkList;
152 WorkList.insert(Current);
153
154 for (unsigned i = 0; i < WorkList.size(); i++) {
155 T *Current = WorkList[i];
156 if (!Current->hasPredecessors())
157 return Current;
158 auto &Predecessors = Current->getPredecessors();
159 WorkList.insert_range(Predecessors);
160 }
161
162 llvm_unreachable("VPlan without any entry node without predecessors");
163}
164
165VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
166
167const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
168
169/// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
176
183
184void VPBlockBase::setPlan(VPlan *ParentPlan) {
185 assert(ParentPlan->getEntry() == this && "Can only set plan on its entry.");
186 Plan = ParentPlan;
187}
188
189/// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
191 const VPBlockBase *Block = this;
193 Block = Region->getExiting();
195}
196
203
205 if (!Successors.empty() || !Parent)
206 return this;
207 assert(Parent->getExiting() == this &&
208 "Block w/o successors not the exiting block of its parent.");
209 return Parent->getEnclosingBlockWithSuccessors();
210}
211
213 if (!Predecessors.empty() || !Parent)
214 return this;
215 assert(Parent->getEntry() == this &&
216 "Block w/o predecessors not the entry of its parent.");
217 return Parent->getEnclosingBlockWithPredecessors();
218}
219
221 const VPDominatorTree &VPDT) {
222 auto *VPBB = dyn_cast<VPBasicBlock>(VPB);
223 if (!VPBB)
224 return false;
225
226 // If VPBB is in a region R, VPBB is a loop header if R is a loop region with
227 // VPBB as its entry, i.e., free of predecessors.
228 if (auto *R = VPBB->getParent())
229 return !R->isReplicator() && !VPBB->hasPredecessors();
230
231 // A header dominates its second predecessor (the latch), with the other
232 // predecessor being the preheader
233 return VPB->getPredecessors().size() == 2 &&
234 VPDT.dominates(VPB, VPB->getPredecessors()[1]);
235}
236
238 const VPDominatorTree &VPDT) {
239 // A latch has a header as its second successor, with its other successor
240 // leaving the loop. A preheader OTOH has a header as its first (and only)
241 // successor.
242 return VPB->getNumSuccessors() == 2 &&
243 VPBlockUtils::isHeader(VPB->getSuccessors()[1], VPDT);
244}
245
247 iterator It = begin();
248 while (It != end() && It->isPhi())
249 It++;
250 return It;
251}
252
260
262 if (Def->isLiveIn())
263 return Def->getLiveInIRValue();
264
265 if (hasScalarValue(Def, Lane))
266 return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)];
267
268 if (!Lane.isFirstLane() && vputils::isSingleScalar(Def) &&
270 return Data.VPV2Scalars[Def][0];
271 }
272
273 // Look through BuildVector to avoid redundant extracts.
274 // TODO: Remove once replicate regions are unrolled explicitly.
275 if (Lane.getKind() == VPLane::Kind::First && match(Def, m_BuildVector())) {
276 auto *BuildVector = cast<VPInstruction>(Def);
277 return get(BuildVector->getOperand(Lane.getKnownLane()), true);
278 }
279
281 auto *VecPart = Data.VPV2Vector[Def];
282 if (!VecPart->getType()->isVectorTy()) {
283 assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar");
284 return VecPart;
285 }
286 // TODO: Cache created scalar values.
287 Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF);
288 auto *Extract = Builder.CreateExtractElement(VecPart, LaneV);
289 // set(Def, Extract, Instance);
290 return Extract;
291}
292
293Value *VPTransformState::get(const VPValue *Def, bool NeedsScalar) {
294 if (NeedsScalar) {
295 assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) ||
297 (hasScalarValue(Def, VPLane(0)) &&
298 Data.VPV2Scalars[Def].size() == 1)) &&
299 "Trying to access a single scalar per part but has multiple scalars "
300 "per part.");
301 return get(Def, VPLane(0));
302 }
303
304 // If Values have been set for this Def return the one relevant for \p Part.
305 if (hasVectorValue(Def))
306 return Data.VPV2Vector[Def];
307
308 auto GetBroadcastInstrs = [this](Value *V) {
309 if (VF.isScalar())
310 return V;
311 // Broadcast the scalar into all locations in the vector.
312 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
313 return Shuf;
314 };
315
316 if (!hasScalarValue(Def, {0})) {
317 assert(Def->isLiveIn() && "expected a live-in");
318 Value *IRV = Def->getLiveInIRValue();
319 Value *B = GetBroadcastInstrs(IRV);
320 set(Def, B);
321 return B;
322 }
323
324 Value *ScalarValue = get(Def, VPLane(0));
325 // If we aren't vectorizing, we can just copy the scalar map values over
326 // to the vector map.
327 if (VF.isScalar()) {
328 set(Def, ScalarValue);
329 return ScalarValue;
330 }
331
332 bool IsSingleScalar = vputils::isSingleScalar(Def);
333
334 VPLane LastLane(IsSingleScalar ? 0 : VF.getFixedValue() - 1);
335 // Check if there is a scalar value for the selected lane.
336 if (!hasScalarValue(Def, LastLane)) {
337 // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
338 // VPExpandSCEVRecipes can also be a single scalar.
340 VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
341 "unexpected recipe found to be invariant");
342 IsSingleScalar = true;
343 LastLane = 0;
344 }
345
346 // We need to construct the vector value for a single-scalar value by
347 // broadcasting the scalar to all lanes.
348 // TODO: Replace by introducing Broadcast VPInstructions.
349 assert(IsSingleScalar && "must be a single-scalar at this point");
350 // Set the insert point after the last scalarized instruction or after the
351 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
352 // will directly follow the scalar definitions.
353 auto OldIP = Builder.saveIP();
354 auto *LastInst = cast<Instruction>(get(Def, LastLane));
355 auto NewIP = isa<PHINode>(LastInst)
356 ? LastInst->getParent()->getFirstNonPHIIt()
357 : std::next(BasicBlock::iterator(LastInst));
358 Builder.SetInsertPoint(&*NewIP);
359 Value *VectorValue = GetBroadcastInstrs(ScalarValue);
360 set(Def, VectorValue);
361 Builder.restoreIP(OldIP);
362 return VectorValue;
363}
364
366 const DILocation *DIL = DL;
367 // When a FSDiscriminator is enabled, we don't need to add the multiply
368 // factors to the discriminators.
369 if (DIL &&
370 Builder.GetInsertBlock()
371 ->getParent()
372 ->shouldEmitDebugInfoForProfiling() &&
374 // FIXME: For scalable vectors, assume vscale=1.
375 unsigned UF = Plan->getUF();
376 auto NewDIL =
378 if (NewDIL)
379 Builder.SetCurrentDebugLocation(*NewDIL);
380 else
381 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
382 << DIL->getFilename() << " Line: " << DIL->getLine());
383 } else
384 Builder.SetCurrentDebugLocation(DL);
385}
386
388 Value *WideValue,
389 const VPLane &Lane) {
390 Value *ScalarInst = get(Def, Lane);
391 Value *LaneExpr = Lane.getAsRuntimeExpr(Builder, VF);
392 if (auto *StructTy = dyn_cast<StructType>(WideValue->getType())) {
393 // We must handle each element of a vectorized struct type.
394 for (unsigned I = 0, E = StructTy->getNumElements(); I != E; I++) {
395 Value *ScalarValue = Builder.CreateExtractValue(ScalarInst, I);
396 Value *VectorValue = Builder.CreateExtractValue(WideValue, I);
397 VectorValue =
398 Builder.CreateInsertElement(VectorValue, ScalarValue, LaneExpr);
399 WideValue = Builder.CreateInsertValue(WideValue, VectorValue, I);
400 }
401 } else {
402 WideValue = Builder.CreateInsertElement(WideValue, ScalarInst, LaneExpr);
403 }
404 return WideValue;
405}
406
407BasicBlock *VPBasicBlock::createEmptyBasicBlock(VPTransformState &State) {
408 auto &CFG = State.CFG;
409 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
410 // Pred stands for Predessor. Prev stands for Previous - last visited/created.
411 BasicBlock *PrevBB = CFG.PrevBB;
412 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
413 PrevBB->getParent(), CFG.ExitBB);
414 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
415
416 return NewBB;
417}
418
420 auto &CFG = State.CFG;
421 BasicBlock *NewBB = CFG.VPBB2IRBB[this];
422
423 // Register NewBB in its loop. In innermost loops its the same for all
424 // BB's.
425 Loop *ParentLoop = State.CurrentParentLoop;
426 // If this block has a sole successor that is an exit block or is an exit
427 // block itself then it needs adding to the same parent loop as the exit
428 // block.
429 VPBlockBase *SuccOrExitVPB = getSingleSuccessor();
430 SuccOrExitVPB = SuccOrExitVPB ? SuccOrExitVPB : this;
431 if (State.Plan->isExitBlock(SuccOrExitVPB)) {
432 ParentLoop = State.LI->getLoopFor(
433 cast<VPIRBasicBlock>(SuccOrExitVPB)->getIRBasicBlock());
434 }
435
436 if (ParentLoop && !State.LI->getLoopFor(NewBB))
437 ParentLoop->addBasicBlockToLoop(NewBB, *State.LI);
438
440 if (VPBlockUtils::isHeader(this, State.VPDT)) {
441 // There's no block for the latch yet, connect to the preheader only.
442 Preds = {getPredecessors()[0]};
443 } else {
444 Preds = to_vector(getPredecessors());
445 }
446
447 // Hook up the new basic block to its predecessors.
