58#include "llvm/IR/IntrinsicsAArch64.h"
59#include "llvm/IR/IntrinsicsAMDGPU.h"
60#include "llvm/IR/IntrinsicsRISCV.h"
61#include "llvm/IR/IntrinsicsX86.h"
99 if (
unsigned BitWidth = Ty->getScalarSizeInBits())
102 return DL.getPointerTypeSizeInBits(Ty);
122 const APInt &DemandedElts,
126 DemandedLHS = DemandedRHS = DemandedElts;
133 DemandedElts, DemandedLHS, DemandedRHS);
154 bool UseInstrInfo,
unsigned Depth) {
229 R->uge(
LHS->getType()->getScalarSizeInBits()))
242 assert(LHS->getType() == RHS->getType() &&
243 "LHS and RHS should have the same type");
244 assert(LHS->getType()->isIntOrIntVectorTy() &&
245 "LHS and RHS should be integers");
256 return !
I->user_empty() &&
261 return !
I->user_empty() &&
all_of(
I->users(), [](
const User *U) {
263 return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P);
272 return ::isKnownToBeAPowerOfTwo(
288 return CI->getValue().isStrictlyPositive();
314 return ::isKnownNonEqual(V1, V2, DemandedElts, Q,
Depth);
321 return Mask.isSubsetOf(Known.
Zero);
328 unsigned Depth = 0) {
339 return ::ComputeNumSignBits(
349 return V->getType()->getScalarSizeInBits() - SignBits + 1;
354 const APInt &DemandedElts,
361 if (KnownOut.
isUnknown() && !NSW && !NUW)
374 bool NUW,
const APInt &DemandedElts,
391 bool isKnownNegativeOp0 = Known2.
isNegative();
394 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
406 (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
408 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.
isNonZero());
412 bool SelfMultiply = Op0 == Op1;
421 unsigned OutValidBits = 2 * (TyBits - SignBits + 1);
423 if (OutValidBits < TyBits) {
424 APInt KnownZeroMask =
426 Known.
Zero |= KnownZeroMask;
444 unsigned NumRanges = Ranges.getNumOperands() / 2;
449 for (
unsigned i = 0; i < NumRanges; ++i) {
458 "Known bit width must match range bit width!");
461 unsigned CommonPrefixBits =
462 (
Range.getUnsignedMax() ^
Range.getUnsignedMin()).countl_zero();
465 Known.
One &= UnsignedMax & Mask;
466 Known.
Zero &= ~UnsignedMax & Mask;
481 while (!WorkSet.
empty()) {
483 if (!Visited.
insert(V).second)
488 return EphValues.count(cast<Instruction>(U));
493 if (V ==
I || (!V->mayHaveSideEffects() && !V->isTerminator())) {
497 for (
const Use &U : U->operands()) {
512 return CI->isAssumeLikeIntrinsic();
520 bool AllowEphemerals) {
538 if (!AllowEphemerals && Inv == CxtI)
569 if (CtxI->
getParent() != Assume->getParent() || !Assume->comesBefore(CtxI))
578 for (
const auto &[Idx,
I] :
584 if (!CB->hasFnAttr(Attribute::NoFree))
616 for (
unsigned ElemIdx = 0, NElem = VC->getNumElements(); ElemIdx < NElem;
619 Pred, VC->getElementAsAPInt(ElemIdx));
628 const PHINode **PhiOut =
nullptr) {
632 CtxIOut =
PHI->getIncomingBlock(*U)->getTerminator();
648 IncPhi && IncPhi->getNumIncomingValues() == 2) {
649 for (
int Idx = 0; Idx < 2; ++Idx) {
650 if (IncPhi->getIncomingValue(Idx) ==
PHI) {
651 ValOut = IncPhi->getIncomingValue(1 - Idx);
654 CtxIOut = IncPhi->getIncomingBlock(1 - Idx)->getTerminator();
673 "Got assumption for the wrong function!");
676 if (!V->getType()->isPointerTy())
679 *
I,
I->bundle_op_info_begin()[Elem.Index])) {
681 (RK.AttrKind == Attribute::NonNull ||
682 (RK.AttrKind == Attribute::Dereferenceable &&
711 if (
RHS->getType()->isPointerTy()) {
753 Known.
Zero |= ~*
C & *Mask;
759 Known.
One |= *
C & ~*Mask;
818 Invert ? Cmp->getInversePredicate() : Cmp->getPredicate();
824 KnownBits DstKnown(
LHS->getType()->getScalarSizeInBits());
838 bool Invert,
unsigned Depth) {
920 "Got assumption for the wrong function!");
923 if (!V->getType()->isPointerTy())
926 *
I,
I->bundle_op_info_begin()[Elem.Index])) {
930 if (RK.WasOn == V && RK.AttrKind == Attribute::Alignment &&
942 Value *Arg =
I->getArgOperand(0);
958 if (Trunc && Trunc->getOperand(0) == V &&
960 if (Trunc->hasNoUnsignedWrap()) {
1008 Known = KF(Known2, Known, ShAmtNonZero);
1019 Value *
X =
nullptr, *
Y =
nullptr;
1021 switch (
I->getOpcode()) {
1022 case Instruction::And:
1023 KnownOut = KnownLHS & KnownRHS;
1033 KnownOut = KnownLHS.
blsi();
1035 KnownOut = KnownRHS.
blsi();
1038 case Instruction::Or:
1039 KnownOut = KnownLHS | KnownRHS;
1041 case Instruction::Xor:
1042 KnownOut = KnownLHS ^ KnownRHS;
1052 const KnownBits &XBits =
I->getOperand(0) ==
X ? KnownLHS : KnownRHS;
1053 KnownOut = XBits.
blsmsk();
1066 if (!KnownOut.
Zero[0] && !KnownOut.
One[0] &&
1087 APInt DemandedEltsLHS, DemandedEltsRHS;
1089 DemandedElts, DemandedEltsLHS,
1092 const auto ComputeForSingleOpFunc =
1094 return KnownBitsFunc(
1099 if (DemandedEltsRHS.
isZero())
1100 return ComputeForSingleOpFunc(
I->getOperand(0), DemandedEltsLHS);
1101 if (DemandedEltsLHS.
isZero())
1102 return ComputeForSingleOpFunc(
I->getOperand(1), DemandedEltsRHS);
1104 return ComputeForSingleOpFunc(
I->getOperand(0), DemandedEltsLHS)
1105 .intersectWith(ComputeForSingleOpFunc(
I->getOperand(1), DemandedEltsRHS));
1115 APInt DemandedElts =
1123 Attribute Attr =
F->getFnAttribute(Attribute::VScaleRange);
1131 return ConstantRange::getEmpty(
BitWidth);
1142 Value *Arm,
bool Invert,
1181 "Input should be a Select!");
1191 const Value *LHS2 =
nullptr, *RHS2 =
nullptr;
1203 return CLow->
sle(*CHigh);
1208 const APInt *&CHigh) {
1209 assert((
II->getIntrinsicID() == Intrinsic::smin ||
1210 II->getIntrinsicID() == Intrinsic::smax) &&
1211 "Must be smin/smax");
1215 if (!InnerII || InnerII->getIntrinsicID() != InverseID ||
1220 if (
II->getIntrinsicID() == Intrinsic::smin)
1222 return CLow->
sle(*CHigh);
1227 const APInt *CLow, *CHigh;
1234 const APInt &DemandedElts,
1241 switch (
I->getOpcode()) {
1243 case Instruction::Load:
1248 case Instruction::And:
1254 case Instruction::Or:
1260 case Instruction::Xor:
1266 case Instruction::Mul: {
1270 DemandedElts, Known, Known2, Q,
Depth);
1273 case Instruction::UDiv: {
1280 case Instruction::SDiv: {
1287 case Instruction::Select: {
1288 auto ComputeForArm = [&](
Value *Arm,
bool Invert) {
1296 ComputeForArm(
I->getOperand(1),
false)
1300 case Instruction::FPTrunc:
1301 case Instruction::FPExt:
1302 case Instruction::FPToUI:
1303 case Instruction::FPToSI:
1304 case Instruction::SIToFP:
1305 case Instruction::UIToFP:
1307 case Instruction::PtrToInt:
1308 case Instruction::IntToPtr:
1311 case Instruction::ZExt:
1312 case Instruction::Trunc: {
1313 Type *SrcTy =
I->getOperand(0)->getType();
1315 unsigned SrcBitWidth;
1323 assert(SrcBitWidth &&
"SrcBitWidth can't be zero");
1327 Inst && Inst->hasNonNeg() && !Known.
isNegative())
1332 case Instruction::BitCast: {
1333 Type *SrcTy =
I->getOperand(0)->getType();
1334 if (SrcTy->isIntOrPtrTy() &&
1337 !
I->getType()->isVectorTy()) {
1345 V->getType()->isFPOrFPVectorTy()) {
1346 Type *FPType = V->getType()->getScalarType();
1358 if (FPClasses &
fcInf)
1370 if (Result.SignBit) {
1371 if (*Result.SignBit)
1382 if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() ||
1383 !
I->getType()->isIntOrIntVectorTy() ||
1391 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits();
1407 unsigned SubScale =
BitWidth / SubBitWidth;
1409 for (
unsigned i = 0; i != NumElts; ++i) {
1410 if (DemandedElts[i])
1411 SubDemandedElts.
setBit(i * SubScale);
1415 for (
unsigned i = 0; i != SubScale; ++i) {
1418 unsigned ShiftElt = IsLE ? i : SubScale - 1 - i;
1419 Known.
insertBits(KnownSrc, ShiftElt * SubBitWidth);
1425 unsigned SubScale = SubBitWidth /
BitWidth;
1427 APInt SubDemandedElts =
1433 for (
unsigned i = 0; i != NumElts; ++i) {
1434 if (DemandedElts[i]) {
1435 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
1445 case Instruction::SExt: {
1447 unsigned SrcBitWidth =
I->getOperand(0)->getType()->getScalarSizeInBits();
1449 Known = Known.
trunc(SrcBitWidth);
1456 case Instruction::Shl: {
1460 bool ShAmtNonZero) {
1461 return KnownBits::shl(KnownVal, KnownAmt, NUW, NSW, ShAmtNonZero);
1471 case Instruction::LShr: {
1474 bool ShAmtNonZero) {
1485 case Instruction::AShr: {
1488 bool ShAmtNonZero) {
1495 case Instruction::Sub: {
1499 DemandedElts, Known, Known2, Q,
Depth);
1502 case Instruction::Add: {
1506 DemandedElts, Known, Known2, Q,
Depth);
1509 case Instruction::SRem:
1515 case Instruction::URem:
1520 case Instruction::Alloca:
1523 case Instruction::GetElementPtr: {
1530 APInt AccConstIndices(IndexWidth, 0);
1532 auto AddIndexToKnown = [&](
KnownBits IndexBits) {
1541 "Index width can't be larger than pointer width");
1547 for (
unsigned i = 1, e =
I->getNumOperands(); i != e; ++i, ++GTI) {
1552 Value *Index =
I->getOperand(i);
1563 "Access to structure field must be known at compile time");
1571 AccConstIndices +=
Offset;
1588 CI->getValue().
sextOrTrunc(IndexWidth) * StrideInBytes;
1612 case Instruction::PHI: {
1615 Value *R =
nullptr, *L =
nullptr;
1628 case Instruction::LShr:
1629 case Instruction::AShr:
1630 case Instruction::Shl:
1631 case Instruction::UDiv:
1638 case Instruction::URem: {
1651 case Instruction::Shl:
1655 case Instruction::LShr:
1656 case Instruction::UDiv:
1657 case Instruction::URem:
1662 case Instruction::AShr:
1674 case Instruction::Add:
1675 case Instruction::Sub:
1676 case Instruction::And:
1677 case Instruction::Or:
1678 case Instruction::Mul: {
1685 unsigned OpNum =
P->getOperand(0) == R ? 0 : 1;
1686 Instruction *RInst =
P->getIncomingBlock(OpNum)->getTerminator();
1687 Instruction *LInst =
P->getIncomingBlock(1 - OpNum)->getTerminator();
1716 case Instruction::Add: {
1726 case Instruction::Sub: {
1737 case Instruction::Mul:
1754 if (
P->getNumIncomingValues() == 0)
1765 for (
const Use &U :
P->operands()) {
1800 if ((TrueSucc == CxtPhi->
getParent()) !=
1817 Known2 = KnownUnion;
1831 case Instruction::Call:
1832 case Instruction::Invoke: {
1842 if (std::optional<ConstantRange>
Range = CB->getRange())
1845 if (
const Value *RV = CB->getReturnedArgOperand()) {
1846 if (RV->getType() ==
I->getType()) {
1858 switch (
II->getIntrinsicID()) {
1861 case Intrinsic::abs: {
1863 bool IntMinIsPoison =
match(
II->getArgOperand(1),
m_One());
1867 case Intrinsic::bitreverse:
1871 case Intrinsic::bswap:
1875 case Intrinsic::ctlz: {
1881 PossibleLZ = std::min(PossibleLZ,
BitWidth - 1);
1886 case Intrinsic::cttz: {
1892 PossibleTZ = std::min(PossibleTZ,
BitWidth - 1);
1897 case Intrinsic::ctpop: {
1908 case Intrinsic::fshr:
1909 case Intrinsic::fshl: {
1916 if (
II->getIntrinsicID() == Intrinsic::fshr)
1923 Known2 <<= ShiftAmt;
1928 case Intrinsic::uadd_sat:
1933 case Intrinsic::usub_sat:
1938 case Intrinsic::sadd_sat:
1943 case Intrinsic::ssub_sat:
1949 case Intrinsic::vector_reverse:
1955 case Intrinsic::vector_reduce_and:
1956 case Intrinsic::vector_reduce_or:
1957 case Intrinsic::vector_reduce_umax:
1958 case Intrinsic::vector_reduce_umin:
1959 case Intrinsic::vector_reduce_smax:
1960 case Intrinsic::vector_reduce_smin:
1963 case Intrinsic::vector_reduce_xor: {
1970 bool EvenCnt = VecTy->getElementCount().isKnownEven();
1974 if (VecTy->isScalableTy() || EvenCnt)
1978 case Intrinsic::umin:
1983 case Intrinsic::umax:
1988 case Intrinsic::smin:
1994 case Intrinsic::smax:
2000 case Intrinsic::ptrmask: {
2003 const Value *Mask =
I->getOperand(1);
2004 Known2 =
KnownBits(Mask->getType()->getScalarSizeInBits());
2010 case Intrinsic::x86_sse2_pmulh_w:
2011 case Intrinsic::x86_avx2_pmulh_w:
2012 case Intrinsic::x86_avx512_pmulh_w_512:
2017 case Intrinsic::x86_sse2_pmulhu_w:
2018 case Intrinsic::x86_avx2_pmulhu_w:
2019 case Intrinsic::x86_avx512_pmulhu_w_512:
2024 case Intrinsic::x86_sse42_crc32_64_64:
2027 case Intrinsic::x86_ssse3_phadd_d_128:
2028 case Intrinsic::x86_ssse3_phadd_w_128:
2029 case Intrinsic::x86_avx2_phadd_d:
2030 case Intrinsic::x86_avx2_phadd_w: {
2032 I, DemandedElts, Q,
Depth,
2038 case Intrinsic::x86_ssse3_phadd_sw_128:
2039 case Intrinsic::x86_avx2_phadd_sw: {
2044 case Intrinsic::x86_ssse3_phsub_d_128:
2045 case Intrinsic::x86_ssse3_phsub_w_128:
2046 case Intrinsic::x86_avx2_phsub_d:
2047 case Intrinsic::x86_avx2_phsub_w: {
2049 I, DemandedElts, Q,
Depth,
2055 case Intrinsic::x86_ssse3_phsub_sw_128:
2056 case Intrinsic::x86_avx2_phsub_sw: {
2061 case Intrinsic::riscv_vsetvli:
2062 case Intrinsic::riscv_vsetvlimax: {
2063 bool HasAVL =
II->getIntrinsicID() == Intrinsic::riscv_vsetvli;
2076 MaxVL = std::min(MaxVL, CI->getZExtValue());
2078 unsigned KnownZeroFirstBit =
Log2_32(MaxVL) + 1;
2083 case Intrinsic::vscale: {
2084 if (!