448 for (VPBlockBase *PredVPBlock : Preds) {
449 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
450 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
451 assert(CFG.VPBB2IRBB.contains(PredVPBB) &&
452 "Predecessor basic-block not found building successor.");
453 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
454 auto *PredBBTerminator = PredBB->getTerminator();
455 LLVM_DEBUG(dbgs() << "LV: draw edge from " << PredBB->getName() << '\n');
456
457 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
458 if (isa<UnreachableInst>(PredBBTerminator)) {
459 assert(PredVPSuccessors.size() == 1 &&
460 "Predecessor ending w/o branch must have single successor.");
461 DebugLoc DL = PredBBTerminator->getDebugLoc();
462 PredBBTerminator->eraseFromParent();
463 auto *Br = BranchInst::Create(NewBB, PredBB);
464 Br->setDebugLoc(DL);
465 } else if (TermBr && !TermBr->isConditional()) {
466 TermBr->setSuccessor(0, NewBB);
467 } else {
468 // Set each forward successor here when it is created, excluding
469 // backedges. A backward successor is set when the branch is created.
470 // Branches to VPIRBasicBlocks must have the same successors in VPlan as
471 // in the original IR, except when the predecessor is the entry block.
472 // This enables including SCEV and memory runtime check blocks in VPlan.
473 // TODO: Remove exception by modeling the terminator of entry block using
474 // BranchOnCond.
475 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
476 assert((TermBr && (!TermBr->getSuccessor(idx) ||
477 (isa<VPIRBasicBlock>(this) &&
478 (TermBr->getSuccessor(idx) == NewBB ||
479 PredVPBlock == getPlan()->getEntry())))) &&
480 "Trying to reset an existing successor block.");
481 TermBr->setSuccessor(idx, NewBB);
482 }
483 CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}});
484 }
485}
486
489 "VPIRBasicBlock can have at most two successors at the moment!");
490 // Move completely disconnected blocks to their final position.
491 if (IRBB->hasNPredecessors(0) && succ_begin(IRBB) == succ_end(IRBB))
492 IRBB->moveAfter(State->CFG.PrevBB);
493 State->Builder.SetInsertPoint(IRBB->getTerminator());
494 State->CFG.PrevBB = IRBB;
495 State->CFG.VPBB2IRBB[this] = IRBB;
496 executeRecipes(State, IRBB);
497 // Create a branch instruction to terminate IRBB if one was not created yet
498 // and is needed.
499 if (getSingleSuccessor() && isa<UnreachableInst>(IRBB->getTerminator())) {
500 auto *Br = State->Builder.CreateBr(IRBB);
501 Br->setOperand(0, nullptr);
502 IRBB->getTerminator()->eraseFromParent();
503 } else {
504 assert(
505 (getNumSuccessors() == 0 || isa<BranchInst>(IRBB->getTerminator())) &&
506 "other blocks must be terminated by a branch");
507 }
508
509 connectToPredecessors(*State);
510}
511
512VPIRBasicBlock *VPIRBasicBlock::clone() {
513 auto *NewBlock = getPlan()->createEmptyVPIRBasicBlock(IRBB);
514 for (VPRecipeBase &R : Recipes)
515 NewBlock->appendRecipe(R.clone());
516 return NewBlock;
517}
518
520 bool Replica = bool(State->Lane);
521 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
522
523 if (VPBlockUtils::isHeader(this, State->VPDT)) {
524 // Create and register the new vector loop.
525 Loop *PrevParentLoop = State->CurrentParentLoop;
526 State->CurrentParentLoop = State->LI->AllocateLoop();
527
528 // Insert the new loop into the loop nest and register the new basic blocks
529 // before calling any utilities such as SCEV that require valid LoopInfo.
530 if (PrevParentLoop)
531 PrevParentLoop->addChildLoop(State->CurrentParentLoop);
532 else
533 State->LI->addTopLevelLoop(State->CurrentParentLoop);
534 }
535
536 auto IsReplicateRegion = [](VPBlockBase *BB) {
538 assert((!R || R->isReplicator()) &&
539 "only replicate region blocks should remain");
540 return R;
541 };
542 // 1. Create an IR basic block.
543 if ((Replica && this == getParent()->getEntry()) ||
544 IsReplicateRegion(getSingleHierarchicalPredecessor())) {
545 // Reuse the previous basic block if the current VPBB is either
546 // * the entry to a replicate region, or
547 // * the exit of a replicate region.
548 State->CFG.VPBB2IRBB[this] = NewBB;
549 } else {
550 NewBB = createEmptyBasicBlock(*State);
551
552 State->Builder.SetInsertPoint(NewBB);
553 // Temporarily terminate with unreachable until CFG is rewired.
554 UnreachableInst *Terminator = State->Builder.CreateUnreachable();
555 State->Builder.SetInsertPoint(Terminator);
556
557 State->CFG.PrevBB = NewBB;
558 State->CFG.VPBB2IRBB[this] = NewBB;
559 connectToPredecessors(*State);
560 }
561
562 // 2. Fill the IR basic block with IR instructions.
563 executeRecipes(State, NewBB);
564
565 // If this block is a latch, update CurrentParentLoop.
566 if (VPBlockUtils::isLatch(this, State->VPDT))
567 State->CurrentParentLoop = State->CurrentParentLoop->getParentLoop();
568}
569
570VPBasicBlock *VPBasicBlock::clone() {
571 auto *NewBlock = getPlan()->createVPBasicBlock(getName());
572 for (VPRecipeBase &R : *this)
573 NewBlock->appendRecipe(R.clone());
574 return NewBlock;
575}
576
578 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB: " << getName()
579 << " in BB: " << BB->getName() << '\n');
580
581 State->CFG.PrevVPBB = this;
582
583 for (VPRecipeBase &Recipe : Recipes) {
584 State->setDebugLocFrom(Recipe.getDebugLoc());
585 Recipe.execute(*State);
586 }
587
588 LLVM_DEBUG(dbgs() << "LV: filled BB: " << *BB);
589}
590
591VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
592 assert((SplitAt == end() || SplitAt->getParent() == this) &&
593 "can only split at a position in the same block");
594
595 // Create new empty block after the block to split.
596 auto *SplitBlock = getPlan()->createVPBasicBlock(getName() + ".split");
598
599 // Finally, move the recipes starting at SplitAt to new block.
600 for (VPRecipeBase &ToMove :
601 make_early_inc_range(make_range(SplitAt, this->end())))
602 ToMove.moveBefore(*SplitBlock, SplitBlock->end());
603
604 return SplitBlock;
605}
606
607/// Return the enclosing loop region for region \p P. The templated version is
608/// used to support both const and non-const block arguments.
609template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) {
610 if (P && P->isReplicator()) {
611 P = P->getParent();
612 // Multiple loop regions can be nested, but replicate regions can only be
613 // nested inside a loop region or must be outside any other region.
614 assert((!P || !P->isReplicator()) && "unexpected nested replicate regions");
615 }
616 return P;
617}
618
622
626
627static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
628 if (VPBB->empty()) {
629 assert(
630 VPBB->getNumSuccessors() < 2 &&
631 "block with multiple successors doesn't have a recipe as terminator");
632 return false;
633 }
634
635 const VPRecipeBase *R = &VPBB->back();
636 bool IsSwitch = isa<VPInstruction>(R) &&
637 cast<VPInstruction>(R)->getOpcode() == Instruction::Switch;
641 (void)IsCondBranch;
642 (void)IsSwitch;
643 if (VPBB->getNumSuccessors() == 2 ||
644 (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) {
645 assert((IsCondBranch || IsSwitch) &&
646 "block with multiple successors not terminated by "
647 "conditional branch nor switch recipe");
648
649 return true;
650 }
651
652 if (VPBB->getNumSuccessors() > 2) {
653 assert(IsSwitch && "block with more than 2 successors not terminated by "
654 "a switch recipe");
655 return true;
656 }
657
658 assert(
659 !IsCondBranch &&
660 "block with 0 or 1 successors terminated by conditional branch recipe");
661 return false;
662}
663
665 if (hasConditionalTerminator(this))
666 return &back();
667 return nullptr;
668}
669
671 if (hasConditionalTerminator(this))
672 return &back();
673 return nullptr;
674}
675
677 return getParent() && getParent()->getExitingBasicBlock() == this;
678}
679
680#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
685
686void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
687 if (getSuccessors().empty()) {
688 O << Indent << "No successors\n";
689 } else {
690 O << Indent << "Successor(s): ";
691 ListSeparator LS;
692 for (auto *Succ : getSuccessors())
693 O << LS << Succ->getName();
694 O << '\n';
695 }
696}
697
698void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
699 VPSlotTracker &SlotTracker) const {
700 O << Indent << getName() << ":\n";
701
702 auto RecipeIndent = Indent + " ";
703 for (const VPRecipeBase &Recipe : *this) {
704 Recipe.print(O, RecipeIndent, SlotTracker);
705 O << '\n';
706 }
707
708 printSuccessors(O, Indent);
709}
710#endif
711
712static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry);
713
714// Clone the CFG for all nodes reachable from \p Entry, this includes cloning
715// the blocks and their recipes. Operands of cloned recipes will NOT be updated.
716// Remapping of operands must be done separately. Returns a pair with the new
717// entry and exiting blocks of the cloned region. If \p Entry isn't part of a
718// region, return nullptr for the exiting block.
719static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) {
721 VPBlockBase *Exiting = nullptr;
722 bool InRegion = Entry->getParent();
723 // First, clone blocks reachable from Entry.
724 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
725 VPBlockBase *NewBB = BB->clone();
726 Old2NewVPBlocks[BB] = NewBB;
727 if (InRegion && BB->getNumSuccessors() == 0) {
728 assert(!Exiting && "Multiple exiting blocks?");
729 Exiting = BB;
730 }
731 }
732 assert((!InRegion || Exiting) && "regions must have a single exiting block");
733
734 // Second, update the predecessors & successors of the cloned blocks.