II->getParent() || !
II->getFunction())
2094 case Instruction::ShuffleVector: {
2103 APInt DemandedLHS, DemandedRHS;
2109 if (!!DemandedLHS) {
2110 const Value *
LHS = Shuf->getOperand(0);
2116 if (!!DemandedRHS) {
2117 const Value *
RHS = Shuf->getOperand(1);
2123 case Instruction::InsertElement: {
2128 const Value *Vec =
I->getOperand(0);
2129 const Value *Elt =
I->getOperand(1);
2132 APInt DemandedVecElts = DemandedElts;
2133 bool NeedsElt =
true;
2135 if (CIdx && CIdx->getValue().ult(NumElts)) {
2136 DemandedVecElts.
clearBit(CIdx->getZExtValue());
2137 NeedsElt = DemandedElts[CIdx->getZExtValue()];
2148 if (!DemandedVecElts.
isZero()) {
2154 case Instruction::ExtractElement: {
2157 const Value *Vec =
I->getOperand(0);
2158 const Value *Idx =
I->getOperand(1);
2167 if (CIdx && CIdx->getValue().ult(NumElts))
2172 case Instruction::ExtractValue:
2177 switch (
II->getIntrinsicID()) {
2179 case Intrinsic::uadd_with_overflow:
2180 case Intrinsic::sadd_with_overflow:
2182 true,
II->getArgOperand(0),
II->getArgOperand(1),
false,
2183 false, DemandedElts, Known, Known2, Q,
Depth);
2185 case Intrinsic::usub_with_overflow:
2186 case Intrinsic::ssub_with_overflow:
2188 false,
II->getArgOperand(0),
II->getArgOperand(1),
false,
2189 false, DemandedElts, Known, Known2, Q,
Depth);
2191 case Intrinsic::umul_with_overflow:
2192 case Intrinsic::smul_with_overflow:
2194 false, DemandedElts, Known, Known2, Q,
Depth);
2200 case Instruction::Freeze:
2244 if (!DemandedElts) {
2250 assert(V &&
"No Value?");
2254 Type *Ty = V->getType();
2257 assert((Ty->isIntOrIntVectorTy(
BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
2258 "Not integer or pointer type!");
2262 FVTy->getNumElements() == DemandedElts.
getBitWidth() &&
2263 "DemandedElt width should equal the fixed vector number of elements");
2266 "DemandedElt width should be 1 for scalars or scalable vectors");
2272 "V and Known should have same BitWidth");
2275 "V and Known should have same BitWidth");
2297 for (
unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
2298 if (!DemandedElts[i])
2300 APInt Elt = CDV->getElementAsAPInt(i);
2314 for (
unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
2315 if (!DemandedElts[i])
2325 const APInt &Elt = ElementCI->getValue();
2346 if (std::optional<ConstantRange>
Range =
A->getRange())
2347 Known =
Range->toKnownBits();
2356 if (!GA->isInterposable())
2364 if (std::optional<ConstantRange> CR = GV->getAbsoluteSymbolRange())
2365 Known = CR->toKnownBits();
2370 Align Alignment = V->getPointerAlignment(Q.
DL);
2386 Value *Start =
nullptr, *Step =
nullptr;
2392 if (U.get() == Start) {
2408 case Instruction::Mul:
2413 case Instruction::SDiv:
2419 case Instruction::UDiv:
2425 case Instruction::Shl:
2427 case Instruction::AShr:
2431 case Instruction::LShr:
2469 if (OrZero && V->getType()->getScalarSizeInBits() == 1)
2511 return F->hasFnAttribute(Attribute::VScaleRange);
2528 switch (
I->getOpcode()) {
2529 case Instruction::ZExt:
2531 case Instruction::Trunc:
2533 case Instruction::Shl:
2537 case Instruction::LShr:
2541 case Instruction::UDiv:
2545 case Instruction::Mul:
2549 case Instruction::And:
2560 case Instruction::Add: {
2566 if (
match(
I->getOperand(0),
2570 if (
match(
I->getOperand(1),
2575 unsigned BitWidth = V->getType()->getScalarSizeInBits();
2584 if ((~(LHSBits.
Zero & RHSBits.
Zero)).isPowerOf2())
2597 case Instruction::Select:
2600 case Instruction::PHI: {
2621 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2622 return isKnownToBeAPowerOfTwo(U.get(), OrZero, RecQ, NewDepth);
2625 case Instruction::Invoke:
2626 case Instruction::Call: {
2628 switch (
II->getIntrinsicID()) {
2629 case Intrinsic::umax:
2630 case Intrinsic::smax:
2631 case Intrinsic::umin:
2632 case Intrinsic::smin:
2637 case Intrinsic::bitreverse:
2638 case Intrinsic::bswap:
2640 case Intrinsic::fshr:
2641 case Intrinsic::fshl:
2643 if (
II->getArgOperand(0) ==
II->getArgOperand(1))
2667 F =
I->getFunction();
2671 if (!
GEP->hasNoUnsignedWrap() &&
2672 !(
GEP->isInBounds() &&
2677 assert(
GEP->getType()->isPointerTy() &&
"We only support plain pointer GEP");
2688 GTI != GTE; ++GTI) {
2690 if (
StructType *STy = GTI.getStructTypeOrNull()) {
2695 if (ElementOffset > 0)
2701 if (GTI.getSequentialElementStride(Q.
DL).isZero())
2735 unsigned NumUsesExplored = 0;
2736 for (
auto &U : V->uses()) {
2745 if (V->getType()->isPointerTy()) {
2747 if (CB->isArgOperand(&U) &&
2748 CB->paramHasNonNullAttr(CB->getArgOperandNo(&U),
2776 NonNullIfTrue =
true;
2778 NonNullIfTrue =
false;
2784 for (
const auto *CmpU : UI->
users()) {
2786 if (Visited.
insert(CmpU).second)
2789 while (!WorkList.
empty()) {
2798 for (
const auto *CurrU : Curr->users())
2799 if (Visited.
insert(CurrU).second)
2805 assert(BI->isConditional() &&
"uses a comparison!");
2808 BI->getSuccessor(NonNullIfTrue ? 0 : 1);
2812 }
else if (NonNullIfTrue &&
isGuard(Curr) &&
2827 const unsigned NumRanges = Ranges->getNumOperands() / 2;
2829 for (
unsigned i = 0; i < NumRanges; ++i) {
2845 Value *Start =
nullptr, *Step =
nullptr;
2846 const APInt *StartC, *StepC;
2852 case Instruction::Add:
2858 case Instruction::Mul:
2861 case Instruction::Shl:
2863 case Instruction::AShr:
2864 case Instruction::LShr:
2880 bool NUW,
unsigned Depth) {
2937 return ::isKnownNonEqual(
X,
Y, DemandedElts, Q,
Depth);
2942 bool NUW,
unsigned Depth) {
2971 auto ShiftOp = [&](
const APInt &Lhs,
const APInt &Rhs) {
2972 switch (
I->getOpcode()) {
2973 case Instruction::Shl:
2974 return Lhs.
shl(Rhs);
2975 case Instruction::LShr:
2976 return Lhs.
lshr(Rhs);
2977 case Instruction::AShr:
2978 return Lhs.
ashr(Rhs);
2984 auto InvShiftOp = [&](
const APInt &Lhs,
const APInt &Rhs) {
2985 switch (
I->getOpcode()) {
2986 case Instruction::Shl:
2987 return Lhs.
lshr(Rhs);
2988 case Instruction::LShr:
2989 case Instruction::AShr:
2990 return Lhs.
shl(Rhs);
3003 if (MaxShift.
uge(NumBits))
3006 if (!ShiftOp(KnownVal.
One, MaxShift).isZero())
3011 if (InvShiftOp(KnownVal.
Zero, NumBits - MaxShift)
3020 const APInt &DemandedElts,
3023 switch (
I->getOpcode()) {
3024 case Instruction::Alloca:
3026 return I->getType()->getPointerAddressSpace() == 0;
3027 case Instruction::GetElementPtr:
3028 if (
I->getType()->isPointerTy())
3031 case Instruction::BitCast: {
3059 Type *FromTy =
I->getOperand(0)->getType();
3064 case Instruction::IntToPtr:
3073 case Instruction::PtrToInt:
3081 case Instruction::Trunc:
3084 if (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap())
3090 case Instruction::Xor:
3091 case Instruction::Sub:
3093 I->getOperand(1),
Depth);
3094 case Instruction::Or:
3105 case Instruction::SExt:
3106 case Instruction::ZExt:
3110 case Instruction::Shl: {
3125 case Instruction::LShr:
3126 case Instruction::AShr: {
3141 case Instruction::UDiv:
3142 case Instruction::SDiv: {
3157 if (
I->getOpcode() == Instruction::SDiv) {
3159 XKnown = XKnown.
abs(
false);
3160 YKnown = YKnown.
abs(
false);
3166 return XUgeY && *XUgeY;
3168 case Instruction::Add: {
3178 case Instruction::Mul: {
3184 case Instruction::Select: {
3191 auto SelectArmIsNonZero = [&](
bool IsTrueArm) {
3193 Op = IsTrueArm ?
I->getOperand(1) :
I->getOperand(2);
3211 if (SelectArmIsNonZero(
true) &&
3212 SelectArmIsNonZero(
false))
3216 case Instruction::PHI: {
3227 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
3231 BasicBlock *TrueSucc, *FalseSucc;
3232 if (match(RecQ.CxtI,
3233 m_Br(m_c_ICmp(Pred, m_Specific(U.get()), m_Value(X)),
3234 m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) {
3236 if ((TrueSucc == PN->getParent()) != (FalseSucc == PN->getParent())) {
3238 if (FalseSucc == PN->getParent())
3239 Pred = CmpInst::getInversePredicate(Pred);
3240 if (cmpExcludesZero(Pred, X))
3248 case Instruction::InsertElement: {
3252 const Value *Vec =
I->getOperand(0);
3253 const Value *Elt =
I->getOperand(1);
3257 APInt DemandedVecElts = DemandedElts;
3258 bool SkipElt =
false;
3260 if (CIdx && CIdx->getValue().ult(NumElts)) {
3261 DemandedVecElts.
clearBit(CIdx->getZExtValue());
3262 SkipElt = !DemandedElts[CIdx->getZExtValue()];
3268 (DemandedVecElts.
isZero() ||
3271 case Instruction::ExtractElement:
3273 const Value *Vec = EEI->getVectorOperand();
3274 const Value *Idx = EEI->getIndexOperand();
3277 unsigned NumElts = VecTy->getNumElements();
3279 if (CIdx && CIdx->getValue().ult(NumElts))
3285 case Instruction::ShuffleVector: {
3289 APInt DemandedLHS, DemandedRHS;
3295 return (DemandedRHS.
isZero() ||
3300 case Instruction::Freeze:
3304 case Instruction::Load: {
3321 case Instruction::ExtractValue: {
3327 case Instruction::Add:
3332 case Instruction::Sub:
3335 case Instruction::Mul:
3338 false,
false,
Depth);
3344 case Instruction::Call:
3345 case Instruction::Invoke: {
3347 if (
I->getType()->isPointerTy()) {
3348 if (
Call->isReturnNonNull())
3355 if (std::optional<ConstantRange>
Range =
Call->getRange()) {
3356 const APInt ZeroValue(
Range->getBitWidth(), 0);
3357 if (!
Range->contains(ZeroValue))
3360 if (
const Value *RV =
Call->getReturnedArgOperand())
3366 switch (
II->getIntrinsicID()) {
3367 case Intrinsic::sshl_sat:
3368 case Intrinsic::ushl_sat:
3369 case Intrinsic::abs:
3370 case Intrinsic::bitreverse:
3371 case Intrinsic::bswap:
3372 case Intrinsic::ctpop:
3376 case Intrinsic::ssub_sat:
3379 case Intrinsic::sadd_sat:
3381 II->getArgOperand(1),
3382 true,
false,
Depth);
3384 case Intrinsic::vector_reverse:
3388 case Intrinsic::vector_reduce_or:
3389 case Intrinsic::vector_reduce_umax:
3390 case Intrinsic::vector_reduce_umin:
3391 case Intrinsic::vector_reduce_smax:
3392 case Intrinsic::vector_reduce_smin:
3394 case Intrinsic::umax:
3395 case Intrinsic::uadd_sat:
3403 case Intrinsic::smax: {
3406 auto IsNonZero = [&](
Value *
Op, std::optional<bool> &OpNonZero,
3408 if (!OpNonZero.has_value())
3409 OpNonZero = OpKnown.isNonZero() ||
3414 std::optional<bool> Op0NonZero, Op1NonZero;
3418 IsNonZero(
II->getArgOperand(1), Op1NonZero, Op1Known))
3423 IsNonZero(
II->getArgOperand(0), Op0NonZero, Op0Known))
3425 return IsNonZero(
II->getArgOperand(1), Op1NonZero, Op1Known) &&
3426 IsNonZero(
II->getArgOperand(0), Op0NonZero, Op0Known);
3428 case Intrinsic::smin: {
3444 case Intrinsic::umin:
3447 case Intrinsic::cttz:
3450 case Intrinsic::ctlz:
3453 case Intrinsic::fshr:
3454 case Intrinsic::fshl:
3456 if (
II->getArgOperand(0) ==
II->getArgOperand(1))
3459 case Intrinsic::vscale:
3461 case Intrinsic::experimental_get_vector_length:
3475 return Known.
One != 0;
3486 Type *Ty = V->getType();
3493 FVTy->getNumElements() == DemandedElts.
getBitWidth() &&
3494 "DemandedElt width should equal the fixed vector number of elements");
3497 "DemandedElt width should be 1 for scalars");
3502 if (
C->isNullValue())
3511 for (
unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
3512 if (!DemandedElts[i])
3514 Constant *Elt =
C->getAggregateElement(i);
3531 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
3532 GV->getType()->getAddressSpace() == 0)
3542 if (std::optional<ConstantRange>
Range =
A->getRange()) {
3543 const APInt ZeroValue(
Range->getBitWidth(), 0);
3544 if (!
Range->contains(ZeroValue))
3561 if (((
A->hasPassPointeeByValueCopyAttr() &&
3563 A->hasNonNullAttr()))
3585 APInt DemandedElts =
3587 return ::isKnownNonZero(V, DemandedElts, Q,
Depth);
3596static std::optional<std::pair<Value*, Value*>>
3600 return std::nullopt;
3609 case Instruction::Or:
3614 case Instruction::Xor:
3615 case Instruction::Add: {
3623 case Instruction::Sub:
3629 case Instruction::Mul: {
3635 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
3636 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
3646 case Instruction::Shl: {
3651 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
3652 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
3659 case Instruction::AShr:
3660 case Instruction::LShr: {
3663 if (!PEO1->isExact() || !PEO2->isExact())
3670 case Instruction::SExt:
3671 case Instruction::ZExt:
3675 case Instruction::PHI: {
3683 Value *Start1 =
nullptr, *Step1 =
nullptr;
3685 Value *Start2 =
nullptr, *Step2 =
nullptr;
3701 if (Values->first != PN1 || Values->second != PN2)
3704 return std::make_pair(Start1, Start2);
3707 return std::nullopt;
3714 const APInt &DemandedElts,
3722 case Instruction::Or:
3726 case Instruction::Xor:
3727 case Instruction::Add:
3748 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
3749 !
C->isZero() && !
C->isOne() &&
3763 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
3777 bool UsedFullRecursion =
false;
3779 if (!VisitedBBs.
insert(IncomBB).second)
3783 const APInt *C1, *C2;
3788 if (UsedFullRecursion)
3792 RecQ.
CxtI = IncomBB->getTerminator();
3795 UsedFullRecursion =
true;
3809 const Value *Cond2 = SI2->getCondition();
3812 DemandedElts, Q,
Depth + 1) &&
3814 DemandedElts, Q,
Depth + 1);
3827 if (!
A->getType()->isPointerTy() || !
B->getType()->isPointerTy())
3831 if (!GEPA || GEPA->getNumIndices() != 1 || !
isa<Constant>(GEPA->idx_begin()))
3836 if (!PN || PN->getNumIncomingValues() != 2)
3841 Value *Start =
nullptr;
3843 if (PN->getIncomingValue(0) == Step)
3844 Start = PN->getIncomingValue(1);
3845 else if (PN->getIncomingValue(1) == Step)
3846 Start = PN->getIncomingValue(0);
3857 APInt StartOffset(IndexWidth, 0);
3858 Start = Start->stripAndAccumulateInBoundsConstantOffsets(Q.
DL, StartOffset);
3859 APInt StepOffset(IndexWidth, 0);
3865 APInt OffsetB(IndexWidth, 0);
3866 B =
B->stripAndAccumulateInBoundsConstantOffsets(Q.
DL, OffsetB);
3867 return Start ==
B &&
3879 auto IsKnownNonEqualFromDominatingCondition = [&](
const Value *V) {
3900 if (IsKnownNonEqualFromDominatingCondition(V1) ||
3901 IsKnownNonEqualFromDominatingCondition(V2))
3915 "Got assumption for the wrong function!");
3916 assert(
I->getIntrinsicID() == Intrinsic::assume &&
3917 "must be an assume intrinsic");
3947 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
3949 return isKnownNonEqual(Values->first, Values->second, DemandedElts, Q,
4011 const APInt &DemandedElts,
4017 unsigned MinSignBits = TyBits;
4019 for (
unsigned i = 0; i != NumElts; ++i) {
4020 if (!DemandedElts[i])
4027 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
4034 const APInt &DemandedElts,
4040 assert(Result > 0 &&
"At least one sign bit needs to be present!");
4052 const APInt &DemandedElts,
4054 Type *Ty = V->getType();
4060 FVTy->getNumElements() == DemandedElts.
getBitWidth() &&
4061 "DemandedElt width should equal the fixed vector number of elements");
4064 "DemandedElt width should be 1 for scalars");
4078 unsigned FirstAnswer = 1;
4089 case Instruction::BitCast: {
4090 Value *Src = U->getOperand(0);
4091 Type *SrcTy = Src->getType();
4095 if (!SrcTy->isIntOrIntVectorTy())
4101 if ((SrcBits % TyBits) != 0)
4114 case Instruction::SExt:
4115 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
4119 case Instruction::SDiv: {
4120 const APInt *Denominator;
4133 return std::min(TyBits, NumBits + Denominator->
logBase2());
4138 case Instruction::SRem: {
4141 const APInt *Denominator;
4162 unsigned ResBits = TyBits - Denominator->
ceilLogBase2();
4163 Tmp = std::max(Tmp, ResBits);
4169 case Instruction::AShr: {
4174 if (ShAmt->
uge(TyBits))
4177 Tmp += ShAmtLimited;
4178 if (Tmp > TyBits) Tmp = TyBits;
4182 case Instruction::Shl: {
4187 if (ShAmt->
uge(TyBits))
4192 ShAmt->
uge(TyBits -
X->getType()->getScalarSizeInBits())) {
4194 Tmp += TyBits -
X->getType()->getScalarSizeInBits();
4198 if (ShAmt->
uge(Tmp))
4205 case Instruction::And:
4206 case Instruction::Or:
4207 case Instruction::Xor:
4212 FirstAnswer = std::min(Tmp, Tmp2);
4219 case Instruction::Select: {
4223 const APInt *CLow, *CHigh;
4231 return std::min(Tmp, Tmp2);
4234 case Instruction::Add:
4238 if (Tmp == 1)
break;
4242 if (CRHS->isAllOnesValue()) {
4248 if ((Known.
Zero | 1).isAllOnes())
4260 return std::min(Tmp, Tmp2) - 1;
4262 case Instruction::Sub:
4269 if (CLHS->isNullValue()) {
4274 if ((Known.
Zero | 1).isAllOnes())
4291 return std::min(Tmp, Tmp2) - 1;
4293 case Instruction::Mul: {
4296 unsigned SignBitsOp0 =
4298 if (SignBitsOp0 == 1)
4300 unsigned SignBitsOp1 =
4302 if (SignBitsOp1 == 1)
4304 unsigned OutValidBits =
4305 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
4306 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
4309 case Instruction::PHI: {
4313 if (NumIncomingValues > 4)
break;
4315 if (NumIncomingValues == 0)
break;
4321 for (
unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
4322 if (Tmp == 1)
return Tmp;
4325 DemandedElts, RecQ,
Depth + 1));
4330 case Instruction::Trunc: {
4335 unsigned OperandTyBits = U->getOperand(0)->getType()->getScalarSizeInBits();
4336 if (Tmp > (OperandTyBits - TyBits))
4337 return Tmp - (OperandTyBits - TyBits);
4342 case Instruction::ExtractElement:
4349 case Instruction::ShuffleVector: {
4357 APInt DemandedLHS, DemandedRHS;
4362 Tmp = std::numeric_limits<unsigned>::max();
4363 if (!!DemandedLHS) {
4364 const Value *
LHS = Shuf->getOperand(0);
4371 if (!!DemandedRHS) {
4372 const Value *
RHS = Shuf->getOperand(1);
4374 Tmp = std::min(Tmp, Tmp2);
4380 assert(Tmp <= TyBits &&
"Failed to determine minimum sign bits");
4383 case Instruction::Call: {
4385 switch (
II->getIntrinsicID()) {
4388 case Intrinsic::abs:
4396 case Intrinsic::smin:
4397 case Intrinsic::smax: {
4398 const APInt *CLow, *CHigh;
4413 if (
unsigned VecSignBits =
4431 if (
F->isIntrinsic())
4432 return F->getIntrinsicID();
4438 if (
F->hasLocalLinkage() || !TLI || !TLI->
getLibFunc(CB, Func) ||
4448 return Intrinsic::sin;
4452 return Intrinsic::cos;
4456 return Intrinsic::tan;
4460 return Intrinsic::asin;
4464 return Intrinsic::acos;
4468 return Intrinsic::atan;
4470 case LibFunc_atan2f:
4471 case LibFunc_atan2l:
4472 return Intrinsic::atan2;
4476 return Intrinsic::sinh;
4480 return Intrinsic::cosh;
4484 return Intrinsic::tanh;
4488 return Intrinsic::exp;
4492 return Intrinsic::exp2;
4494 case LibFunc_exp10f:
4495 case LibFunc_exp10l:
4496 return Intrinsic::exp10;
4500 return Intrinsic::log;
4502 case LibFunc_log10f:
4503 case LibFunc_log10l:
4504 return Intrinsic::log10;
4508 return Intrinsic::log2;
4512 return Intrinsic::fabs;
4516 return Intrinsic::minnum;
4520 return Intrinsic::maxnum;
4521 case LibFunc_copysign:
4522 case LibFunc_copysignf:
4523 case LibFunc_copysignl:
4524 return Intrinsic::copysign;
4526 case LibFunc_floorf:
4527 case LibFunc_floorl:
4528 return Intrinsic::floor;
4532 return Intrinsic::ceil;
4534 case LibFunc_truncf:
4535 case LibFunc_truncl:
4536 return Intrinsic::trunc;
4540 return Intrinsic::rint;
4541 case LibFunc_nearbyint:
4542 case LibFunc_nearbyintf:
4543 case LibFunc_nearbyintl:
4544 return Intrinsic::nearbyint;
4546 case LibFunc_roundf:
4547 case LibFunc_roundl:
4548 return Intrinsic::round;
4549 case LibFunc_roundeven:
4550 case LibFunc_roundevenf:
4551 case LibFunc_roundevenl:
4552 return Intrinsic::roundeven;
4556 return Intrinsic::pow;
4560 return Intrinsic::sqrt;
4567 Ty = Ty->getScalarType();
4576 bool &TrueIfSigned) {
4579 TrueIfSigned =
true;
4580 return RHS.isZero();
4582 TrueIfSigned =
true;
4583 return RHS.isAllOnes();
4585 TrueIfSigned =
false;
4586 return RHS.isAllOnes();
4588 TrueIfSigned =
false;
4589 return RHS.isZero();
4592 TrueIfSigned =
true;
4593 return RHS.isMaxSignedValue();
4596 TrueIfSigned =
true;
4597 return RHS.isMinSignedValue();
4600 TrueIfSigned =
false;
4601 return RHS.isMinSignedValue();
4604 TrueIfSigned =
false;
4605 return RHS.isMaxSignedValue();
4615 unsigned Depth = 0) {
4640 KnownFromContext.
knownNot(~(CondIsTrue ? MaskIfTrue : MaskIfFalse));
4644 KnownFromContext.
knownNot(CondIsTrue ? ~Mask : Mask);
4650 if (TrueIfSigned == CondIsTrue)
4666 return KnownFromContext;
4686 return KnownFromContext;
4696 "Got assumption for the wrong function!");
4697 assert(
I->getIntrinsicID() == Intrinsic::assume &&
4698 "must be an assume intrinsic");
4704 true, Q.
CxtI, KnownFromContext);
4707 return KnownFromContext;
4718 APInt DemandedElts =
4724 const APInt &DemandedElts,
4729 if ((InterestedClasses &
4735 KnownSrc, Q,
Depth + 1);
4750 assert(Known.
isUnknown() &&
"should not be called with known information");
4752 if (!DemandedElts) {
4762 Known.
SignBit = CFP->isNegative();
4783 bool SignBitAllZero =
true;
4784 bool SignBitAllOne =
true;
4787 unsigned NumElts = VFVTy->getNumElements();
4788 for (
unsigned i = 0; i != NumElts; ++i) {
4789 if (!DemandedElts[i])
4805 const APFloat &
C = CElt->getValueAPF();
4808 SignBitAllZero =
false;
4810 SignBitAllOne =
false;
4812 if (SignBitAllOne != SignBitAllZero)
4813 Known.
SignBit = SignBitAllOne;
4819 KnownNotFromFlags |= CB->getRetNoFPClass();
4821 KnownNotFromFlags |= Arg->getNoFPClass();
4825 if (FPOp->hasNoNaNs())
4826 KnownNotFromFlags |=
fcNan;
4827 if (FPOp->hasNoInfs())
4828 KnownNotFromFlags |=
fcInf;
4832 KnownNotFromFlags |= ~AssumedClasses.KnownFPClasses;
4836 InterestedClasses &= ~KnownNotFromFlags;
4855 const unsigned Opc =
Op->getOpcode();
4857 case Instruction::FNeg: {
4859 Known, Q,
Depth + 1);
4863 case Instruction::Select: {
4871 Value *TestedValue =
nullptr;
4877 Value *CmpLHS, *CmpRHS;
4884 bool LookThroughFAbsFNeg = CmpLHS !=
LHS && CmpLHS !=
RHS;
4885 std::tie(TestedValue, MaskIfTrue, MaskIfFalse) =
4891 MaskIfTrue = TestedMask;
4892 MaskIfFalse = ~TestedMask;
4895 if (TestedValue ==
LHS) {
4897 FilterLHS = MaskIfTrue;
4898 }
else if (TestedValue ==
RHS) {
4900 FilterRHS = MaskIfFalse;
4909 Known2, Q,
Depth + 1);
4915 case Instruction::Call: {
4919 case Intrinsic::fabs: {
4924 InterestedClasses, Known, Q,
Depth + 1);
4930 case Intrinsic::copysign: {
4934 Known, Q,
Depth + 1);
4936 KnownSign, Q,
Depth + 1);
4940 case Intrinsic::fma:
4941 case Intrinsic::fmuladd: {
4945 if (
II->getArgOperand(0) !=
II->getArgOperand(1))
4954 KnownAddend, Q,
Depth + 1);
4960 case Intrinsic::sqrt:
4961 case Intrinsic::experimental_constrained_sqrt: {
4964 if (InterestedClasses &
fcNan)
4968 KnownSrc, Q,
Depth + 1);
4986 II->getType()->getScalarType()->getFltSemantics();
4995 case Intrinsic::sin:
4996 case Intrinsic::cos: {
5000 KnownSrc, Q,
Depth + 1);
5006 case Intrinsic::maxnum:
5007 case Intrinsic::minnum:
5008 case Intrinsic::minimum:
5009 case Intrinsic::maximum:
5010 case Intrinsic::minimumnum:
5011 case Intrinsic::maximumnum: {
5014 KnownLHS, Q,
Depth + 1);
5016 KnownRHS, Q,
Depth + 1);