735 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
736 VPBlockBase *NewBB = Old2NewVPBlocks[BB];
738 for (VPBlockBase *Pred : BB->getPredecessors()) {
739 NewPreds.push_back(Old2NewVPBlocks[Pred]);
740 }
741 NewBB->setPredecessors(NewPreds);
743 for (VPBlockBase *Succ : BB->successors()) {
744 NewSuccs.push_back(Old2NewVPBlocks[Succ]);
745 }
746 NewBB->setSuccessors(NewSuccs);
747 }
748
749#if !defined(NDEBUG)
750 // Verify that the order of predecessors and successors matches in the cloned
751 // version.
752 for (const auto &[OldBB, NewBB] :
754 vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) {
755 for (const auto &[OldPred, NewPred] :
756 zip(OldBB->getPredecessors(), NewBB->getPredecessors()))
757 assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors");
758
759 for (const auto &[OldSucc, NewSucc] :
760 zip(OldBB->successors(), NewBB->successors()))
761 assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors");
762 }
763#endif
764
765 return std::make_pair(Old2NewVPBlocks[Entry],
766 Exiting ? Old2NewVPBlocks[Exiting] : nullptr);
767}
768
769VPRegionBlock *VPRegionBlock::clone() {
770 const auto &[NewEntry, NewExiting] = cloneFrom(getEntry());
771 auto *NewRegion = getPlan()->createVPRegionBlock(NewEntry, NewExiting,
772 getName(), isReplicator());
773 for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry))
774 Block->setParent(NewRegion);
775 return NewRegion;
776}
777
780 "Loop regions should have been lowered to plain CFG");
781 assert(!State->Lane && "Replicating a Region with non-null instance.");
782 assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
783
785 Entry);
786 State->Lane = VPLane(0);
787 for (unsigned Lane = 0, VF = State->VF.getFixedValue(); Lane < VF; ++Lane) {
788 State->Lane = VPLane(Lane, VPLane::Kind::First);
789 // Visit the VPBlocks connected to \p this, starting from it.
790 for (VPBlockBase *Block : RPOT) {
791 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
792 Block->execute(State);
793 }
794 }
795
796 // Exit replicating mode.
797 State->Lane.reset();
798}
799
802 for (VPRecipeBase &R : Recipes)
803 Cost += R.cost(VF, Ctx);
804 return Cost;
805}
806
807const VPBasicBlock *VPBasicBlock::getCFGPredecessor(unsigned Idx) const {
808 const VPBlockBase *Pred = nullptr;
809 if (hasPredecessors()) {
810 Pred = getPredecessors()[Idx];
811 } else {
812 auto *Region = getParent();
813 assert(Region && !Region->isReplicator() && Region->getEntry() == this &&
814 "must be in the entry block of a non-replicate region");
815 assert(Idx < 2 && Region->getNumPredecessors() == 1 &&
816 "loop region has a single predecessor (preheader), its entry block "
817 "has 2 incoming blocks");
818
819 // Idx == 0 selects the predecessor of the region, Idx == 1 selects the
820 // region itself whose exiting block feeds the phi across the backedge.
821 Pred = Idx == 0 ? Region->getSinglePredecessor() : Region;
822 }
823 return Pred->getExitingBasicBlock();
824}
825
827 if (!isReplicator()) {
830 Cost += Block->cost(VF, Ctx);
831 InstructionCost BackedgeCost =
832 ForceTargetInstructionCost.getNumOccurrences()
833 ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences())
834 : Ctx.TTI.getCFInstrCost(Instruction::Br, Ctx.CostKind);
835 LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF
836 << ": vector loop backedge\n");
837 Cost += BackedgeCost;
838 return Cost;
839 }
840
841 // Compute the cost of a replicate region. Replicating isn't supported for
842 // scalable vectors, return an invalid cost for them.
843 // TODO: Discard scalable VPlans with replicate recipes earlier after
844 // construction.
845 if (VF.isScalable())
847
848 // Compute and return the cost of the conditionally executed recipes.
849 assert(VF.isVector() && "Can only compute vector cost at the moment.");
851 return Then->cost(VF, Ctx);
852}
853
854#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
856 VPSlotTracker &SlotTracker) const {
857 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
858 auto NewIndent = Indent + " ";
859 for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
860 O << '\n';
861 BlockBase->print(O, NewIndent, SlotTracker);
862 }
863 O << Indent << "}\n";
864
865 printSuccessors(O, Indent);
866}
867#endif
868
870 auto *Header = cast<VPBasicBlock>(getEntry());
871 if (auto *CanIV = dyn_cast<VPCanonicalIVPHIRecipe>(&Header->front())) {
872 assert(this == getPlan()->getVectorLoopRegion() &&
873 "Canonical IV must be in the entry of the top-level loop region");
874 auto *ScalarR = VPBuilder(CanIV).createScalarPhi(
875 {CanIV->getStartValue(), CanIV->getBackedgeValue()},
876 CanIV->getDebugLoc(), "index");
877 CanIV->replaceAllUsesWith(ScalarR);
878 CanIV->eraseFromParent();
879 }
880
881 VPBlockBase *Preheader = getSinglePredecessor();
882 auto *ExitingLatch = cast<VPBasicBlock>(getExiting());
884 VPBlockUtils::disconnectBlocks(Preheader, this);
885 VPBlockUtils::disconnectBlocks(this, Middle);
886
887 for (VPBlockBase *VPB : vp_depth_first_shallow(Entry))
888 VPB->setParent(getParent());
889
890 VPBlockUtils::connectBlocks(Preheader, Header);
891 VPBlockUtils::connectBlocks(ExitingLatch, Middle);
892 VPBlockUtils::connectBlocks(ExitingLatch, Header);
893}
894
895VPlan::VPlan(Loop *L) {
896 setEntry(createVPIRBasicBlock(L->getLoopPreheader()));
897 ScalarHeader = createVPIRBasicBlock(L->getHeader());
898
899 SmallVector<BasicBlock *> IRExitBlocks;
900 L->getUniqueExitBlocks(IRExitBlocks);
901 for (BasicBlock *EB : IRExitBlocks)
902 ExitBlocks.push_back(createVPIRBasicBlock(EB));
903}
904
906 VPValue DummyValue;
907
908 for (auto *VPB : CreatedBlocks) {
909 if (auto *VPBB = dyn_cast<VPBasicBlock>(VPB)) {
910 // Replace all operands of recipes and all VPValues defined in VPBB with
911 // DummyValue so the block can be deleted.
912 for (VPRecipeBase &R : *VPBB) {
913 for (auto *Def : R.definedValues())
914 Def->replaceAllUsesWith(&DummyValue);
915
916 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
917 R.setOperand(I, &DummyValue);
918 }
919 }
920 delete VPB;
921 }
922 for (VPValue *VPV : getLiveIns())
923 delete VPV;
924 if (BackedgeTakenCount)
925 delete BackedgeTakenCount;
926}
927
929 auto Iter = find_if(getExitBlocks(), [IRBB](const VPIRBasicBlock *VPIRBB) {
930 return VPIRBB->getIRBasicBlock() == IRBB;
931 });
932 assert(Iter != getExitBlocks().end() && "no exit block found");
933 return *Iter;
934}
935
937 return is_contained(ExitBlocks, VPBB);
938}
939
940/// Generate the code inside the preheader and body of the vectorized loop.
941/// Assumes a single pre-header basic-block was created for this. Introduce
942/// additional basic-blocks as needed, and fill them all.
944 // Initialize CFG state.
945 State->CFG.PrevVPBB = nullptr;
946 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
947
948 // Update VPDominatorTree since VPBasicBlock may be removed after State was
949 // constructed.
950 State->VPDT.recalculate(*this);
951
952 // Disconnect VectorPreHeader from ExitBB in both the CFG and DT.
953 BasicBlock *VectorPreHeader = State->CFG.PrevBB;
954 cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr);
955 State->CFG.DTU.applyUpdates(
956 {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}});
957
958 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << State->VF
959 << ", UF=" << getUF() << '\n');
960 setName("Final VPlan");
961 LLVM_DEBUG(dump());
962
963 BasicBlock *ScalarPh = State->CFG.ExitBB;
964 VPBasicBlock *ScalarPhVPBB = getScalarPreheader();
965 if (ScalarPhVPBB->hasPredecessors()) {
966 // Disconnect scalar preheader and scalar header, as the dominator tree edge
967 // will be updated as part of VPlan execution. This allows keeping the DTU
968 // logic generic during VPlan execution.
969 State->CFG.DTU.applyUpdates(
970 {{DominatorTree::Delete, ScalarPh, ScalarPh->getSingleSuccessor()}});
971 }
973 Entry);
974 // Generate code for the VPlan, in parts of the vector skeleton, loop body and
975 // successor blocks including the middle, exit and scalar preheader blocks.
976 for (VPBlockBase *Block : RPOT)
977 Block->execute(State);
978
979 // If the original loop is unreachable, delete it and all its blocks.
980 if (!ScalarPhVPBB->hasPredecessors()) {
981 Loop *OrigLoop =
982 State->LI->getLoopFor(getScalarHeader()->getIRBasicBlock());
983 auto Blocks = OrigLoop->getBlocksVector();
984 Blocks.push_back(cast<VPIRBasicBlock>(ScalarPhVPBB)->getIRBasicBlock());
985 for (auto *BB : Blocks)
986 State->LI->removeBlock(BB);
987 DeleteDeadBlocks(Blocks, &State->CFG.DTU);
988 State->LI->erase(OrigLoop);
989 }
990
991 State->CFG.DTU.flush();
992
993 VPBasicBlock *Header = vputils::getFirstLoopHeader(*this, State->VPDT);
994 if (!Header)
995 return;
996
997 auto *LatchVPBB = cast<VPBasicBlock>(Header->getPredecessors()[1]);
998 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
999
1000 // Fix the latch value of canonical, reduction and first-order recurrences
1001 // phis in the vector loop.
1002 for (VPRecipeBase &R : Header->phis()) {
1003 // Skip phi-like recipes that generate their backedege values themselves.