5019 Known = KnownLHS | KnownRHS;
5023 (IID == Intrinsic::minnum || IID == Intrinsic::maxnum ||
5024 IID == Intrinsic::minimumnum || IID == Intrinsic::maximumnum))
5027 if (IID == Intrinsic::maxnum || IID == Intrinsic::maximumnum) {
5035 }
else if (IID == Intrinsic::maximum) {
5041 }
else if (IID == Intrinsic::minnum || IID == Intrinsic::minimumnum) {
5049 }
else if (IID == Intrinsic::minimum) {
5072 II->getType()->getScalarType()->getFltSemantics());
5084 }
else if ((IID == Intrinsic::maximum || IID == Intrinsic::minimum ||
5085 IID == Intrinsic::maximumnum ||
5086 IID == Intrinsic::minimumnum) ||
5094 KnownLHS.
SignBit = std::nullopt;
5096 KnownRHS.
SignBit = std::nullopt;
5097 if ((IID == Intrinsic::maximum || IID == Intrinsic::maximumnum ||
5098 IID == Intrinsic::maxnum) &&
5101 else if ((IID == Intrinsic::minimum || IID == Intrinsic::minimumnum ||
5102 IID == Intrinsic::minnum) &&
5109 case Intrinsic::canonicalize: {
5112 KnownSrc, Q,
Depth + 1);
5136 II->getType()->getScalarType()->getFltSemantics();
5156 case Intrinsic::vector_reduce_fmax:
5157 case Intrinsic::vector_reduce_fmin:
5158 case Intrinsic::vector_reduce_fmaximum:
5159 case Intrinsic::vector_reduce_fminimum: {
5163 InterestedClasses, Q,
Depth + 1);
5170 case Intrinsic::vector_reverse:
5173 II->getFastMathFlags(), InterestedClasses, Q,
Depth + 1);
5175 case Intrinsic::trunc:
5176 case Intrinsic::floor:
5177 case Intrinsic::ceil:
5178 case Intrinsic::rint:
5179 case Intrinsic::nearbyint:
5180 case Intrinsic::round:
5181 case Intrinsic::roundeven: {
5189 KnownSrc, Q,
Depth + 1);
5198 if (IID == Intrinsic::trunc || !V->getType()->isMultiUnitFPType()) {
5213 case Intrinsic::exp:
5214 case Intrinsic::exp2:
5215 case Intrinsic::exp10: {
5222 KnownSrc, Q,
Depth + 1);
5230 case Intrinsic::fptrunc_round: {
5235 case Intrinsic::log:
5236 case Intrinsic::log10:
5237 case Intrinsic::log2:
5238 case Intrinsic::experimental_constrained_log:
5239 case Intrinsic::experimental_constrained_log10:
5240 case Intrinsic::experimental_constrained_log2: {
5256 KnownSrc, Q,
Depth + 1);
5270 II->getType()->getScalarType()->getFltSemantics();
5278 case Intrinsic::powi: {
5282 const Value *Exp =
II->getArgOperand(1);
5283 Type *ExpTy = Exp->getType();
5287 ExponentKnownBits, Q,
Depth + 1);
5289 if (ExponentKnownBits.
Zero[0]) {
5304 KnownSrc, Q,
Depth + 1);
5309 case Intrinsic::ldexp: {
5312 KnownSrc, Q,
Depth + 1);
5328 if ((InterestedClasses & ExpInfoMask) ==
fcNone)
5334 II->getType()->getScalarType()->getFltSemantics();
5336 const Value *ExpArg =
II->getArgOperand(1);
5340 const int MantissaBits = Precision - 1;
5347 II->getType()->getScalarType()->getFltSemantics();
5348 if (ConstVal && ConstVal->
isZero()) {
5373 case Intrinsic::arithmetic_fence: {
5375 Known, Q,
Depth + 1);
5378 case Intrinsic::experimental_constrained_sitofp:
5379 case Intrinsic::experimental_constrained_uitofp:
5389 if (IID == Intrinsic::experimental_constrained_uitofp)
5400 case Instruction::FAdd:
5401 case Instruction::FSub: {
5404 Op->getOpcode() == Instruction::FAdd &&
5406 bool WantNaN = (InterestedClasses &
fcNan) !=
fcNone;
5409 if (!WantNaN && !WantNegative && !WantNegZero)
5415 if (InterestedClasses &
fcNan)
5416 InterestedSrcs |=
fcInf;
5418 KnownRHS, Q,
Depth + 1);
5422 WantNegZero ||
Opc == Instruction::FSub) {
5427 KnownLHS, Q,
Depth + 1);
5437 if (
Op->getOpcode() == Instruction::FAdd) {
5445 Op->getType()->getScalarType()->getFltSemantics();
5459 Op->getType()->getScalarType()->getFltSemantics();
5473 case Instruction::FMul: {
5475 if (
Op->getOperand(0) ==
Op->getOperand(1))
5512 Type *OpTy =
Op->getType()->getScalarType();
5524 case Instruction::FDiv:
5525 case Instruction::FRem: {
5526 if (
Op->getOperand(0) ==
Op->getOperand(1)) {
5528 if (
Op->getOpcode() == Instruction::FDiv) {
5539 const bool WantNan = (InterestedClasses &
fcNan) !=
fcNone;
5541 const bool WantPositive =
5543 if (!WantNan && !WantNegative && !WantPositive)
5552 bool KnowSomethingUseful =
5555 if (KnowSomethingUseful || WantPositive) {
5561 InterestedClasses & InterestedLHS, KnownLHS, Q,
5567 Op->getType()->getScalarType()->getFltSemantics();
5569 if (
Op->getOpcode() == Instruction::FDiv) {
5608 case Instruction::FPExt: {
5611 Known, Q,
Depth + 1);
5614 Op->getType()->getScalarType()->getFltSemantics();
5616 Op->getOperand(0)->getType()->getScalarType()->getFltSemantics();
5632 case Instruction::FPTrunc: {
5637 case Instruction::SIToFP:
5638 case Instruction::UIToFP: {
5647 if (
Op->getOpcode() == Instruction::UIToFP)
5650 if (InterestedClasses &
fcInf) {
5654 int IntSize =
Op->getOperand(0)->getType()->getScalarSizeInBits();
5655 if (
Op->getOpcode() == Instruction::SIToFP)
5660 Type *FPTy =
Op->getType()->getScalarType();
5667 case Instruction::ExtractElement: {
5670 const Value *Vec =
Op->getOperand(0);
5672 APInt DemandedVecElts;
5674 unsigned NumElts = VecTy->getNumElements();
5677 if (CIdx && CIdx->getValue().ult(NumElts))
5680 DemandedVecElts =
APInt(1, 1);
5686 case Instruction::InsertElement: {
5690 const Value *Vec =
Op->getOperand(0);
5691 const Value *Elt =
Op->getOperand(1);
5694 APInt DemandedVecElts = DemandedElts;
5695 bool NeedsElt =
true;
5697 if (CIdx && CIdx->getValue().ult(NumElts)) {
5698 DemandedVecElts.
clearBit(CIdx->getZExtValue());
5699 NeedsElt = DemandedElts[CIdx->getZExtValue()];
5713 if (!DemandedVecElts.
isZero()) {
5722 case Instruction::ShuffleVector: {
5725 APInt DemandedLHS, DemandedRHS;
5730 if (!!DemandedLHS) {
5731 const Value *
LHS = Shuf->getOperand(0);
5742 if (!!DemandedRHS) {
5744 const Value *
RHS = Shuf->getOperand(1);
5752 case Instruction::ExtractValue: {
5759 switch (
II->getIntrinsicID()) {
5760 case Intrinsic::frexp: {
5765 InterestedClasses, KnownSrc, Q,
Depth + 1);
5769 Op->getType()->getScalarType()->getFltSemantics();
5804 case Instruction::PHI: {
5807 if (
P->getNumIncomingValues() == 0)
5814 if (
Depth < PhiRecursionLimit) {
5821 for (
const Use &U :
P->operands()) {
5851 case Instruction::BitCast: {
5854 !Src->getType()->isIntOrIntVectorTy())
5857 const Type *Ty =
Op->getType()->getScalarType();
5858 KnownBits Bits(Ty->getScalarSizeInBits());
5862 if (Bits.isNonNegative())
5864 else if (Bits.isNegative())
5867 if (Ty->isIEEELikeFPTy()) {
5877 else if (!
APFloat(Ty->getFltSemantics(), ~Bits.Zero).
isNaN())
5884 InfKB.Zero.clearSignBit();
5886 assert(!InfResult.value());
5888 }
else if (Bits == InfKB) {
5896 ZeroKB.Zero.clearSignBit();
5898 assert(!ZeroResult.value());
5900 }
else if (Bits == ZeroKB) {
5913 const APInt &DemandedElts,
5920 return KnownClasses;
5946 InterestedClasses &=
~fcNan;
5948 InterestedClasses &=
~fcInf;
5954 Result.KnownFPClasses &=
~fcNan;
5956 Result.KnownFPClasses &=
~fcInf;
5965 APInt DemandedElts =
6019 if (FPOp->hasNoSignedZeros())
6023 switch (
User->getOpcode()) {
6024 case Instruction::FPToSI:
6025 case Instruction::FPToUI:
6027 case Instruction::FCmp:
6030 case Instruction::Call:
6032 switch (
II->getIntrinsicID()) {
6033 case Intrinsic::fabs:
6035 case Intrinsic::copysign:
6036 return U.getOperandNo() == 0;
6037 case Intrinsic::is_fpclass:
6038 case Intrinsic::vp_is_fpclass: {
6058 if (FPOp->hasNoNaNs())
6062 switch (
User->getOpcode()) {
6063 case Instruction::FPToSI:
6064 case Instruction::FPToUI:
6067 case Instruction::FAdd:
6068 case Instruction::FSub:
6069 case Instruction::FMul:
6070 case Instruction::FDiv:
6071 case Instruction::FRem:
6072 case Instruction::FPTrunc:
6073 case Instruction::FPExt:
6074 case Instruction::FCmp:
6077 case Instruction::FNeg:
6078 case Instruction::Select:
6079 case Instruction::PHI:
6081 case Instruction::Ret:
6082 return User->getFunction()->getAttributes().getRetNoFPClass() &
6084 case Instruction::Call:
6085 case Instruction::Invoke: {
6087 switch (
II->getIntrinsicID()) {
6088 case Intrinsic::fabs:
6090 case Intrinsic::copysign:
6091 return U.getOperandNo() == 0;
6093 case Intrinsic::maxnum:
6094 case Intrinsic::minnum:
6095 case Intrinsic::maximum:
6096 case Intrinsic::minimum:
6097 case Intrinsic::maximumnum:
6098 case Intrinsic::minimumnum:
6099 case Intrinsic::canonicalize:
6100 case Intrinsic::fma:
6101 case Intrinsic::fmuladd:
6102 case Intrinsic::sqrt:
6103 case Intrinsic::pow:
6104 case Intrinsic::powi:
6105 case Intrinsic::fptoui_sat:
6106 case Intrinsic::fptosi_sat:
6107 case Intrinsic::is_fpclass:
6108 case Intrinsic::vp_is_fpclass:
6127 if (V->getType()->isIntegerTy(8))
6138 if (
DL.getTypeStoreSize(V->getType()).isZero())
6153 if (
C->isNullValue())
6160 if (CFP->getType()->isHalfTy())
6162 else if (CFP->getType()->isFloatTy())
6164 else if (CFP->getType()->isDoubleTy())
6173 if (CI->getBitWidth() % 8 == 0) {
6174 assert(CI->getBitWidth() > 8 &&
"8 bits should be handled above!");
6175 if (!CI->getValue().isSplat(8))
6177 return ConstantInt::get(Ctx, CI->getValue().trunc(8));
6182 if (CE->getOpcode() == Instruction::IntToPtr) {
6184 unsigned BitWidth =
DL.getPointerSizeInBits(PtrTy->getAddressSpace());
6197 if (LHS == UndefInt8)
6199 if (RHS == UndefInt8)
6205 Value *Val = UndefInt8;
6206 for (
uint64_t I = 0, E = CA->getNumElements();
I != E; ++
I)
6213 Value *Val = UndefInt8;
6248 while (PrevTo != OrigTo) {
6295 unsigned IdxSkip = Idxs.
size();
6308 std::optional<BasicBlock::iterator> InsertBefore) {
6311 if (idx_range.
empty())
6314 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
6315 "Not looking at a struct or array?");
6317 "Invalid indices for type?");
6320 C =
C->getAggregateElement(idx_range[0]);
6321 if (!
C)
return nullptr;
6328 const unsigned *req_idx = idx_range.
begin();
6329 for (
const unsigned *i =
I->idx_begin(), *e =
I->idx_end();
6330 i != e; ++i, ++req_idx) {
6331 if (req_idx == idx_range.
end()) {
6361 ArrayRef(req_idx, idx_range.
end()), InsertBefore);
6370 unsigned size =
I->getNumIndices() + idx_range.
size();
6375 Idxs.
append(
I->idx_begin(),
I->idx_end());
6381 &&
"Number of indices added not correct?");
6398 assert(V &&
"V should not be null.");
6399 assert((ElementSize % 8) == 0 &&
6400 "ElementSize expected to be a multiple of the size of a byte.");
6401 unsigned ElementSizeInBytes = ElementSize / 8;
6413 APInt Off(
DL.getIndexTypeSizeInBits(V->getType()), 0);
6420 uint64_t StartIdx = Off.getLimitedValue();
6427 if ((StartIdx % ElementSizeInBytes) != 0)
6430 Offset += StartIdx / ElementSizeInBytes;
6436 uint64_t SizeInBytes =
DL.getTypeStoreSize(GVTy).getFixedValue();
6439 Slice.Array =
nullptr;
6451 Type *InitElTy = ArrayInit->getElementType();
6456 ArrayTy = ArrayInit->getType();
6461 if (ElementSize != 8)
6480 Slice.Array = Array;
6482 Slice.Length = NumElts -
Offset;
6496 if (Slice.Array ==
nullptr) {
6507 if (Slice.Length == 1) {
6519 Str = Str.
substr(Slice.Offset);
6525 Str = Str.substr(0, Str.find(
'\0'));
6538 unsigned CharSize) {
6540 V = V->stripPointerCasts();
6545 if (!PHIs.
insert(PN).second)
6550 for (
Value *IncValue : PN->incoming_values()) {
6552 if (Len == 0)
return 0;
6554 if (Len == ~0ULL)
continue;
6556 if (Len != LenSoFar && LenSoFar != ~0ULL)
6568 if (Len1 == 0)
return 0;
6570 if (Len2 == 0)
return 0;
6571 if (Len1 == ~0ULL)
return Len2;
6572 if (Len2 == ~0ULL)
return Len1;
6573 if (Len1 != Len2)
return 0;
6582 if (Slice.Array ==
nullptr)
6590 unsigned NullIndex = 0;
6591 for (
unsigned E = Slice.Length; NullIndex <
E; ++NullIndex) {
6592 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
6596 return NullIndex + 1;
6602 if (!V->getType()->isPointerTy())
6609 return Len == ~0ULL ? 1 : Len;
6614 bool MustPreserveNullness) {
6616 "getArgumentAliasingToReturnedPointer only works on nonnull calls");
6617 if (
const Value *RV =
Call->getReturnedArgOperand())
6621 Call, MustPreserveNullness))
6622 return Call->getArgOperand(0);
6628 switch (
Call->getIntrinsicID()) {
6629 case Intrinsic::launder_invariant_group:
6630 case Intrinsic::strip_invariant_group:
6631 case Intrinsic::aarch64_irg:
6632 case Intrinsic::aarch64_tagp:
6642 case Intrinsic::amdgcn_make_buffer_rsrc:
6644 case Intrinsic::ptrmask:
6645 return !MustPreserveNullness;
6646 case Intrinsic::threadlocal_address:
6649 return !