1004 if (isa<VPWidenPHIRecipe>(&R))
1005 continue;
1006
1007 auto *PhiR = cast<VPSingleDefRecipe>(&R);
1008 // VPInstructions currently model scalar Phis only.
1009 bool NeedsScalar = isa<VPInstruction>(PhiR) ||
1011 cast<VPReductionPHIRecipe>(PhiR)->isInLoop());
1012
1013 Value *Phi = State->get(PhiR, NeedsScalar);
1014 // VPHeaderPHIRecipe supports getBackedgeValue() but VPInstruction does
1015 // not.
1016 Value *Val = State->get(PhiR->getOperand(1), NeedsScalar);
1017 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1018 }
1019}
1020
1022 // For now only return the cost of the vector loop region, ignoring any other
1023 // blocks, like the preheader or middle blocks, expect for checking them for
1024 // recipes with invalid costs.
1026
1027 // If the cost of the loop region is invalid or any recipe in the skeleton
1028 // outside loop regions are invalid return an invalid cost.
1031 [&VF, &Ctx](VPBasicBlock *VPBB) {
1032 return !VPBB->cost(VF, Ctx).isValid();
1033 }))
1035
1036 return Cost;
1037}
1038
1040 // TODO: Cache if possible.
1042 if (auto *R = dyn_cast<VPRegionBlock>(B))
1043 return R->isReplicator() ? nullptr : R;
1044 return nullptr;
1045}
1046
1049 if (auto *R = dyn_cast<VPRegionBlock>(B))
1050 return R->isReplicator() ? nullptr : R;
1051 return nullptr;
1052}
1053
1054#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1057
1058 if (VF.getNumUsers() > 0) {
1059 O << "\nLive-in ";
1060 VF.printAsOperand(O, SlotTracker);
1061 O << " = VF";
1062 }
1063
1064 if (VFxUF.getNumUsers() > 0) {
1065 O << "\nLive-in ";
1066 VFxUF.printAsOperand(O, SlotTracker);
1067 O << " = VF * UF";
1068 }
1069
1070 if (VectorTripCount.getNumUsers() > 0) {
1071 O << "\nLive-in ";
1072 VectorTripCount.printAsOperand(O, SlotTracker);
1073 O << " = vector-trip-count";
1074 }
1075
1076 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1077 O << "\nLive-in ";
1078 BackedgeTakenCount->printAsOperand(O, SlotTracker);
1079 O << " = backedge-taken count";
1080 }
1081
1082 O << "\n";
1083 if (TripCount) {
1084 if (TripCount->isLiveIn())
1085 O << "Live-in ";
1086 TripCount->printAsOperand(O, SlotTracker);
1087 O << " = original trip-count";
1088 O << "\n";
1089 }
1090}
1091
1095
1096 O << "VPlan '" << getName() << "' {";
1097
1098 printLiveIns(O);
1099
1101 RPOT(getEntry());
1102 for (const VPBlockBase *Block : RPOT) {
1103 O << '\n';
1104 Block->print(O, "", SlotTracker);
1105 }
1106
1107 O << "}\n";
1108}
1109
1110std::string VPlan::getName() const {
1111 std::string Out;
1112 raw_string_ostream RSO(Out);
1113 RSO << Name << " for ";
1114 if (!VFs.empty()) {
1115 RSO << "VF={" << VFs[0];
1116 for (ElementCount VF : drop_begin(VFs))
1117 RSO << "," << VF;
1118 RSO << "},";
1119 }
1120
1121 if (UFs.empty()) {
1122 RSO << "UF>=1";
1123 } else {
1124 RSO << "UF={" << UFs[0];
1125 for (unsigned UF : drop_begin(UFs))
1126 RSO << "," << UF;
1127 RSO << "}";
1128 }
1129
1130 return Out;
1131}
1132
1135 VPlanPrinter Printer(O, *this);
1136 Printer.dump();
1137}
1138
1140void VPlan::dump() const { print(dbgs()); }
1141#endif
1142
1143static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry,
1144 DenseMap<VPValue *, VPValue *> &Old2NewVPValues) {
1145 // Update the operands of all cloned recipes starting at NewEntry. This
1146 // traverses all reachable blocks. This is done in two steps, to handle cycles
1147 // in PHI recipes.
1149 OldDeepRPOT(Entry);
1151 NewDeepRPOT(NewEntry);
1152 // First, collect all mappings from old to new VPValues defined by cloned
1153 // recipes.
1154 for (const auto &[OldBB, NewBB] :
1157 assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() &&
1158 "blocks must have the same number of recipes");
1159 for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) {
1160 assert(OldR.getNumOperands() == NewR.getNumOperands() &&
1161 "recipes must have the same number of operands");
1162 assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() &&
1163 "recipes must define the same number of operands");
1164 for (const auto &[OldV, NewV] :
1165 zip(OldR.definedValues(), NewR.definedValues()))
1166 Old2NewVPValues[OldV] = NewV;
1167 }
1168 }
1169
1170 // Update all operands to use cloned VPValues.
1171 for (VPBasicBlock *NewBB :
1173 for (VPRecipeBase &NewR : *NewBB)
1174 for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) {
1175 VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I));
1176 NewR.setOperand(I, NewOp);
1177 }
1178 }
1179}
1180
1182 unsigned NumBlocksBeforeCloning = CreatedBlocks.size();
1183 // Clone blocks.
1184 const auto &[NewEntry, __] = cloneFrom(Entry);
1185
1186 BasicBlock *ScalarHeaderIRBB = getScalarHeader()->getIRBasicBlock();
1187 VPIRBasicBlock *NewScalarHeader = nullptr;
1188 if (getScalarHeader()->hasPredecessors()) {
1189 NewScalarHeader = cast<VPIRBasicBlock>(*find_if(
1190 vp_depth_first_shallow(NewEntry), [ScalarHeaderIRBB](VPBlockBase *VPB) {
1191 auto *VPIRBB = dyn_cast<VPIRBasicBlock>(VPB);
1192 return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB;
1193 }));
1194 } else {
1195 NewScalarHeader = createVPIRBasicBlock(ScalarHeaderIRBB);
1196 }
1197 // Create VPlan, clone live-ins and remap operands in the cloned blocks.
1198 auto *NewPlan = new VPlan(cast<VPBasicBlock>(NewEntry), NewScalarHeader);
1199 DenseMap<VPValue *, VPValue *> Old2NewVPValues;
1200 for (VPValue *OldLiveIn : getLiveIns()) {
1201 Old2NewVPValues[OldLiveIn] =
1202 NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue());
1203 }
1204 Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount;
1205 Old2NewVPValues[&VF] = &NewPlan->VF;
1206 Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF;
1207 if (BackedgeTakenCount) {
1208 NewPlan->BackedgeTakenCount = new VPValue();
1209 Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount;
1210 }
1211 if (TripCount && TripCount->isLiveIn())
1212 Old2NewVPValues[TripCount] =
1213 NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue());
1214 // else NewTripCount will be created and inserted into Old2NewVPValues when
1215 // TripCount is cloned. In any case NewPlan->TripCount is updated below.
1216
1217 remapOperands(Entry, NewEntry, Old2NewVPValues);
1218
1219 // Initialize remaining fields of cloned VPlan.
1220 NewPlan->VFs = VFs;
1221 NewPlan->UFs = UFs;
1222 // TODO: Adjust names.
1223 NewPlan->Name = Name;
1224 if (TripCount) {
1225 assert(Old2NewVPValues.contains(TripCount) &&
1226 "TripCount must have been added to Old2NewVPValues");
1227 NewPlan->TripCount = Old2NewVPValues[TripCount];
1228 }
1229
1230 // Transfer all cloned blocks (the second half of all current blocks) from
1231 // current to new VPlan.
1232 unsigned NumBlocksAfterCloning = CreatedBlocks.size();
1233 for (unsigned I :
1234 seq<unsigned>(NumBlocksBeforeCloning, NumBlocksAfterCloning))
1235 NewPlan->CreatedBlocks.push_back(this->CreatedBlocks[I]);
1236 CreatedBlocks.truncate(NumBlocksBeforeCloning);
1237
1238 // Update ExitBlocks of the new plan.
1239 for (VPBlockBase *VPB : NewPlan->CreatedBlocks) {
1240 if (VPB->getNumSuccessors() == 0 && isa<VPIRBasicBlock>(VPB) &&
1241 VPB != NewScalarHeader)
1242 NewPlan->ExitBlocks.push_back(cast<VPIRBasicBlock>(VPB));
1243 }
1244
1245 return NewPlan;
1246}
1247
1249 auto *VPIRBB = new VPIRBasicBlock(IRBB);
1250 CreatedBlocks.push_back(VPIRBB);
1251 return VPIRBB;
1252}
1253
1255 auto *VPIRBB = createEmptyVPIRBasicBlock(IRBB);
1256 for (Instruction &I :
1257 make_range(IRBB->begin(), IRBB->getTerminator()->getIterator()))
1258 VPIRBB->appendRecipe(VPIRInstruction::create(I));
1259 return VPIRBB;
1260}
1261
1262#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1263
1264Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1265 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1266 Twine(getOrCreateBID(Block));
1267}
1268
1269Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1270 const std::string &Name = Block->getName();
1271 if (!Name.empty())
1272 return Name;
1273 return "VPB" + Twine(getOrCreateBID(Block));
1274}
1275
1277 Depth = 1;
1278 bumpIndent(0);
1279 OS << "digraph VPlan {\n";
1280 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1281 if (!Plan.getName().empty())
1282 OS << "\\n" << DOT::EscapeString(Plan.getName());
1283
1284 {
1285 // Print live-ins.
1286 std::string Str;
1287 raw_string_ostream SS(Str);
1288 Plan.printLiveIns(SS);
1290 StringRef(Str).rtrim('\n').split(Lines, "\n");
1291 for (auto Line : Lines)
1292 OS << DOT::EscapeString(Line.str()) << "\\n";
1293 }
1294
1295 OS << "\"]\n";
1296 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1297 OS << "edge [fontname=Courier, fontsize=30]\n";
1298 OS << "compound=true\n";
1299
1300 for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
1301 dumpBlock(Block);
1302
1303 OS << "}\n";
1304}
1305
1306void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1308 dumpBasicBlock(BasicBlock);
1310 dumpRegion(Region);
1311 else
1312 llvm_unreachable("Unsupported kind of VPBlock.");
1313}
1314
1315void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1316 bool Hidden, const Twine &Label) {
1317 // Due to "dot" we print an edge between two regions as an edge between the
1318 // exiting basic block and the entry basic of the respective regions.
1319 const VPBlockBase *Tail = From->getExitingBasicBlock();
1320 const VPBlockBase *Head = To->getEntryBasicBlock();
1321 OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1322 OS << " [ label=\"" << Label << '\"';
1323 if (Tail != From)
1324 OS << " ltail=" << getUID(From);
1325 if (Head != To)
1326 OS << " lhead=" << getUID(To);
1327 if (Hidden)
1328 OS << "; splines=none";
1329 OS << "]\n";
1330}
1331
1332void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1333 auto &Successors = Block->getSuccessors();
1334 if (Successors.size() == 1)
1335 drawEdge(Block, Successors.front(), false, "");
1336 else if (Successors.size() == 2) {
1337 drawEdge(Block, Successors.front(), false, "T");
1338 drawEdge(Block, Successors.back(), false, "F");
1339 } else {
1340 unsigned SuccessorNumber = 0;
1341 for (auto *Successor : Successors)
1342 drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1343 }
1344}
1345
1346void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1347 // Implement dot-formatted dump by performing plain-text dump into the
1348 // temporary storage followed by some post-processing.
1349 OS << Indent << getUID(BasicBlock) << " [label =\n";
1350 bumpIndent(1);
1351 std::string Str;
1352 raw_string_ostream SS(Str);
1353 // Use no indentation as we need to wrap the lines into quotes ourselves.
1354 BasicBlock->print(SS, "", SlotTracker);
1355
1356 // We need to process each line of the output separately, so split
1357 // single-string plain-text dump.
1359 StringRef(Str).rtrim('\n').split(Lines, "\n");
1360
1361 auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1362 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1363 };
1364
1365 // Don't need the "+" after the last line.
1366 for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1367 EmitLine(Line, " +\n");
1368 EmitLine(Lines.back(), "\n");
1369
1370 bumpIndent(-1);
1371 OS << Indent << "]\n";
1372
1373 dumpEdges(BasicBlock);
1374}
1375
1376void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1377 OS << Indent << "subgraph " << getUID(Region) << " {\n";
1378 bumpIndent(1);
1379 OS << Indent << "fontname=Courier\n"
1380 << Indent << "label=\""
1381 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1382 << DOT::EscapeString(Region->getName()) << "\"\n";
1383 // Dump the blocks of the region.
1384 assert(Region->getEntry() && "Region contains no inner blocks.");
1385 for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry()))
1386 dumpBlock(Block);
1387 bumpIndent(-1);
1388 OS << Indent << "}\n";
1389 dumpEdges(Region);
1390}
1391
1392#endif
1393
1394/// Returns true if there is a vector loop region and \p VPV is defined in a
1395/// loop region.
1396static bool isDefinedInsideLoopRegions(const VPValue *VPV) {
1397 const VPRecipeBase *DefR = VPV->getDefiningRecipe();
1398 return DefR && (!DefR->getParent()->getPlan()->getVectorLoopRegion() ||
1400}
1401
1406 replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
1407}
1408
1410 VPValue *New,
1411 llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
1412 // Note that this early exit is required for correctness; the implementation
1413 // below relies on the number of users for this VPValue to decrease, which
1414 // isn't the case if this == New.
1415 if (this == New)
1416 return;
1417
1418 for (unsigned J = 0; J < getNumUsers();) {
1419 VPUser *User = Users[J];
1420 bool RemovedUser = false;
1421 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
1422 if (User->getOperand(I) != this || !ShouldReplace(*User, I))
1423 continue;
1424
1425 RemovedUser = true;
1426 User->setOperand(I, New);
1427 }
1428 // If a user got removed after updating the current user, the next user to
1429 // update will be moved to the current position, so we only need to
1430 // increment the index if the number of users did not change.
1431 if (!RemovedUser)
1432 J++;
1433 }
1434}
1435
1437 for (unsigned Idx = 0; Idx != getNumOperands(); ++Idx) {
1438 if (getOperand(Idx) == From)
1439 setOperand(Idx, To);
1440 }
1441}
1442
1443#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1445 OS << Tracker.getOrCreateName(this);
1446}
1447
1450 Op->printAsOperand(O, SlotTracker);
1451 });
1452}
1453#endif
1454
1455void VPSlotTracker::assignName(const VPValue *V) {
1456 assert(!VPValue2Name.contains(V) && "VPValue already has a name!");
1457 auto *UV = V->getUnderlyingValue();
1458 auto *VPI = dyn_cast_or_null<VPInstruction>(V->getDefiningRecipe());
1459 if (!UV && !(VPI && !VPI->getName().empty())) {
1460 VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str();
1461 NextSlot++;
1462 return;
1463 }
1464
1465 // Use the name of the underlying Value, wrapped in "ir<>", and versioned by
1466 // appending ".Number" to the name if there are multiple uses.
1467 std::string Name;
1468 if (UV)
1469 Name = getName(UV);
1470 else
1471 Name = VPI->getName();
1472
1473 assert(!Name.empty() && "Name cannot be empty.");
1474 StringRef Prefix = UV ? "ir<" : "vp<%";
1475 std::string BaseName = (Twine(Prefix) + Name + Twine(">")).str();
1476
1477 // First assign the base name for V.
1478 const auto &[A, _] = VPValue2Name.try_emplace(V, BaseName);
1479 // Integer or FP constants with different types will result in he same string
1480 // due to stripping types.
1481 if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV))
1482 return;
1483
1484 // If it is already used by C > 0 other VPValues, increase the version counter
1485 // C and use it for V.
1486 const auto &[C, UseInserted] = BaseName2Version.try_emplace(BaseName, 0);
1487 if (!UseInserted) {
1488 C->second++;
1489 A->second = (BaseName + Twine(".") + Twine(C->second)).str();
1490 }
1491}
1492
1493void VPSlotTracker::assignNames(const VPlan &Plan) {
1494 if (Plan.VF.getNumUsers() > 0)
1495 assignName(&Plan.VF);
1496 if (Plan.VFxUF.getNumUsers() > 0)
1497 assignName(&Plan.VFxUF);
1498 assignName(&Plan.VectorTripCount);
1499 if (Plan.BackedgeTakenCount)
1500 assignName(Plan.BackedgeTakenCount);
1501 for (VPValue *LI : Plan.getLiveIns())
1502 assignName(LI);
1503
1504 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>>
1505 RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry()));
1506 for (const VPBasicBlock *VPBB :
1508 assignNames(VPBB);
1509}
1510
1511void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) {
1512 for (const VPRecipeBase &Recipe : *VPBB)
1513 for (VPValue *Def : Recipe.definedValues())
1514 assignName(Def);
1515}
1516
1517std::string VPSlotTracker::getName(const Value *V) {
1518 std::string Name;
1519 raw_string_ostream S(Name);
1520 if (V->hasName() || !isa<Instruction>(V)) {
1521 V->printAsOperand(S, false);
1522 return Name;
1523 }
1524
1525 if (!MST) {
1526 // Lazily create the ModuleSlotTracker when we first hit an unnamed
1527 // instruction.
1528 auto *I = cast<Instruction>(V);
1529 // This check is required to support unit tests with incomplete IR.
1530 if (I->getParent()) {
1531 MST = std::make_unique<ModuleSlotTracker>(I->getModule());
1532 MST->incorporateFunction(*I->getFunction());
1533 } else {
1534 MST = std::make_unique<ModuleSlotTracker>(nullptr);
1535 }
1536 }
1537 V->printAsOperand(S, false, *MST);
1538 return Name;
1539}
1540
1541std::string VPSlotTracker::getOrCreateName(const VPValue *V) const {
1542 std::string Name = VPValue2Name.lookup(V);
1543 if (!Name.empty())
1544 return Name;
1545
1546 // If no name was assigned, no VPlan was provided when creating the slot
1547 // tracker or it is not reachable from the provided VPlan. This can happen,
1548 // e.g. when trying to print a recipe that has not been inserted into a VPlan
1549 // in a debugger.
1550 // TODO: Update VPSlotTracker constructor to assign names to recipes &
1551 // VPValues not associated with a VPlan, instead of constructing names ad-hoc
1552 // here.
1553 const VPRecipeBase *DefR = V->getDefiningRecipe();
1554 (void)DefR;
1555 assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) &&
1556 "VPValue defined by a recipe in a VPlan?");
1557
1558 // Use the underlying value's name, if there is one.
1559 if (auto *UV = V->getUnderlyingValue()) {
1560 std::string Name;
1561 raw_string_ostream S(Name);
1562 UV->printAsOperand(S, false);
1563 return (Twine("ir<") + Name + ">").str();
1564 }
1565
1566 return "<badref>";
1567}
1568
1570 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
1571 assert(!Range.isEmpty() && "Trying to test an empty VF range.");
1572 bool PredicateAtRangeStart = Predicate(Range.Start);
1573
1574 for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End))
1575 if (Predicate(TmpVF) != PredicateAtRangeStart) {
1576 Range.End = TmpVF;
1577 break;
1578 }
1579
1580 return PredicateAtRangeStart;
1581}
1582
1583/// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
1584/// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
1585/// of VF's starting at a given VF and extending it as much as possible. Each
1586/// vectorization decision can potentially shorten this sub-range during
1587/// buildVPlan().