Call->getParent()->getParent()->isPresplitCoroutine();
6666 if (!PrevValue || LI->
getLoopFor(PrevValue->getParent()) != L)
6668 if (!PrevValue || LI->
getLoopFor(PrevValue->getParent()) != L)
6677 if (!L->isLoopInvariant(Load->getPointerOperand()))
6683 for (
unsigned Count = 0; MaxLookup == 0 ||
Count < MaxLookup; ++
Count) {
6685 const Value *PtrOp =
GEP->getPointerOperand();
6696 if (GA->isInterposable())
6698 V = GA->getAliasee();
6702 if (
PHI->getNumIncomingValues() == 1) {
6703 V =
PHI->getIncomingValue(0);
6724 assert(V->getType()->isPointerTy() &&
"Unexpected operand type!");
6731 const LoopInfo *LI,
unsigned MaxLookup) {
6739 if (!Visited.
insert(
P).second)
6768 }
while (!Worklist.
empty());
6772 const unsigned MaxVisited = 8;
6777 const Value *Object =
nullptr;
6787 if (!Visited.
insert(
P).second)
6790 if (Visited.
size() == MaxVisited)
6806 else if (Object !=
P)
6808 }
while (!Worklist.
empty());
6810 return Object ? Object : FirstObject;
6820 if (U->getOpcode() == Instruction::PtrToInt)
6821 return U->getOperand(0);
6828 if (U->getOpcode() != Instruction::Add ||
6833 V = U->getOperand(0);
6837 assert(V->getType()->isIntegerTy() &&
"Unexpected operand type!");
6854 for (
const Value *V : Objs) {
6855 if (!Visited.
insert(V).second)
6860 if (O->getType()->isPointerTy()) {
6873 }
while (!Working.
empty());
6882 auto AddWork = [&](
Value *V) {
6883 if (Visited.
insert(V).second)
6893 if (Result && Result != AI)
6897 AddWork(CI->getOperand(0));
6899 for (
Value *IncValue : PN->incoming_values())
6902 AddWork(
SI->getTrueValue());
6903 AddWork(
SI->getFalseValue());
6905 if (OffsetZero && !
GEP->hasAllZeroIndices())
6907 AddWork(
GEP->getPointerOperand());
6909 Value *Returned = CB->getReturnedArgOperand();
6917 }
while (!Worklist.
empty());
6923 const Value *V,
bool AllowLifetime,
bool AllowDroppable) {
6929 if (AllowLifetime &&
II->isLifetimeStartOrEnd())
6932 if (AllowDroppable &&
II->isDroppable())
6953 return (!Shuffle || Shuffle->isSelect()) &&
6960 bool IgnoreUBImplyingAttrs) {
6962 AC, DT, TLI, UseVariableInfo,
6963 IgnoreUBImplyingAttrs);
6969 bool UseVariableInfo,
bool IgnoreUBImplyingAttrs) {
6973 auto hasEqualReturnAndLeadingOperandTypes =
6974 [](
const Instruction *Inst,
unsigned NumLeadingOperands) {
6978 for (
unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp)
6984 hasEqualReturnAndLeadingOperandTypes(Inst, 2));
6986 hasEqualReturnAndLeadingOperandTypes(Inst, 1));
6993 case Instruction::UDiv:
6994 case Instruction::URem: {
7001 case Instruction::SDiv:
7002 case Instruction::SRem: {
7004 const APInt *Numerator, *Denominator;
7008 if (*Denominator == 0)
7020 case Instruction::Load: {
7021 if (!UseVariableInfo)
7034 case Instruction::Call: {
7038 const Function *Callee = CI->getCalledFunction();
7042 if (!Callee || !Callee->isSpeculatable())
7046 return IgnoreUBImplyingAttrs || !CI->hasUBImplyingAttrs();
7048 case Instruction::VAArg:
7049 case Instruction::Alloca:
7050 case Instruction::Invoke:
7051 case Instruction::CallBr:
7052 case Instruction::PHI:
7053 case Instruction::Store:
7054 case Instruction::Ret:
7055 case Instruction::Br:
7056 case Instruction::IndirectBr:
7057 case Instruction::Switch:
7058 case Instruction::Unreachable:
7059 case Instruction::Fence:
7060 case Instruction::AtomicRMW:
7061 case Instruction::AtomicCmpXchg:
7062 case Instruction::LandingPad:
7063 case Instruction::Resume:
7064 case Instruction::CatchSwitch:
7065 case Instruction::CatchPad:
7066 case Instruction::CatchRet:
7067 case Instruction::CleanupPad:
7068 case Instruction::CleanupRet:
7074 if (
I.mayReadOrWriteMemory())
7142 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
7187 if (
Add &&
Add->hasNoSignedWrap()) {
7226 bool LHSOrRHSKnownNonNegative =
7228 bool LHSOrRHSKnownNegative =
7230 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
7233 if ((AddKnown.
isNonNegative() && LHSOrRHSKnownNonNegative) ||
7234 (AddKnown.
isNegative() && LHSOrRHSKnownNegative))
7309 assert(EVI->getNumIndices() == 1 &&
"Obvious from CI's type");
7311 if (EVI->getIndices()[0] == 0)
7314 assert(EVI->getIndices()[0] == 1 &&
"Obvious from CI's type");
7316 for (
const auto *U : EVI->users())
7318 assert(
B->isConditional() &&
"How else is it using an i1?");
7329 auto AllUsesGuardedByBranch = [&](
const BranchInst *BI) {
7335 for (
const auto *Result :
Results) {
7338 if (DT.
dominates(NoWrapEdge, Result->getParent()))
7341 for (
const auto &RU : Result->uses())
7349 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
7361 unsigned NumElts = FVTy->getNumElements();
7362 for (
unsigned i = 0; i < NumElts; ++i)
7363 ShiftAmounts.
push_back(
C->getAggregateElement(i));
7371 return CI && CI->getValue().ult(
C->getType()->getIntegerBitWidth());
7392 bool ConsiderFlagsAndMetadata) {
7395 Op->hasPoisonGeneratingAnnotations())
7398 unsigned Opcode =
Op->getOpcode();
7402 case Instruction::Shl:
7403 case Instruction::AShr:
7404 case Instruction::LShr:
7406 case Instruction::FPToSI:
7407 case Instruction::FPToUI:
7411 case Instruction::Call:
7413 switch (
II->getIntrinsicID()) {
7415 case Intrinsic::ctlz:
7416 case Intrinsic::cttz:
7417 case Intrinsic::abs:
7421 case Intrinsic::ctpop:
7422 case Intrinsic::bswap:
7423 case Intrinsic::bitreverse:
7424 case Intrinsic::fshl:
7425 case Intrinsic::fshr:
7426 case Intrinsic::smax:
7427 case Intrinsic::smin:
7428 case Intrinsic::scmp:
7429 case Intrinsic::umax:
7430 case Intrinsic::umin:
7431 case Intrinsic::ucmp:
7432 case Intrinsic::ptrmask:
7433 case Intrinsic::fptoui_sat:
7434 case Intrinsic::fptosi_sat:
7435 case Intrinsic::sadd_with_overflow:
7436 case Intrinsic::ssub_with_overflow:
7437 case Intrinsic::smul_with_overflow:
7438 case Intrinsic::uadd_with_overflow:
7439 case Intrinsic::usub_with_overflow:
7440 case Intrinsic::umul_with_overflow:
7441 case Intrinsic::sadd_sat:
7442 case Intrinsic::uadd_sat:
7443 case Intrinsic::ssub_sat:
7444 case Intrinsic::usub_sat:
7446 case Intrinsic::sshl_sat:
7447 case Intrinsic::ushl_sat:
7450 case Intrinsic::fma:
7451 case Intrinsic::fmuladd:
7452 case Intrinsic::sqrt:
7453 case Intrinsic::powi:
7454 case Intrinsic::sin:
7455 case Intrinsic::cos:
7456 case Intrinsic::pow:
7457 case Intrinsic::log:
7458 case Intrinsic::log10:
7459 case Intrinsic::log2:
7460 case Intrinsic::exp:
7461 case Intrinsic::exp2:
7462 case Intrinsic::exp10:
7463 case Intrinsic::fabs:
7464 case Intrinsic::copysign:
7465 case Intrinsic::floor:
7466 case Intrinsic::ceil:
7467 case Intrinsic::trunc:
7468 case Intrinsic::rint:
7469 case Intrinsic::nearbyint:
7470 case Intrinsic::round:
7471 case Intrinsic::roundeven:
7472 case Intrinsic::fptrunc_round:
7473 case Intrinsic::canonicalize:
7474 case Intrinsic::arithmetic_fence:
7475 case Intrinsic::minnum:
7476 case Intrinsic::maxnum:
7477 case Intrinsic::minimum:
7478 case Intrinsic::maximum:
7479 case Intrinsic::minimumnum:
7480 case Intrinsic::maximumnum:
7481 case Intrinsic::is_fpclass:
7482 case Intrinsic::ldexp:
7483 case Intrinsic::frexp:
7485 case Intrinsic::lround:
7486 case Intrinsic::llround:
7487 case Intrinsic::lrint:
7488 case Intrinsic::llrint:
7495 case Instruction::CallBr:
7496 case Instruction::Invoke: {
7498 return !CB->hasRetAttr(Attribute::NoUndef);
7500 case Instruction::InsertElement:
7501 case Instruction::ExtractElement: {
7504 unsigned IdxOp =
Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
7508 Idx->getValue().uge(VTy->getElementCount().getKnownMinValue());
7511 case Instruction::ShuffleVector: {
7517 case Instruction::FNeg:
7518 case Instruction::PHI:
7519 case Instruction::Select:
7520 case Instruction::ExtractValue:
7521 case Instruction::InsertValue:
7522 case Instruction::Freeze:
7523 case Instruction::ICmp:
7524 case Instruction::FCmp:
7525 case Instruction::GetElementPtr:
7527 case Instruction::AddrSpaceCast:
7542 bool ConsiderFlagsAndMetadata) {
7544 ConsiderFlagsAndMetadata);
7549 ConsiderFlagsAndMetadata);
7554 if (ValAssumedPoison == V)
7557 const unsigned MaxDepth = 2;
7558 if (
Depth >= MaxDepth)
7563 return propagatesPoison(Op) &&
7564 directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
7588 const unsigned MaxDepth = 2;
7589 if (
Depth >= MaxDepth)
7595 return impliesPoison(Op, V, Depth + 1);
7602 return ::impliesPoison(ValAssumedPoison, V, 0);
7617 if (
A->hasAttribute(Attribute::NoUndef) ||
7618 A->hasAttribute(Attribute::Dereferenceable) ||
7619 A->hasAttribute(Attribute::DereferenceableOrNull))
7634 if (
C->getType()->isVectorTy()) {
7637 if (
Constant *SplatC =
C->getSplatValue())
7645 return !
C->containsConstantExpression();
7658 auto *StrippedV = V->stripPointerCastsSameRepresentation();
7663 auto OpCheck = [&](
const Value *V) {
7674 if (CB->hasRetAttr(Attribute::NoUndef) ||
7675 CB->hasRetAttr(Attribute::Dereferenceable) ||
7676 CB->hasRetAttr(Attribute::DereferenceableOrNull))
7683 unsigned Num = PN->getNumIncomingValues();
7684 bool IsWellDefined =
true;
7685 for (
unsigned i = 0; i < Num; ++i) {
7686 if (PN == PN->getIncomingValue(i))
7688 auto *TI = PN->getIncomingBlock(i)->getTerminator();
7690 DT,
Depth + 1, Kind)) {
7691 IsWellDefined =
false;
7697 }
else if (
all_of(Opr->operands(), OpCheck))
7703 if (
I->hasMetadata(LLVMContext::MD_noundef) ||
7704 I->hasMetadata(LLVMContext::MD_dereferenceable) ||
7705 I->hasMetadata(LLVMContext::MD_dereferenceable_or_null))
7725 auto *Dominator = DNode->
getIDom();
7730 auto *TI = Dominator->getBlock()->getTerminator();
7734 if (BI->isConditional())
7735 Cond = BI->getCondition();
7737 Cond =
SI->getCondition();
7746 if (
any_of(Opr->operands(), [V](
const Use &U) {
7747 return V == U && propagatesPoison(U);
7753 Dominator = Dominator->getIDom();
7766 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT,
Depth,
7773 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT,
Depth,
7780 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT,
Depth,
7804 while (!Worklist.
empty()) {
7813 if (
I != Root && !
any_of(
I->operands(), [&KnownPoison](
const Use &U) {
7814 return KnownPoison.contains(U) && propagatesPoison(U);
7818 if (KnownPoison.
insert(
I).second)
7830 return ::computeOverflowForSignedAdd(
Add->getOperand(0),
Add->getOperand(1),
7838 return ::computeOverflowForSignedAdd(LHS, RHS,
nullptr, SQ);
7870 return !
I->mayThrow() &&
I->willReturn();
7884 unsigned ScanLimit) {
7891 assert(ScanLimit &&
"scan limit must be non-zero");
7893 if (--ScanLimit == 0)
7907 if (
I->getParent() != L->getHeader())
return false;
7910 if (&LI ==
I)
return true;
7913 llvm_unreachable(
"Instruction not contained in its own parent basic block.");
7919 case Intrinsic::sadd_with_overflow:
7920 case Intrinsic::ssub_with_overflow:
7921 case Intrinsic::smul_with_overflow:
7922 case Intrinsic::uadd_with_overflow:
7923 case Intrinsic::usub_with_overflow:
7924 case Intrinsic::umul_with_overflow:
7929 case Intrinsic::ctpop:
7930 case Intrinsic::ctlz:
7931 case Intrinsic::cttz:
7932 case Intrinsic::abs:
7933 case Intrinsic::smax:
7934 case Intrinsic::smin:
7935 case Intrinsic::umax:
7936 case Intrinsic::umin:
7937 case Intrinsic::scmp:
7938 case Intrinsic::is_fpclass:
7939 case Intrinsic::ptrmask:
7940 case Intrinsic::ucmp:
7941 case Intrinsic::bitreverse:
7942 case Intrinsic::bswap:
7943 case Intrinsic::sadd_sat:
7944 case Intrinsic::ssub_sat:
7945 case Intrinsic::sshl_sat:
7946 case Intrinsic::uadd_sat:
7947 case Intrinsic::usub_sat:
7948 case Intrinsic::ushl_sat:
7949 case Intrinsic::smul_fix:
7950 case Intrinsic::smul_fix_sat:
7951 case Intrinsic::umul_fix:
7952 case Intrinsic::umul_fix_sat:
7953 case Intrinsic::pow:
7954 case Intrinsic::powi:
7955 case Intrinsic::sin:
7956 case Intrinsic::sinh:
7957 case Intrinsic::cos:
7958 case Intrinsic::cosh:
7959 case Intrinsic::sincos:
7960 case Intrinsic::sincospi:
7961 case Intrinsic::tan:
7962 case Intrinsic::tanh:
7963 case Intrinsic::asin:
7964 case Intrinsic::acos:
7965 case Intrinsic::atan:
7966 case Intrinsic::atan2:
7967 case Intrinsic::canonicalize:
7968 case Intrinsic::sqrt:
7969 case Intrinsic::exp:
7970 case Intrinsic::exp2:
7971 case Intrinsic::exp10:
7972 case Intrinsic::log:
7973 case Intrinsic::log2:
7974 case Intrinsic::log10:
7975 case Intrinsic::modf:
7976 case Intrinsic::floor:
7977 case Intrinsic::ceil:
7978 case Intrinsic::trunc:
7979 case Intrinsic::rint:
7980 case Intrinsic::nearbyint:
7981 case Intrinsic::round:
7982 case Intrinsic::roundeven:
7983 case Intrinsic::lrint:
7984 case Intrinsic::llrint:
7993 switch (
I->getOpcode()) {
7994 case Instruction::Freeze:
7995 case Instruction::PHI:
7996 case Instruction::Invoke:
7998 case Instruction::Select:
8000 case Instruction::Call:
8004 case Instruction::ICmp:
8005 case Instruction::FCmp:
8006 case Instruction::GetElementPtr:
8020template <
typename CallableT>
8022 const CallableT &Handle) {
8023 switch (
I->getOpcode()) {
8024 case Instruction::Store:
8029 case Instruction::Load:
8036 case Instruction::AtomicCmpXchg:
8041 case Instruction::AtomicRMW:
8046 case Instruction::Call:
8047 case Instruction::Invoke: {
8051 for (
unsigned i = 0; i < CB->
arg_size(); ++i)
8054 CB->
paramHasAttr(i, Attribute::DereferenceableOrNull)) &&
8059 case Instruction::Ret:
8060 if (
I->getFunction()->hasRetAttribute(Attribute::NoUndef) &&
8061 Handle(
I->getOperand(0)))
8064 case Instruction::Switch:
8068 case Instruction::Br: {
8070 if (BR->isConditional() && Handle(BR->getCondition()))
8082template <
typename CallableT>
8084 const CallableT &Handle) {
8087 switch (
I->getOpcode()) {
8089 case Instruction::UDiv:
8090 case Instruction::SDiv:
8091 case Instruction::URem:
8092 case Instruction::SRem:
8093 return Handle(
I->getOperand(1));
8102 I, [&](
const Value *V) {
return KnownPoison.