1589 ElementCount MaxVF) {
1590 auto MaxVFTimes2 = MaxVF * 2;
1591 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
1592 VFRange SubRange = {VF, MaxVFTimes2};
1593 if (auto Plan = tryToBuildVPlan(SubRange)) {
1595 // Update the name of the latch of the top-level vector loop region region
1596 // after optimizations which includes block folding.
1597 Plan->getVectorLoopRegion()->getExiting()->setName("vector.latch");
1598 VPlans.push_back(std::move(Plan));
1599 }
1600 VF = SubRange.End;
1601 }
1602}
1603
1605 assert(count_if(VPlans,
1606 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
1607 1 &&
1608 "Multiple VPlans for VF.");
1609
1610 for (const VPlanPtr &Plan : VPlans) {
1611 if (Plan->hasVF(VF))
1612 return *Plan.get();
1613 }
1614 llvm_unreachable("No plan found!");
1615}
1616
1619 // Reserve first location for self reference to the LoopID metadata node.
1620 MDs.push_back(nullptr);
1621 bool IsUnrollMetadata = false;
1622 MDNode *LoopID = L->getLoopID();
1623 if (LoopID) {
1624 // First find existing loop unrolling disable metadata.
1625 for (unsigned I = 1, IE = LoopID->getNumOperands(); I < IE; ++I) {
1626 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(I));
1627 if (MD) {
1628 const auto *S = dyn_cast<MDString>(MD->getOperand(0));
1629 if (!S)
1630 continue;
1631 if (S->getString().starts_with("llvm.loop.unroll.runtime.disable"))
1632 continue;
1633 IsUnrollMetadata =
1634 S->getString().starts_with("llvm.loop.unroll.disable");
1635 }
1636 MDs.push_back(LoopID->getOperand(I));
1637 }
1638 }
1639
1640 if (!IsUnrollMetadata) {
1641 // Add runtime unroll disable metadata.
1642 LLVMContext &Context = L->getHeader()->getContext();
1643 SmallVector<Metadata *, 1> DisableOperands;
1644 DisableOperands.push_back(
1645 MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
1646 MDNode *DisableNode = MDNode::get(Context, DisableOperands);
1647 MDs.push_back(DisableNode);
1648 MDNode *NewLoopID = MDNode::get(Context, MDs);
1649 // Set operand 0 to refer to the loop id itself.
1650 NewLoopID->replaceOperandWith(0, NewLoopID);
1651 L->setLoopID(NewLoopID);
1652 }
1653}
1654
1656 Loop *VectorLoop, VPBasicBlock *HeaderVPBB, const VPlan &Plan,
1657 bool VectorizingEpilogue, MDNode *OrigLoopID,
1658 std::optional<unsigned> OrigAverageTripCount,
1659 unsigned OrigLoopInvocationWeight, unsigned EstimatedVFxUF,
1660 bool DisableRuntimeUnroll) {
1661 // Update the metadata of the scalar loop. Skip the update when vectorizing
1662 // the epilogue loop to ensure it is updated only once. Also skip the update
1663 // when the scalar loop became unreachable.
1664 if (Plan.getScalarPreheader()->hasPredecessors() && !VectorizingEpilogue) {
1665 std::optional<MDNode *> RemainderLoopID =
1668 if (RemainderLoopID) {
1669 OrigLoop->setLoopID(*RemainderLoopID);
1670 } else {
1671 if (DisableRuntimeUnroll)
1673
1674 LoopVectorizeHints Hints(OrigLoop, true, *ORE);
1675 Hints.setAlreadyVectorized();
1676 }
1677 }
1678
1679 if (!VectorLoop)
1680 return;
1681
1682 if (std::optional<MDNode *> VectorizedLoopID = makeFollowupLoopID(
1683 OrigLoopID, {LLVMLoopVectorizeFollowupAll,
1685 VectorLoop->setLoopID(*VectorizedLoopID);
1686 } else {
1687 // Keep all loop hints from the original loop on the vector loop (we'll
1688 // replace the vectorizer-specific hints below).
1689 if (OrigLoopID)
1690 VectorLoop->setLoopID(OrigLoopID);
1691
1692 if (!VectorizingEpilogue) {
1693 LoopVectorizeHints Hints(VectorLoop, true, *ORE);
1694 Hints.setAlreadyVectorized();
1695 }
1696 }
1698 TTI.getUnrollingPreferences(VectorLoop, *PSE.getSE(), UP, ORE);
1699 if (!UP.UnrollVectorizedLoop || VectorizingEpilogue)
1701
1702 // Set/update profile weights for the vector and remainder loops as original
1703 // loop iterations are now distributed among them. Note that original loop
1704 // becomes the scalar remainder loop after vectorization.
1705 //
1706 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
1707 // end up getting slightly roughened result but that should be OK since
1708 // profile is not inherently precise anyway. Note also possible bypass of
1709 // vector code caused by legality checks is ignored, assigning all the weight
1710 // to the vector loop, optimistically.
1711 //
1712 // For scalable vectorization we can't know at compile time how many
1713 // iterations of the loop are handled in one vector iteration, so instead
1714 // use the value of vscale used for tuning.
1715 if (!OrigAverageTripCount)
1716 return;
1717 // Calculate number of iterations in unrolled loop.
1718 unsigned AverageVectorTripCount = *OrigAverageTripCount / EstimatedVFxUF;
1719 // Calculate number of iterations for remainder loop.
1720 unsigned RemainderAverageTripCount = *OrigAverageTripCount % EstimatedVFxUF;
1721
1722 if (HeaderVPBB) {
1723 setLoopEstimatedTripCount(VectorLoop, AverageVectorTripCount,
1724 OrigLoopInvocationWeight);
1725 }
1726 if (Plan.getScalarPreheader()->hasPredecessors()) {
1727 setLoopEstimatedTripCount(OrigLoop, RemainderAverageTripCount,
1728 OrigLoopInvocationWeight);
1729 }
1730}
1731
1732#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1734 if (VPlans.empty()) {
1735 O << "LV: No VPlans built.\n";
1736 return;
1737 }
1738 for (const auto &Plan : VPlans)
1740 Plan->printDOT(O);
1741 else
1742 Plan->print(O);
1743}
1744#endif
1745
1748 if (!V->isLiveIn())
1749 return {};
1750
1751 return TTI::getOperandInfo(V->getLiveInIRValue());
1752}
1753
1756 if (VF.isScalar())
1757 return 0;
1758
1759 InstructionCost ScalarizationCost = 0;
1760 // Compute the cost of scalarizing the result if needed.
1761 if (!ResultTy->isVoidTy()) {
1762 for (Type *VectorTy :
1763 to_vector(getContainedTypes(toVectorizedTy(ResultTy, VF)))) {
1764 ScalarizationCost += TTI.getScalarizationOverhead(
1766 /*Insert=*/true,
1767 /*Extract=*/false, CostKind);
1768 }
1769 }
1770 // Compute the cost of scalarizing the operands, skipping ones that do not
1771 // require extraction/scalarization and do not incur any overhead.
1772 SmallPtrSet<const VPValue *, 4> UniqueOperands;
1774 for (auto *Op : Operands) {
1776 !UniqueOperands.insert(Op).second)
1777 continue;
1778 Tys.push_back(toVectorizedTy(Types.inferScalarType(Op), VF));
1779 }
1780 return ScalarizationCost +
1781 TTI.getOperandsScalarizationOverhead(Tys, CostKind);
1782}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition Compiler.h:638
dxil pretty DXIL Metadata Pretty Printer
Flatten the CFG
#define _
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
#define I(x, y, z)
Definition MD5.cpp:58
mir Rename Register Operands
#define T
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
#define P(N)
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
static StringRef getName(Value *V)
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
This file contains some functions that are useful when dealing with strings.
#define LLVM_DEBUG(...)
Definition Debug.h:114
This file implements dominator tree analysis for a single level of a VPlan's H-CFG.
This file contains the declarations of different VPlan-related auxiliary helpers.
This file provides utility VPlan to VPlan transformations.
static void addRuntimeUnrollDisableMetaData(Loop *L)
Definition VPlan.cpp:1617
static T * getPlanEntry(T *Start)
Definition VPlan.cpp:145
static T * getEnclosingLoopRegionForRegion(T *P)
Return the enclosing loop region for region P.
Definition VPlan.cpp:609
const char LLVMLoopVectorizeFollowupAll[]
Definition VPlan.cpp:61
static bool isDefinedInsideLoopRegions(const VPValue *VPV)
Returns true if there is a vector loop region and VPV is defined in a loop region.
Definition VPlan.cpp:1396
static bool hasConditionalTerminator(const VPBasicBlock *VPBB)
Definition VPlan.cpp:627
const char LLVMLoopVectorizeFollowupVectorized[]
Definition VPlan.cpp:62
static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, DenseMap< VPValue *, VPValue * > &Old2NewVPValues)
Definition VPlan.cpp:1143
const char LLVMLoopVectorizeFollowupEpilogue[]
Definition VPlan.cpp:64
static std::pair< VPBlockBase *, VPBlockBase * > cloneFrom(VPBlockBase *Entry)
Definition VPlan.cpp:719
static cl::opt< bool > PrintVPlansInDotFormat("vplan-print-in-dot-format", cl::Hidden, cl::desc("Use dot format instead of plain text when dumping VPlans"))
This file contains the declarations of the Vectorization Plan base classes:
static bool IsCondBranch(unsigned BrOpc)
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:234
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator begin()
Instruction iterator methods.
Definition BasicBlock.h:459
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition BasicBlock.h:206
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
InstListType::iterator iterator
Instruction iterators...
Definition BasicBlock.h:170
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
size_t size() const
Definition BasicBlock.h:480
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
std::optional< const DILocation * > cloneByMultiplyingDuplicationFactor(unsigned DF) const
Returns a new DILocation with duplication factor DF * current duplication factor encoded in the discr...
A debug info location.
Definition DebugLoc.h:124
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition DenseMap.h:194
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition DenseMap.h:158
bool dominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
dominates - Returns true iff A dominates B.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:165
constexpr bool isVector() const
One or more elements.
Definition TypeSize.h:325
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:321
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
static InstructionCost getInvalid(CostType Val=0)
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
A helper class to return the specified delimiter string after the first invocation of operator String...
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
std::vector< BlockT * > & getBlocksVector()
Return a direct, mutable handle to the blocks vector so that we can mutate it efficiently with techni...
void addChildLoop(LoopT *NewChild)
Add the specified loop to be a child of this loop.
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
Definition VPlan.cpp:1604
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, const VPlan &Plan, bool VectorizingEpilogue, MDNode *OrigLoopID, std::optional< unsigned > OrigAverageTripCount, unsigned OrigLoopInvocationWeight, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
Definition VPlan.cpp:1655
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
Definition VPlan.cpp:1588
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
Definition VPlan.cpp:1569
void printPlans(raw_ostream &O)
Definition VPlan.cpp:1733
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
void setLoopID(MDNode *LoopID) const
Set the llvm.loop loop id metadata for this loop.
Definition LoopInfo.cpp:526
Metadata node.
Definition Metadata.h:1078
LLVM_ABI void replaceOperandWith(unsigned I, Metadata *New)
Replace a specific operand.
const MDOperand & getOperand(unsigned I) const
Definition Metadata.h:1442
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition Metadata.h:1569
unsigned getNumOperands() const
Return number of MDNode operands.
Definition Metadata.h:1448
static LLVM_ABI MDString * get(LLVMContext &Context, StringRef Str)
Definition Metadata.cpp:608
BlockT * getEntry() const
Get the entry BasicBlock of the Region.
Definition RegionInfo.h:320
size_type size() const
Determine the number of elements in the SetVector.
Definition SetVector.h:102
void insert_range(Range &&R)
Definition SetVector.h:175
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:150
This class provides computation of slot numbers for LLVM Assembly writing.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:338
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
std::pair< iterator, bool > try_emplace(StringRef Key, ArgsTy &&...Args)
Emplace a new element for the specified key into the map if the key isn't already in the map.
Definition StringMap.h:381
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
Definition StringRef.h:702
StringRef rtrim(char Char) const
Return string with consecutive Char characters starting from the right removed.
Definition StringRef.h:804
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
static LLVM_ABI OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
This function has undefined behavior.
void setOperand(unsigned i, Value *Val)
Definition User.h:237
Value * getOperand(unsigned i) const
Definition User.h:232
unsigned getNumOperands() const
Definition User.h:254
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition VPlan.h:3786
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
Definition VPlan.h:3861
RecipeListTy::iterator iterator
Instruction iterators...
Definition VPlan.h:3813
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPBasicBlock,...
Definition VPlan.cpp:519
iterator end()
Definition VPlan.h:3823
iterator begin()
Recipe iterator methods.
Definition VPlan.h:3821
VPBasicBlock * clone() override
Clone the current block and it's recipes, without updating the operands of the cloned recipes.
Definition VPlan.cpp:570
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of this VPBasicBlock.
Definition VPlan.cpp:800
const VPBasicBlock * getCFGPredecessor(unsigned Idx) const
Returns the predecessor block at index Idx with the predecessors as per the corresponding plain CFG.
Definition VPlan.cpp:807
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
Definition VPlan.cpp:246
void connectToPredecessors(VPTransformState &State)
Connect the VPBBs predecessors' in the VPlan CFG to the IR basic block generated for this VPBB.
Definition VPlan.cpp:419
VPRegionBlock * getEnclosingLoopRegion()
Definition VPlan.cpp:619
VPBasicBlock * splitAt(iterator SplitAt)
Split current block at SplitAt by inserting a new block between the current block and its successors ...
Definition VPlan.cpp:591
RecipeListTy Recipes
The VPRecipes held in the order of output instructions to generate.
Definition VPlan.h:3801
void executeRecipes(VPTransformState *State, BasicBlock *BB)
Execute the recipes in the IR basic block BB.
Definition VPlan.cpp:577
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print this VPBsicBlock to O, prefixing all lines with Indent.
Definition VPlan.cpp:698
bool isExiting() const
Returns true if the block is exiting it's parent region.
Definition VPlan.cpp:676
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
Definition VPlan.cpp:664
const VPRecipeBase & back() const
Definition VPlan.h:3835
bool empty() const
Definition VPlan.h:3832
size_t size() const
Definition VPlan.h:3831
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition VPlan.h:82
void setSuccessors(ArrayRef< VPBlockBase * > NewSuccs)
Set each VPBasicBlock in NewSuccss as successor of this VPBlockBase.
Definition VPlan.h:301
VPRegionBlock * getParent()
Definition VPlan.h:174
const VPBasicBlock * getExitingBasicBlock() const
Definition VPlan.cpp:190
void setName(const Twine &newName)
Definition VPlan.h:167
size_t getNumSuccessors() const
Definition VPlan.h:220
iterator_range< VPBlockBase ** > successors()
Definition VPlan.h:202
virtual void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const =0
Print plain-text dump of this VPBlockBase to O, prefixing all lines with Indent.
bool hasPredecessors() const
Returns true if this block has any predecessors.
Definition VPlan.h:224
void printSuccessors(raw_ostream &O, const Twine &Indent) const
Print the successors of this block to O, prefixing all lines with Indent.
Definition VPlan.cpp:686
size_t getNumPredecessors() const
Definition VPlan.h:221
void setPredecessors(ArrayRef< VPBlockBase * > NewPreds)
Set each VPBasicBlock in NewPreds as predecessor of this VPBlockBase.
Definition VPlan.h:292
VPBlockBase * getEnclosingBlockWithPredecessors()
Definition VPlan.cpp:212
const VPBlocksTy & getPredecessors() const
Definition VPlan.h:205
VPlan * getPlan()
Definition VPlan.cpp:165
void setPlan(VPlan *ParentPlan)
Sets the pointer of the plan containing the block.
Definition VPlan.cpp:184
const std::string & getName() const
Definition VPlan.h:165
VPBlockBase * getSinglePredecessor() const
Definition VPlan.h:216
const VPBlocksTy & getHierarchicalSuccessors()
Definition VPlan.h:243
VPBlockBase(const unsigned char SC, const std::string &N)
Definition VPlan.h:151
VPBlockBase * getEnclosingBlockWithSuccessors()
An Enclosing Block of a block B is any block containing B, including B itself.
Definition VPlan.cpp:204
const VPBasicBlock * getEntryBasicBlock() const
Definition VPlan.cpp:170
VPBlockBase * getSingleHierarchicalPredecessor()
Definition VPlan.h:265
VPBlockBase * getSingleSuccessor() const
Definition VPlan.h:210
const VPBlocksTy & getSuccessors() const
Definition VPlan.h:199
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
Definition VPlanUtils.h:232
static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBase NewBlock after BlockPtr.
Definition VPlanUtils.h:135
static bool isLatch(const VPBlockBase *VPB, const VPDominatorTree &VPDT)
Returns true if VPB is a loop latch, using isHeader().
Definition VPlan.cpp:237
static bool isHeader(const VPBlockBase *VPB, const VPDominatorTree &VPDT)
Returns true if VPB is a loop header, based on regions or VPDT in their absence.
Definition VPlan.cpp:220
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
Definition VPlanUtils.h:191
static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To)
Disconnect VPBlockBases From and To bi-directionally.
Definition VPlanUtils.h:210
VPlan-based builder utility analogous to IRBuilder.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
void dump() const
Dump the VPDef to stderr (for debugging).
Definition VPlan.cpp:126
virtual void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const =0
Each concrete VPDef prints itself.
Template specialization of the standard LLVM dominator tree utility for VPBlockBases.
Recipe to expand a SCEV expression.
Definition VPlan.h:3405
A special type of VPBasicBlock that wraps an existing IR basic block.
Definition VPlan.h:3939
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPBasicBlock,...
Definition VPlan.cpp:487
BasicBlock * getIRBasicBlock() const
Definition VPlan.h:3963
VPIRBasicBlock * clone() override
Clone the current block and it's recipes, without updating the operands of the cloned recipes.
Definition VPlan.cpp:512
static LLVM_ABI_FOR_TEST VPIRInstruction * create(Instruction &I)
Create a new VPIRPhi for \I , if it is a PHINode, otherwise create a VPIRInstruction.
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
Value * getAsRuntimeExpr(IRBuilderBase &Builder, const ElementCount &VF) const
Returns an expression describing the lane index that can be used at runtime.
Definition VPlan.cpp:85
static VPLane getFirstLane()
@ ScalableLast
For ScalableLast, Lane is the offset from the start of the last N-element subvector in a scalable vec...
@ First
For First, Lane is the index into the first N elements of a fixed-vector <N x <ElTy>> or a scalable v...
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition VPlan.h:395
VPBasicBlock * getParent()
Definition VPlan.h:416
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition VPlan.h:3974
VPRegionBlock * clone() override
Clone all blocks in the single-entry single-exit region of the block and their recipes without updati...
Definition VPlan.cpp:769
const VPBlockBase * getEntry() const
Definition VPlan.h:4010
void dissolveToCFGLoop()
Remove the current region from its VPlan, connecting its predecessor to its entry,...
Definition VPlan.cpp:869
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
Definition VPlan.h:4042
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of the block.
Definition VPlan.cpp:826
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print this VPRegionBlock to O (recursively), prefixing all lines with Indent.
Definition VPlan.cpp:855
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPRegionBlock,...
Definition VPlan.cpp:778
const VPBlockBase * getExiting() const
Definition VPlan.h:4022
A recipe for handling phi nodes of integer and floating-point inductions, producing their scalar valu...