count(V); });
8121 if (Arg->getParent()->isDeclaration())
8124 Begin = BB->
begin();
8131 unsigned ScanLimit = 32;
8140 if (--ScanLimit == 0)
8144 return WellDefinedOp == V;
8164 if (--ScanLimit == 0)
8172 for (
const Use &
Op :
I.operands()) {
8182 if (
I.getOpcode() == Instruction::Select &&
8183 YieldsPoison.
count(
I.getOperand(1)) &&
8184 YieldsPoison.
count(
I.getOperand(2))) {
8190 if (!BB || !Visited.
insert(BB).second)
8200 return ::programUndefinedIfUndefOrPoison(Inst,
false);
8204 return ::programUndefinedIfUndefOrPoison(Inst,
true);
8215 if (!
C->getElementType()->isFloatingPointTy())
8217 for (
unsigned I = 0,
E =
C->getNumElements();
I <
E; ++
I) {
8218 if (
C->getElementAsAPFloat(
I).isNaN())
8232 return !
C->isZero();
8235 if (!
C->getElementType()->isFloatingPointTy())
8237 for (
unsigned I = 0,
E =
C->getNumElements();
I <
E; ++
I) {
8238 if (
C->getElementAsAPFloat(
I).isZero())
8261 if (CmpRHS == FalseVal) {
8305 if (CmpRHS != TrueVal) {
8344 Value *
A =
nullptr, *
B =
nullptr;
8349 Value *
C =
nullptr, *
D =
nullptr;
8351 if (L.Flavor != R.Flavor)
8403 return {L.Flavor,
SPNB_NA,
false};
8410 return {L.Flavor,
SPNB_NA,
false};
8417 return {L.Flavor,
SPNB_NA,
false};
8424 return {L.Flavor,
SPNB_NA,
false};
8440 return ConstantInt::get(V->getType(), ~(*
C));
8497 if ((CmpLHS == TrueVal &&
match(FalseVal,
m_APInt(C2))) ||
8517 assert(
X &&
Y &&
"Invalid operand");
8519 auto IsNegationOf = [&](
const Value *
X,
const Value *
Y) {
8524 if (NeedNSW && !BO->hasNoSignedWrap())
8528 if (!AllowPoison && !Zero->isNullValue())
8535 if (IsNegationOf(
X,
Y) || IsNegationOf(
Y,
X))
8562 const APInt *RHSC1, *RHSC2;
8573 return CR1.inverse() == CR2;
8607std::optional<std::pair<CmpPredicate, Constant *>>
8610 "Only for relational integer predicates.");
8612 return std::nullopt;
8618 bool WillIncrement =
8623 auto ConstantIsOk = [WillIncrement, IsSigned](
ConstantInt *
C) {
8624 return WillIncrement ? !
C->isMaxValue(IsSigned) : !
C->isMinValue(IsSigned);
8627 Constant *SafeReplacementConstant =
nullptr;
8630 if (!ConstantIsOk(CI))
8631 return std::nullopt;
8633 unsigned NumElts = FVTy->getNumElements();
8634 for (
unsigned i = 0; i != NumElts; ++i) {
8635 Constant *Elt =
C->getAggregateElement(i);
8637 return std::nullopt;
8645 if (!CI || !ConstantIsOk(CI))
8646 return std::nullopt;
8648 if (!SafeReplacementConstant)
8649 SafeReplacementConstant = CI;
8653 Value *SplatC =
C->getSplatValue();
8656 if (!CI || !ConstantIsOk(CI))
8657 return std::nullopt;
8660 return std::nullopt;
8667 if (
C->containsUndefOrPoisonElement()) {
8668 assert(SafeReplacementConstant &&
"Replacement constant not set");
8675 Constant *OneOrNegOne = ConstantInt::get(
Type, WillIncrement ? 1 : -1,
true);
8678 return std::make_pair(NewPred, NewC);
8687 bool HasMismatchedZeros =
false;
8693 Value *OutputZeroVal =
nullptr;
8696 OutputZeroVal = TrueVal;
8699 OutputZeroVal = FalseVal;
8701 if (OutputZeroVal) {
8703 HasMismatchedZeros =
true;
8704 CmpLHS = OutputZeroVal;
8707 HasMismatchedZeros =
true;
8708 CmpRHS = OutputZeroVal;
8725 if (!HasMismatchedZeros)
8736 bool Ordered =
false;
8747 if (LHSSafe && RHSSafe) {
8778 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
8789 if (TrueVal == CmpLHS && FalseVal == CmpRHS)
8795 auto MaybeSExtCmpLHS =
8799 if (
match(TrueVal, MaybeSExtCmpLHS)) {
8821 else if (
match(FalseVal, MaybeSExtCmpLHS)) {
8861 case Instruction::ZExt:
8865 case Instruction::SExt:
8869 case Instruction::Trunc:
8872 CmpConst->
getType() == SrcTy) {
8894 CastedTo = CmpConst;
8896 unsigned ExtOp = CmpI->
isSigned() ? Instruction::SExt : Instruction::ZExt;
8900 case Instruction::FPTrunc:
8903 case Instruction::FPExt:
8906 case Instruction::FPToUI:
8909 case Instruction::FPToSI:
8912 case Instruction::UIToFP:
8915 case Instruction::SIToFP:
8928 if (CastedBack && CastedBack !=
C)
8956 *CastOp = Cast1->getOpcode();
8957 Type *SrcTy = Cast1->getSrcTy();
8960 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
8961 return Cast2->getOperand(0);
8969 Value *CastedTo =
nullptr;
8970 if (*CastOp == Instruction::Trunc) {
8984 "V2 and Cast1 should be the same type.");
9003 Value *TrueVal =
SI->getTrueValue();
9004 Value *FalseVal =
SI->getFalseValue();
9007 CmpI, TrueVal, FalseVal, LHS, RHS,
9026 if (CastOp && CmpLHS->
getType() != TrueVal->getType()) {
9030 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
9032 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
9039 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
9041 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
9046 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
9065 return Intrinsic::umin;
9067 return Intrinsic::umax;
9069 return Intrinsic::smin;
9071 return Intrinsic::smax;
9087 case Intrinsic::smax:
return Intrinsic::smin;
9088 case Intrinsic::smin:
return Intrinsic::smax;
9089 case Intrinsic::umax:
return Intrinsic::umin;
9090 case Intrinsic::umin:
return Intrinsic::umax;
9093 case Intrinsic::maximum:
return Intrinsic::minimum;
9094 case Intrinsic::minimum:
return Intrinsic::maximum;
9095 case Intrinsic::maxnum:
return Intrinsic::minnum;
9096 case Intrinsic::minnum:
return Intrinsic::maxnum;
9111std::pair<Intrinsic::ID, bool>
9116 bool AllCmpSingleUse =
true;
9119 if (
all_of(VL, [&SelectPattern, &AllCmpSingleUse](
Value *
I) {
9125 SelectPattern.
Flavor != CurrentPattern.Flavor)
9127 SelectPattern = CurrentPattern;
9132 switch (SelectPattern.
Flavor) {
9134 return {Intrinsic::smin, AllCmpSingleUse};
9136 return {Intrinsic::umin, AllCmpSingleUse};
9138 return {Intrinsic::smax, AllCmpSingleUse};
9140 return {Intrinsic::umax, AllCmpSingleUse};
9142 return {Intrinsic::maxnum, AllCmpSingleUse};
9144 return {Intrinsic::minnum, AllCmpSingleUse};
9152template <
typename InstTy>
9162 for (
unsigned I = 0;
I != 2; ++
I) {
9167 if (
LHS != PN &&
RHS != PN)
9203 if (
I->arg_size() != 2 ||
I->getType() !=
I->getArgOperand(0)->getType() ||
9204 I->getType() !=
I->getArgOperand(1)->getType())
9232 return !
C->isNegative();
9244 const APInt *CLHS, *CRHS;
9247 return CLHS->
sle(*CRHS);
9285 const APInt *CLHS, *CRHS;
9288 return CLHS->
ule(*CRHS);
9297static std::optional<bool>
9302 return std::nullopt;
9309 return std::nullopt;
9316 return std::nullopt;
9323 return std::nullopt;
9330 return std::nullopt;
9337static std::optional<bool>
9343 if (CR.
icmp(Pred, RCR))
9350 return std::nullopt;
9363 return std::nullopt;
9369static std::optional<bool>
9400 const APInt *Unused;
9419 return std::nullopt;
9423 if (L0 == R0 && L1 == R1)
9456 ((
A == R0 &&
B == R1) || (
A == R1 &&
B == R0) ||
9474 return std::nullopt;
9481static std::optional<bool>
9486 assert((
LHS->getOpcode() == Instruction::And ||
9487 LHS->getOpcode() == Instruction::Or ||
9488 LHS->getOpcode() == Instruction::Select) &&
9489 "Expected LHS to be 'and', 'or', or 'select'.");
9496 const Value *ALHS, *ARHS;
9501 ALHS, RHSPred, RHSOp0, RHSOp1,
DL, LHSIsTrue,
Depth + 1))
9504 ARHS, RHSPred, RHSOp0, RHSOp1,
DL, LHSIsTrue,
Depth + 1))
9506 return std::nullopt;
9508 return std::nullopt;
9517 return std::nullopt;
9522 return std::nullopt;
9524 assert(LHS->getType()->isIntOrIntVectorTy(1) &&
9525 "Expected integer type only!");
9529 LHSIsTrue = !LHSIsTrue;
9534 LHSCmp->getOperand(1), RHSPred, RHSOp0, RHSOp1,
9539 ConstantInt::get(V->getType(), 0), RHSPred,
9540 RHSOp0, RHSOp1,
DL, LHSIsTrue);
9546 if ((LHSI->getOpcode() == Instruction::And ||
9547 LHSI->getOpcode() == Instruction::Or ||
9548 LHSI->getOpcode() == Instruction::Select))
9552 return std::nullopt;
9557 bool LHSIsTrue,
unsigned Depth) {
9563 bool InvertRHS =
false;
9572 LHS, RHSCmp->getCmpPredicate(), RHSCmp->getOperand(0),
9573 RHSCmp->getOperand(1),
DL, LHSIsTrue,
Depth))
9574 return InvertRHS ? !*Implied : *Implied;
9575 return std::nullopt;
9581 ConstantInt::get(V->getType(), 0),
DL,
9583 return InvertRHS ? !*Implied : *Implied;
9584 return std::nullopt;
9588 return std::nullopt;
9592 const Value *RHS1, *RHS2;
9594 if (std::optional<bool> Imp =
9598 if (std::optional<bool> Imp =
9604 if (std::optional<bool> Imp =
9608 if (std::optional<bool> Imp =
9614 return std::nullopt;
9619static std::pair<Value *, bool>
9621 if (!ContextI || !ContextI->
getParent())
9622 return {
nullptr,
false};
9629 return {
nullptr,
false};
9635 return {
nullptr,
false};
9638 if (TrueBB == FalseBB)
9639 return {
nullptr,
false};
9641 assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
9642 "Predecessor block does not point to successor?");
9645 return {PredCond, TrueBB == ContextBB};
9651 assert(
Cond->getType()->isIntOrIntVectorTy(1) &&
"Condition must be bool");
9655 return std::nullopt;
9667 return std::nullopt;
9672 bool PreferSignedRange) {
9673 unsigned Width =
Lower.getBitWidth();
9676 case Instruction::Sub:
9686 if (PreferSignedRange && HasNSW && HasNUW)
9692 }
else if (HasNSW) {
9693 if (
C->isNegative()) {
9706 case Instruction::Add:
9715 if (PreferSignedRange && HasNSW && HasNUW)
9721 }
else if (HasNSW) {
9722 if (
C->isNegative()) {
9735 case Instruction::And:
9746 case Instruction::Or:
9752 case Instruction::AShr:
9758 unsigned ShiftAmount = Width - 1;
9759 if (!
C->isZero() && IIQ.
isExact(&BO))
9760 ShiftAmount =
C->countr_zero();
9761 if (
C->isNegative()) {
9764 Upper =
C->ashr(ShiftAmount) + 1;
9767 Lower =
C->ashr(ShiftAmount);
9773 case Instruction::LShr:
9779 unsigned ShiftAmount = Width - 1;
9780 if (!