Definition VPlan.h:3676
This class can be used to assign names to VPValues.
std::string getOrCreateName(const VPValue *V) const
Returns the name assigned to V, if there is one, otherwise try to construct one from the underlying v...
Definition VPlan.cpp:1541
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition VPlanValue.h:199
void replaceUsesOfWith(VPValue *From, VPValue *To)
Replaces all uses of From in the VPUser with To.
Definition VPlan.cpp:1436
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
Definition VPlan.cpp:1448
operand_range operands()
Definition VPlanValue.h:267
void setOperand(unsigned I, VPValue *New)
Definition VPlanValue.h:243
unsigned getNumOperands() const
Definition VPlanValue.h:237
VPValue * getOperand(unsigned N) const
Definition VPlanValue.h:238
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
Definition VPlan.cpp:1402
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Definition VPlan.cpp:135
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
Definition VPlan.cpp:1444
friend class VPDef
Definition VPlanValue.h:49
Value * UnderlyingVal
Definition VPlanValue.h:61
void dump() const
Dump the value to stderr (for debugging).
Definition VPlan.cpp:118
VPValue(const unsigned char SC, Value *UV=nullptr, VPDef *Def=nullptr)
Definition VPlan.cpp:98
virtual ~VPValue()
Definition VPlan.cpp:104
void print(raw_ostream &OS, VPSlotTracker &Tracker) const
Definition VPlan.cpp:111
void replaceAllUsesWith(VPValue *New)
Definition VPlan.cpp:1405
unsigned getNumUsers() const
Definition VPlanValue.h:113
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
Definition VPlan.cpp:1409
VPDef * Def
Pointer to the VPDef that defines this VPValue.
Definition VPlanValue.h:65
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
Definition VPlan.h:2118
LLVM_DUMP_METHOD void dump()
Definition VPlan.cpp:1276
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition VPlan.h:4077
void printDOT(raw_ostream &O) const
Print this VPlan in DOT format to O.
Definition VPlan.cpp:1134
friend class VPSlotTracker
Definition VPlan.h:4079
std::string getName() const
Return a string with the name of the plan and the applicable VFs and UFs.
Definition VPlan.cpp:1110
VPBasicBlock * getEntry()
Definition VPlan.h:4176
VPRegionBlock * createVPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exiting, const std::string &Name="", bool IsReplicator=false)
Create a new VPRegionBlock with Entry, Exiting and Name.
Definition VPlan.h:4417
void setName(const Twine &newName)
Definition VPlan.h:4324
VPIRBasicBlock * getExitBlock(BasicBlock *IRBB) const
Return the VPIRBasicBlock corresponding to IRBB.
Definition VPlan.cpp:928
LLVM_ABI_FOR_TEST ~VPlan()
Definition VPlan.cpp:905
bool isExitBlock(VPBlockBase *VPBB)
Returns true if VPBB is an exit block.
Definition VPlan.cpp:936
friend class VPlanPrinter
Definition VPlan.h:4078
unsigned getUF() const
Definition VPlan.h:4306
VPIRBasicBlock * createEmptyVPIRBasicBlock(BasicBlock *IRBB)
Create a VPIRBasicBlock wrapping IRBB, but do not create VPIRInstructions wrapping the instructions i...
Definition VPlan.cpp:1248
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
Definition VPlan.h:4228
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition VPlan.cpp:1039
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
Definition VPlan.cpp:1021
void setEntry(VPBasicBlock *VPBB)
Definition VPlan.h:4165
VPBasicBlock * createVPBasicBlock(const Twine &Name, VPRecipeBase *Recipe=nullptr)
Create a new VPBasicBlock with Name and containing Recipe if present.
Definition VPlan.h:4407
LLVM_ABI_FOR_TEST VPIRBasicBlock * createVPIRBasicBlock(BasicBlock *IRBB)
Create a VPIRBasicBlock from IRBB containing VPIRInstructions for all instructions in IRBB,...
Definition VPlan.cpp:1254
LLVM_DUMP_METHOD void dump() const
Dump the plan to stderr (for debugging).
Definition VPlan.cpp:1140
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
Definition VPlan.h:4219
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
Definition VPlan.cpp:943
ArrayRef< VPValue * > getLiveIns() const
Return the list of live-in VPValues available in the VPlan.
Definition VPlan.h:4358
void print(raw_ostream &O) const
Print this VPlan to O.
Definition VPlan.cpp:1093
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
Definition VPlan.h:4224
void printLiveIns(raw_ostream &O) const
Print the live-ins of this VPlan to O.
Definition VPlan.cpp:1055
VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
Definition VPlan.cpp:1181
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:201
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:217
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:166
An efficient, type-erasing, non-owning reference to a callable.
self_iterator getIterator()
Definition ilist_node.h:123
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI std::string EscapeString(const std::string &Label)
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
bool match(Val *V, const Pattern &P)
VPInstruction_match< VPInstruction::BranchOnCount, Op0_t, Op1_t > m_BranchOnCount(const Op0_t &Op0, const Op1_t &Op1)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::BuildVector > m_BuildVector()
BuildVector is matches only its opcode, w/o matching its operands as the number of operands is not fi...
VPInstruction_match< VPInstruction::BranchOnCond, Op0_t > m_BranchOnCond(const Op0_t &Op0)
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
Definition VPlanUtils.h:44
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:318
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition STLExtras.h:831
InstructionCost Cost
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:644
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI std::optional< MDNode * > makeFollowupLoopID(MDNode *OrigLoopID, ArrayRef< StringRef > FollowupAttrs, const char *InheritOptionsAttrsPrefix="", bool AlwaysNew=false)
Create a new loop identifier for a loop created from a loop transformation.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
Definition STLExtras.h:2211
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:634
auto cast_or_null(const Y &Val)
Definition Casting.h:715
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
Definition VPlanCFG.h:216
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:754
LLVM_ABI cl::opt< bool > EnableFSDiscriminator
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1712
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
RNSuccIterator< NodeRef, BlockT, RegionT > succ_begin(NodeRef Node)
RNSuccIterator< NodeRef, BlockT, RegionT > succ_end(NodeRef Node)
FunctionAddr VTableAddr Next
Definition InstrProf.h:141
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
LLVM_ABI bool setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount, std::optional< unsigned > EstimatedLoopInvocationWeight=std::nullopt)
Set llvm.loop.estimated_trip_count with the value EstimatedTripCount in the loop metadata of L.
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition STLExtras.h:1941
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:560
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1738
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1877
cl::opt< bool > EnableVPlanNativePath
Definition VPlan.cpp:56
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
Definition Sequence.h:305
LLVM_ABI void DeleteDeadBlocks(ArrayRef< BasicBlock * > BBs, DomTreeUpdater *DTU=nullptr, bool KeepOneInputPHIs=false)
Delete the specified blocks from BB.
std::unique_ptr< VPlan > VPlanPtr
Definition VPlan.h:78
Parameters that control the generic loop unrolling transformation.
bool UnrollVectorizedLoop
Don't disable runtime unroll for the loops which were vectorized.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
ElementCount End
Struct to hold various analysis needed for cost computations.
InstructionCost getScalarizationOverhead(Type *ResultTy, ArrayRef< const VPValue * > Operands, ElementCount VF)
Estimate the overhead of scalarizing a recipe with result type ResultTy and Operands with VF.
Definition VPlan.cpp:1754
TargetTransformInfo::OperandValueInfo getOperandInfo(VPValue *V) const
Returns the OperandInfo for V, if it is a live-in.
Definition VPlan.cpp:1747
TargetTransformInfo::TargetCostKind CostKind
VPTypeAnalysis Types
const TargetTransformInfo & TTI
VPTransformState holds information passed down when "executing" a VPlan, needed for generating the ou...
LoopInfo * LI
Hold a pointer to LoopInfo to register new basic blocks in the loop.
VPTypeAnalysis TypeAnalysis
VPlan-based type analysis.
struct llvm::VPTransformState::DataState Data
struct llvm::VPTransformState::CFGState CFG
Value * get(const VPValue *Def, bool IsScalar=false)
Get the generated vector Value for a given VPValue Def if IsScalar is false, otherwise return the gen...
Definition VPlan.cpp:293
VPTransformState(const TargetTransformInfo *TTI, ElementCount VF, LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, IRBuilderBase &Builder, VPlan *Plan, Loop *CurrentParentLoop, Type *CanonicalIVTy)
Definition VPlan.cpp:253
std::optional< VPLane > Lane
Hold the index to generate specific scalar instructions.
IRBuilderBase & Builder
Hold a reference to the IRBuilder used to generate output IR code.
bool hasScalarValue(const VPValue *Def, VPLane Lane)
const TargetTransformInfo * TTI
Target Transform Info.
VPlan * Plan
Pointer to the VPlan code is generated for.
void set(const VPValue *Def, Value *V, bool IsScalar=false)
Set the generated vector Value for a given VPValue, if IsScalar is false.
bool hasVectorValue(const VPValue *Def)
VPDominatorTree VPDT
VPlan-based dominator tree.
ElementCount VF
The chosen Vectorization Factor of the loop being vectorized.
Value * packScalarIntoVectorizedValue(const VPValue *Def, Value *WideValue, const VPLane &Lane)
Insert the scalar value of Def at Lane into Lane of WideValue and return the resulting value.
Definition VPlan.cpp:387
AssumptionCache * AC
Hold a pointer to AssumptionCache to register new assumptions after replicating assume calls.
void setDebugLocFrom(DebugLoc DL)
Set the debug location in the builder using the debug location DL.
Definition VPlan.cpp:365
Loop * CurrentParentLoop
The parent loop object for the current scope, or nullptr.
static void optimize(VPlan &Plan)
Apply VPlan-to-VPlan optimizations to Plan, including induction recipe optimizations,...