C->isZero() && IIQ.
isExact(&BO))
9781 ShiftAmount =
C->countr_zero();
9782 Lower =
C->lshr(ShiftAmount);
9787 case Instruction::Shl:
9794 if (
C->isNegative()) {
9796 unsigned ShiftAmount =
C->countl_one() - 1;
9797 Lower =
C->shl(ShiftAmount);
9801 unsigned ShiftAmount =
C->countl_zero() - 1;
9803 Upper =
C->shl(ShiftAmount) + 1;
9822 case Instruction::SDiv:
9826 if (
C->isAllOnes()) {
9831 }
else if (
C->countl_zero() < Width - 1) {
9842 if (
C->isMinSignedValue()) {
9854 case Instruction::UDiv:
9864 case Instruction::SRem:
9870 if (
C->isNegative()) {
9881 case Instruction::URem:
9896 bool UseInstrInfo) {
9897 unsigned Width =
II.getType()->getScalarSizeInBits();
9899 switch (
II.getIntrinsicID()) {
9900 case Intrinsic::ctlz:
9901 case Intrinsic::cttz: {
9903 if (!UseInstrInfo || !
match(
II.getArgOperand(1),
m_One()))
9908 case Intrinsic::ctpop:
9911 APInt(Width, Width) + 1);
9912 case Intrinsic::uadd_sat:
9918 case Intrinsic::sadd_sat:
9921 if (
C->isNegative())
9932 case Intrinsic::usub_sat:
9942 case Intrinsic::ssub_sat:
9944 if (
C->isNegative())
9954 if (
C->isNegative())
9965 case Intrinsic::umin:
9966 case Intrinsic::umax:
9967 case Intrinsic::smin:
9968 case Intrinsic::smax:
9973 switch (
II.getIntrinsicID()) {
9974 case Intrinsic::umin:
9976 case Intrinsic::umax:
9978 case Intrinsic::smin:
9981 case Intrinsic::smax:
9988 case Intrinsic::abs:
9997 case Intrinsic::vscale:
9998 if (!
II.getParent() || !
II.getFunction())
10005 return ConstantRange::getFull(Width);
10010 unsigned BitWidth =
SI.getType()->getScalarSizeInBits();
10014 return ConstantRange::getFull(
BitWidth);
10037 return ConstantRange::getFull(
BitWidth);
10039 switch (R.Flavor) {
10051 return ConstantRange::getFull(
BitWidth);
10058 unsigned BitWidth =
I->getType()->getScalarSizeInBits();
10059 if (!
I->getOperand(0)->getType()->getScalarType()->isHalfTy())
10077 assert(V->getType()->isIntOrIntVectorTy() &&
"Expected integer instruction");
10080 return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
10083 return C->toConstantRange();
10085 unsigned BitWidth = V->getType()->getScalarSizeInBits();
10098 SI->getTrueValue(), ForSigned, UseInstrInfo, AC, CtxI, DT,
Depth + 1);
10100 SI->getFalseValue(), ForSigned, UseInstrInfo, AC, CtxI, DT,
Depth + 1);
10110 if (std::optional<ConstantRange>
Range =
A->getRange())
10118 if (std::optional<ConstantRange>
Range = CB->getRange())
10129 "Got assumption for the wrong function!");
10130 assert(
I->getIntrinsicID() == Intrinsic::assume &&
10131 "must be an assume intrinsic");
10135 Value *Arg =
I->getArgOperand(0);
10138 if (!Cmp || Cmp->getOperand(0) != V)
10143 UseInstrInfo, AC,
I, DT,
Depth + 1);
10165 InsertAffected(
Op);
10172 auto AddAffected = [&InsertAffected](
Value *V) {
10176 auto AddCmpOperands = [&AddAffected, IsAssume](
Value *LHS,
Value *RHS) {
10187 while (!Worklist.
empty()) {
10189 if (!Visited.
insert(V).second)
10235 AddCmpOperands(
A,
B);
10272 AddCmpOperands(
A,
B);
10300 if (BO->getOpcode() == Instruction::Add ||
10301 BO->getOpcode() == Instruction::Or) {
10303 const APInt *C1, *C2;
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Utilities for dealing with flags related to floating point properties and mode controls.
Module.h This file contains the declarations for the Module class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
std::pair< BasicBlock *, BasicBlock * > Edge
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static SmallVector< VPValue *, 4 > getOperands(ArrayRef< VPValue * > Values, unsigned OperandIndex)
static void computeKnownFPClassFromCond(const Value *V, Value *Cond, bool CondIsTrue, const Instruction *CxtI, KnownFPClass &KnownFromContext, unsigned Depth=0)
static bool isPowerOfTwoRecurrence(const PHINode *PN, bool OrZero, SimplifyQuery &Q, unsigned Depth)
Try to detect a recurrence that the value of the induction variable is always a power of two (or zero...
static cl::opt< unsigned > DomConditionsMaxUses("dom-conditions-max-uses", cl::Hidden, cl::init(20))
static unsigned computeNumSignBitsVectorConstant(const Value *V, const APInt &DemandedElts, unsigned TyBits)
For vector constants, loop over the elements and find the constant with the minimum number of sign bi...
static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, const Value *RHS)
Return true if "icmp Pred LHS RHS" is always true.
static bool isModifyingBinopOfNonZero(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V1 == (binop V2, X), where X is known non-zero.
static bool isGEPKnownNonNull(const GEPOperator *GEP, const SimplifyQuery &Q, unsigned Depth)
Test whether a GEP's result is known to be non-null.
static bool isNonEqualShl(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and the shift is nuw or nsw.
static bool isKnownNonNullFromDominatingCondition(const Value *V, const Instruction *CtxI, const DominatorTree *DT)
static const Value * getUnderlyingObjectFromInt(const Value *V)
This is the function that does the work of looking through basic ptrtoint+arithmetic+inttoptr sequenc...
static bool isNonZeroMul(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, bool NSW, bool NUW, unsigned Depth)
static bool rangeMetadataExcludesValue(const MDNode *Ranges, const APInt &Value)
Does the 'Range' metadata (which must be a valid MD_range operand list) ensure that the value it's at...
static bool outputDenormalIsIEEEOrPosZero(const Function &F, const Type *Ty)
static KnownBits getKnownBitsFromAndXorOr(const Operator *I, const APInt &DemandedElts, const KnownBits &KnownLHS, const KnownBits &KnownRHS, const SimplifyQuery &Q, unsigned Depth)
static void breakSelfRecursivePHI(const Use *U, const PHINode *PHI, Value *&ValOut, Instruction *&CtxIOut, const PHINode **PhiOut=nullptr)
static bool isNonZeroSub(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, unsigned Depth)
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR)
Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static void addValueAffectedByCondition(Value *V, function_ref< void(Value *)> InsertAffected)
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
static bool haveNoCommonBitsSetSpecialCases(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, APInt &Upper, const InstrInfoQuery &IIQ, bool PreferSignedRange)
static Value * lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, Instruction::CastOps *CastOp)
Helps to match a select pattern in case of a type mismatch.
static std::pair< Value *, bool > getDomPredecessorCondition(const Instruction *ContextI)
static constexpr unsigned MaxInstrsToCheckForFree
Maximum number of instructions to check between assume and context instruction.
static bool isNonZeroShift(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, const KnownBits &KnownVal, unsigned Depth)
static bool isKnownNonEqualFromContext(const Value *V1, const Value *V2, const SimplifyQuery &Q, unsigned Depth)
static bool includesPoison(UndefPoisonKind Kind)
static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS)
Match clamp pattern for float types without care about NaNs or signed zeros.
static std::optional< bool > isImpliedCondICmps(CmpPredicate LPred, const Value *L0, const Value *L1, CmpPredicate RPred, const Value *R0, const Value *R1, const DataLayout &DL, bool LHSIsTrue)
Return true if LHS implies RHS (expanded to its components as "R0 RPred R1") is true.
static bool includesUndef(UndefPoisonKind Kind)
static std::optional< bool > isImpliedCondCommonOperandWithCR(CmpPredicate LPred, const ConstantRange &LCR, CmpPredicate RPred, const ConstantRange &RCR)
Return true if "icmp LPred X, LCR" implies "icmp RPred X, RCR" is true.
static ConstantRange getRangeForSelectPattern(const SelectInst &SI, const InstrInfoQuery &IIQ)
static void computeKnownBitsFromOperator(const Operator *I, const APInt &DemandedElts, KnownBits &Known, const SimplifyQuery &Q, unsigned Depth)
static uint64_t GetStringLengthH(const Value *V, SmallPtrSetImpl< const PHINode * > &PHIs, unsigned CharSize)
If we can compute the length of the string pointed to by the specified pointer, return 'len+1'.
static void computeKnownBitsFromShiftOperator(const Operator *I, const APInt &DemandedElts, KnownBits &Known, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth, function_ref< KnownBits(const KnownBits &, const KnownBits &, bool)> KF)
Compute known bits from a shift operator, including those with a non-constant shift amount.
static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(const Value *V, bool AllowLifetime, bool AllowDroppable)
static std::optional< bool > isImpliedCondAndOr(const Instruction *LHS, CmpPredicate RHSPred, const Value *RHSOp0, const Value *RHSOp1, const DataLayout &DL, bool LHSIsTrue, unsigned Depth)
Return true if LHS implies RHS is true.
static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, const APInt *&CLow, const APInt *&CHigh)
static bool isNonZeroAdd(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, bool NSW, bool NUW, unsigned Depth)
static bool directlyImpliesPoison(const Value *ValAssumedPoison, const Value *V, unsigned Depth)
static bool isNonEqualSelect(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
static bool matchTwoInputRecurrence(const PHINode *PN, InstTy *&Inst, Value *&Init, Value *&OtherOp)
static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
static void computeKnownBitsFromCmp(const Value *V, CmpInst::Predicate Pred, Value *LHS, Value *RHS, KnownBits &Known, const SimplifyQuery &Q)
static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TVal, Value *FVal, unsigned Depth)
Recognize variations of: a < c ?
static void unionWithMinMaxIntrinsicClamp(const IntrinsicInst *II, KnownBits &Known)
static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper)
static bool isSameUnderlyingObjectInLoop(const PHINode *PN, const LoopInfo *LI)
PN defines a loop-variant pointer to an object.
static bool isNonEqualPointersWithRecursiveGEP(const Value *A, const Value *B, const SimplifyQuery &Q)
static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II, const APInt *&CLow, const APInt *&CHigh)
static Value * lookThroughCastConst(CmpInst *CmpI, Type *SrcTy, Constant *C, Instruction::CastOps *CastOp)
static bool handleGuaranteedWellDefinedOps(const Instruction *I, const CallableT &Handle)
Enumerates all operands of I that are guaranteed to not be undef or poison.
static KnownFPClass computeKnownFPClassFromContext(const Value *V, const SimplifyQuery &Q)
static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, bool NSW, bool NUW, const APInt &DemandedElts, KnownBits &KnownOut, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth)
static Value * getNotValue(Value *V)
If the input value is the result of a 'not' op, constant integer, or vector splat of a constant integ...
static unsigned ComputeNumSignBitsImpl(const Value *V, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return the number of times the sign bit of the register is replicated into the other bits.
static void computeKnownBitsFromICmpCond(const Value *V, ICmpInst *Cmp, KnownBits &Known, const SimplifyQuery &SQ, bool Invert)
static bool isKnownNonZeroFromOperator(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
static bool matchOpWithOpEqZero(Value *Op0, Value *Op1)
static bool isNonZeroRecurrence(const PHINode *PN)
Try to detect a recurrence that monotonically increases/decreases from a non-zero starting value.
static SelectPatternResult matchClamp(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal)
Recognize variations of: CLAMP(v,l,h) ==> ((v) < (l) ?
static bool shiftAmountKnownInRange(const Value *ShiftAmount)
Shifts return poison if shiftwidth is larger than the bitwidth.
static bool isEphemeralValueOf(const Instruction *I, const Value *E)
static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, unsigned Depth)
Match non-obvious integer minimum and maximum sequences.
static KnownBits computeKnownBitsForHorizontalOperation(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth, const function_ref< KnownBits(const KnownBits &, const KnownBits &)> KnownBitsFunc)
static bool handleGuaranteedNonPoisonOps(const Instruction *I, const CallableT &Handle)
Enumerates all operands of I that are guaranteed to not be poison.
static std::optional< std::pair< Value *, Value * > > getInvertibleOperands(const Operator *Op1, const Operator *Op2)
If the pair of operators are the same invertible function, return the the operands of the function co...
static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS)
static void computeKnownBitsFromCond(const Value *V, Value *Cond, KnownBits &Known, const SimplifyQuery &SQ, bool Invert, unsigned Depth)
static bool isKnownNonZeroFromAssume(const Value *V, const SimplifyQuery &Q)
static std::optional< bool > isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, const Value *ARHS, const Value *BLHS, const Value *BRHS)
Return true if "icmp Pred BLHS BRHS" is true whenever "icmp PredALHS ARHS" is true.
static const Instruction * safeCxtI(const Value *V, const Instruction *CxtI)
static bool isNonEqualMul(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and the multiplication is nuw o...
static bool isImpliedToBeAPowerOfTwoFromCond(const Value *V, bool OrZero, const Value *Cond, bool CondIsTrue)
Return true if we can infer that V is known to be a power of 2 from dominating condition Cond (e....
static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, bool NUW, const APInt &DemandedElts, KnownBits &Known, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth)
static bool isKnownNonNaN(const Value *V, FastMathFlags FMF)
static ConstantRange getRangeForIntrinsic(const IntrinsicInst &II, bool UseInstrInfo)
static void computeKnownFPClassForFPTrunc(const Operator *Op, const APInt &DemandedElts, FPClassTest InterestedClasses, KnownFPClass &Known, const SimplifyQuery &Q, unsigned Depth)
static Value * BuildSubAggregate(Value *From, Value *To, Type *IndexedType, SmallVectorImpl< unsigned > &Idxs, unsigned IdxSkip, BasicBlock::iterator InsertBefore)
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Class for arbitrary precision integers.
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
unsigned popcount() const
Count the number of bits set.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
unsigned ceilLogBase2() const
bool sgt(const APInt &RHS) const
Signed greater than comparison.
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
bool isNegative() const
Determine sign of this APInt.
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
void clearAllBits()
Set every bit to 0.
LLVM_ABI APInt reverseBits() const
bool sle(const APInt &RHS) const
Signed less or equal comparison.
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
unsigned logBase2() const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
bool getBoolValue() const
Convert APInt to a boolean value.
bool isMaxSignedValue() const
Determine if this is the largest signed value.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
APInt shl(unsigned shiftAmt) const
Left-shift function.
bool slt(const APInt &RHS) const
Signed less than comparison.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
void clearSignBit()
Set the sign bit to 0.
an instruction to allocate memory on the stack
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
Class to represent array types.
This represents the llvm.assume intrinsic.
A cache of @llvm.assume calls within a function.
MutableArrayRef< ResultElem > assumptionsFor(const Value *V)
Access the list of assumptions which affect this value.
Functions, function parameters, and return types can have attributes to indicate how they should be t...
LLVM_ABI std::optional< unsigned > getVScaleRangeMax() const
Returns the maximum value for the vscale_range attribute or std::nullopt when unknown.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
bool isValid() const
Return true if the attribute is any kind of attribute.
LLVM_ABI bool isSingleEdge() const
Check if this is the only edge between Start and End.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
InstListType::const_iterator const_iterator
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
InstListType::iterator iterator
Instruction iterators...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
LLVM_ABI Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
BinaryOps getOpcode() const
Conditional or Unconditional Branch instruction.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
bool onlyReadsMemory(unsigned OpNo) const
Value * getCalledOperand() const
Value * getArgOperand(unsigned i) const
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
This is the base class for all instructions that perform data casts.
This class is the base class for the comparison instructions.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ ICMP_ULT
unsigned less than
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ ICMP_SGE
signed greater or equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
static LLVM_ABI bool isEquality(Predicate pred)
Determine if this is an equals/not equals predicate.
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
bool isTrueWhenEqual() const
This is just a convenience.
static bool isFPPredicate(Predicate P)
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Predicate getPredicate() const
Return the predicate for this instruction.
Predicate getFlippedStrictnessPredicate() const
For predicate of kind "is X or equal to 0" returns the predicate "is X".
static bool isIntPredicate(Predicate P)
static LLVM_ABI bool isOrdered(Predicate predicate)
Determine if the predicate is an ordered operation.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
LLVM_ABI CmpInst::Predicate getPreferredSignedPredicate() const
Attempts to return a signed CmpInst::Predicate from the CmpPredicate.
CmpInst::Predicate dropSameSign() const
Drops samesign information.
bool hasSameSign() const
Query samesign information, for optimizations.
An array constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
ConstantDataSequential - A vector or array constant whose element type is a simple 1/2/4/8-byte integ...
StringRef getAsString() const
If this array is isString(), then this method returns the array as a StringRef.
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
ConstantFP - Floating Point Values [float, double].
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
This class represents a range of values.
PreferredRangeType
If represented precisely, the result of some range operations may consist of multiple disjoint ranges...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
LLVM_ABI bool isAllNegative() const
Return true if all values in this range are negative.
LLVM_ABI OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
LLVM_ABI KnownBits toKnownBits() const
Return known bits for values in this range.
LLVM_ABI bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other?
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
LLVM_ABI bool isAllNonNegative() const
Return true if all values in this range are non-negative.
static LLVM_ABI ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred, const ConstantRange &Other)
Produce the smallest range such that all values that may satisfy the given predicate with any value c...
LLVM_ABI ConstantRange unionWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the union of this range with another range.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI OverflowResult signedAddMayOverflow(const ConstantRange &Other) const
Return whether signed add of the two ranges always/never overflows.
LLVM_ABI ConstantRange intersectWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the intersection of this range with another range.
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
static ConstantRange getNonEmpty(APInt Lower, APInt Upper)
Create non-empty constant range with the given bounds.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
LLVM_ABI ConstantRange sub(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a subtraction of a value in this r...
This is an important base class in LLVM.
static LLVM_ABI Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
A parsed version of the target data layout string in and methods for querying it.
bool isLittleEndian() const
Layout endianness...
LLVM_ABI const StructLayout * getStructLayout(StructType *Ty) const
Returns a StructLayout object, indicating the alignment of the struct, its size, and the offsets of i...
LLVM_ABI unsigned getIndexTypeSizeInBits(Type *Ty) const
The size in bits of the index used in GEP calculation for this type.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const
The pointer representation size in bits for this type.
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
ArrayRef< BranchInst * > conditionsFor(const Value *V) const
Access the list of branches which affect this value.
DomTreeNodeBase * getIDom() const
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Utility class for floating point operations which can have information about relaxed accuracy require...
Convenience struct for specifying and reasoning about fast-math flags.
bool noSignedZeros() const
void setNoSignedZeros(bool B=true)
void setNoNaNs(bool B=true)
const BasicBlock & getEntryBlock() const
bool hasNoSync() const
Determine if the call can synchroize with other threads.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
PointerType * getType() const
Global values are always pointers.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
Type * getValueType() const
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
This instruction compares its operands according to the predicate given to the constructor.
CmpPredicate getSwappedCmpPredicate() const
CmpPredicate getInverseCmpPredicate() const
Predicate getFlippedSignednessPredicate() const
For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
static LLVM_ABI std::optional< bool > isImpliedByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2)
Determine if Pred1 implies Pred2 is true, false, or if nothing can be inferred about the implication,...
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
This instruction inserts a struct field of array element value into an aggregate value.
Value * getAggregateOperand()
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI bool hasNoNaNs() const LLVM_READONLY
Determine whether the no-NaNs flag is set.
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
LLVM_ABI bool comesBefore(const Instruction *Other) const
Given an instruction Other in the same basic block as this instruction, return true if this instructi...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Value * getPointerOperand()
Align getAlign() const
Return the alignment of the access that is being performed.
bool isLoopHeader(const BlockT *BB) const
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
Represents a single loop in the control flow graph.
This is a utility class that provides an abstraction for the common functionality between Instruction...
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
iterator_range< const_block_iterator > blocks() const
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A udiv, sdiv, lshr, or ashr instruction, which can be marked as "exact", indicating that no bits are ...
bool isExact() const
Test whether this division is known to be exact, with zero remainder.
This class represents the LLVM 'select' instruction.
const Value * getFalseValue() const
const Value * getCondition() const
const Value * getTrueValue() const
This instruction constructs a fixed permutation of two input vectors.
VectorType * getType() const
Overload to return most specific vector type.
static LLVM_ABI void getShuffleMask(const Constant *Mask, SmallVectorImpl< int > &Result)
Convert the input shuffle mask operand to a vector of integers.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void reserve(size_type N)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
TypeSize getElementOffset(unsigned Idx) const
Class to represent struct types.
unsigned getNumElements() const
Random access to the elements.
Type * getElementType(unsigned N) const
Provides information about what library functions are available for the current target.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
LLVM_ABI uint64_t getArrayNumElements() const
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
LLVM_ABI const fltSemantics & getFltSemantics() const
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
User * getUser() const
Returns the User that contains this Use.
LLVM_ABI unsigned getOperandNo() const
Return the operand # of this use in its User.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
iterator_range< user_iterator > users()
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
const KnownBits & getKnownBits(const SimplifyQuery &Q) const
PointerType getValue() const
Represents an op.with.overflow intrinsic.
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
An efficient, type-erasing, non-owning reference to a callable.
StructType * getStructTypeOrNull() const
TypeSize getSequentialElementStride(const DataLayout &DL) const
Type * getIndexedType() const
const ParentTy * getParent() const
self_iterator getIterator()
A range adaptor for a pair of iterators.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
@ C
The default llvm calling convention, compatible with C.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
cst_pred_ty< is_lowbit_mask > m_LowBitMask()
Match an integer or vector with only the low bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrToIntSameSize_match< OpTy > m_PtrToIntSameSize(const DataLayout &DL, const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWAdd(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
auto m_LogicalOp()
Matches either L && R or L || R where L and R are arbitrary values.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
cst_pred_ty< is_power2_or_zero > m_Power2OrZero()
Match an integer or vector of 0 or power-of-2 values.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
ap_match< APFloat > m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap, true > m_c_NUWAdd(const LHS &L, const RHS &R)
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
IntrinsicID_match m_VScale()
Matches a call to llvm.vscale().
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmin_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmin_pred_ty > > m_OrdOrUnordFMin(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point minimum function.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
bind_ty< WithOverflowInst > m_WithOverflowInst(WithOverflowInst *&I)
Match a with overflow intrinsic, capturing it if we match.
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > m_c_SMin(const LHS &L, const RHS &R)
Matches an SMin with LHS and RHS in either order.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true > m_c_UMax(const LHS &L, const RHS &R)
Matches a UMax with LHS and RHS in either order.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
NoWrapTrunc_match< OpTy, TruncInst::NoUnsignedWrap > m_NUWTrunc(const OpTy &Op)
Matches trunc nuw.
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > m_c_UMin(const LHS &L, const RHS &R)
Matches a UMin with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmax_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmax_pred_ty > > m_OrdOrUnordFMax(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point maximum function.
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true > m_c_SMax(const LHS &L, const RHS &R)
Matches an SMax with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
BinOpPred_match< LHS, RHS, is_irem_op > m_IRem(const LHS &L, const RHS &R)
Matches integer remainder operations.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
class_match< BasicBlock > m_BasicBlock()
Match an arbitrary basic block value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
cst_pred_ty< is_nonpositive > m_NonPositive()
Match an integer or vector of non-positive values.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
ElementWiseBitCast_match< OpTy > m_ElementWiseBitCast(const OpTy &Op)
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
CastOperator_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
static unsigned decodeVSEW(unsigned VSEW)
LLVM_ABI unsigned getSEWLMULRatio(unsigned SEW, VLMUL VLMul)
static constexpr unsigned RVVBitsPerBlock
initializer< Ty > init(const Ty &Val)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool haveNoCommonBitsSet(const WithCache< const Value * > &LHSCache, const WithCache< const Value * > &RHSCache, const SimplifyQuery &SQ)
Return true if LHS and RHS have no common bits set.
LLVM_ABI bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, Instruction *OnPathTo, DominatorTree *DT)
Return true if undefined behavior would provable be executed on the path to OnPathTo if Root produced...
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
LLVM_ABI bool willNotFreeBetween(const Instruction *Assume, const Instruction *CtxI)
Returns true, if no instruction between Assume and CtxI may free memory and the function is marked as...
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
LLVM_ABI KnownFPClass computeKnownFPClass(const Value *V, const APInt &DemandedElts, FPClassTest InterestedClasses, const SimplifyQuery &SQ, unsigned Depth=0)
Determine which floating-point classes are valid for V, and return them in KnownFPClass bit sets.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI bool canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
LLVM_ABI bool mustTriggerUB(const Instruction *I, const SmallPtrSetImpl< const Value * > &KnownPoison)
Return true if the given instruction must trigger undefined behavior when I is executed with any oper...
LLVM_ABI bool isKnownNeverInfinity(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not an infinity or if the floating-point vector val...
LLVM_ABI void computeKnownBitsFromContext(const Value *V, KnownBits &Known, const SimplifyQuery &Q, unsigned Depth=0)
Merge bits known from context-dependent facts into Known.
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
LLVM_ABI bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI)
LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
LLVM_ABI const Value * getArgumentAliasingToReturnedPointer(const CallBase *Call, bool MustPreserveNullness)
This function returns call pointer argument that is considered the same by aliasing rules.
LLVM_ABI bool isAssumeLikeIntrinsic(const Instruction *I)
Return true if it is an intrinsic that cannot be speculated but also cannot trap.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
LLVM_ABI AllocaInst * findAllocaForValue(Value *V, bool OffsetZero=false)
Returns unique alloca where the value comes from, or nullptr.
LLVM_ABI APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth)
Return the minimum or maximum constant value for the specified integer min/max flavor and type.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isOnlyUsedInZeroComparison(const Instruction *CxtI)
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
LLVM_ABI bool getConstantStringInfo(const Value *V, StringRef &Str, bool TrimAtNul=true)
This function computes the length of a null-terminated C string pointed to by V.
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
LLVM_ABI bool onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V)
Return true if the only users of this pointer are lifetime markers or droppable instructions.
LLVM_ABI Constant * ReadByteArrayFromGlobal(const GlobalVariable *GV, uint64_t Offset)
LLVM_ABI Value * stripNullTest(Value *V)
Returns the inner value X if the expression has the form f(X) where f(X) == 0 if and only if X == 0,...
LLVM_ABI bool getUnderlyingObjectsForCodeGen(const Value *V, SmallVectorImpl< Value * > &Objects)
This is a wrapper around getUnderlyingObjects and adds support for basic ptrtoint+arithmetic+inttoptr...
LLVM_ABI std::pair< Intrinsic::ID, bool > canConvertToMinOrMaxIntrinsic(ArrayRef< Value * > VL)
Check if the values in VL are select instructions that can be converted to a min or max (vector) intr...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
LLVM_ABI bool isGuaranteedToExecuteForEveryIteration(const Instruction *I, const Loop *L)
Return true if this function can prove that the instruction I is executed for every iteration of the ...
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool mustSuppressSpeculation(const LoadInst &LI)
Return true if speculation of the given load must be suppressed to avoid ordering or interfering with...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
gep_type_iterator gep_type_end(const User *GEP)
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
LLVM_ABI CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered=false)
Return the canonical comparison predicate for the specified minimum/maximum flavor.
bool isa_and_nonnull(const Y &Val)
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI bool canIgnoreSignBitOfZero(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is zero.
LLVM_ABI bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
std::tuple< Value *, FPClassTest, FPClassTest > fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS, FPClassTest RHSClass, bool LookThroughSrc=true)
LLVM_ABI ConstantRange computeConstantRange(const Value *V, bool ForSigned, bool UseInstrInfo=true, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Determine the possible constant range of an integer or vector of integer value.
const Value * getPointerOperand(const Value *V)
A helper function that returns the pointer operand of a load, store or GEP instruction.
LLVM_ABI bool MaskedValueIsZero(const Value *V, const APInt &Mask, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if 'V & Mask' is known to be zero.
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
LLVM_ABI bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, const DominatorTree &DT)
Returns true if the arithmetic part of the WO 's result is used only along the paths control dependen...
LLVM_ABI RetainedKnowledge getKnowledgeFromBundle(AssumeInst &Assume, const CallBase::BundleOpInfo &BOI)
This extracts the Knowledge from an element of an operand bundle.
LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ, bool IsNSW=false)
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
bool isGuard(const User *U)
Returns true iff U has semantics of a guard expressed in a form of call of llvm.experimental....
LLVM_ABI SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF)
Return the inverse minimum/maximum flavor of the specified flavor.
constexpr unsigned MaxAnalysisRecursionDepth
LLVM_ABI void adjustKnownBitsForSelectArm(KnownBits &Known, Value *Cond, Value *Arm, bool Invert, const SimplifyQuery &Q, unsigned Depth=0)
Adjust Known for the given select Arm to include information from the select Cond.
LLVM_ABI bool isKnownNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be negative (i.e.
LLVM_ABI OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
SelectPatternFlavor
Specific patterns of select instructions we can match.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
@ SPF_FMAXNUM
Floating point minnum.
@ SPF_UMIN
Signed minimum.
@ SPF_UMAX
Signed maximum.
@ SPF_SMAX
Unsigned minimum.
@ SPF_FMINNUM
Unsigned maximum.
LLVM_ABI bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(const CallBase *Call, bool MustPreserveNullness)
{launder,strip}.invariant.group returns pointer that aliases its argument, and it only captures point...
LLVM_ABI bool impliesPoison(const Value *ValAssumedPoison, const Value *V)
Return true if V is poison given that ValAssumedPoison is already poison.
LLVM_ABI void getHorizDemandedEltsForFirstOperand(unsigned VectorBitWidth, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS)
Compute the demanded elements mask of horizontal binary operations.
LLVM_ABI SelectPatternResult getSelectPattern(CmpInst::Predicate Pred, SelectPatternNaNBehavior NaNBehavior=SPNB_NA, bool Ordered=false)
Determine the pattern for predicate X Pred Y ? X : Y.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool programUndefinedIfPoison(const Instruction *Inst)
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI bool matchSimpleBinaryIntrinsicRecurrence(const IntrinsicInst *I, PHINode *&P, Value *&Init, Value *&OtherOp)
Attempt to match a simple value-accumulating recurrence of the form: llvm.intrinsic....
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI bool cannotBeNegativeZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is never equal to -0.0.
LLVM_ABI bool programUndefinedIfUndefOrPoison(const Instruction *Inst)
Return true if this function can prove that if Inst is executed and yields a poison value or undef bi...
generic_gep_type_iterator<> gep_type_iterator
FunctionAddr VTableAddr Count
LLVM_ABI uint64_t GetStringLength(const Value *V, unsigned CharSize=8)
If we can compute the length of the string pointed to by the specified pointer, return 'len+1'.
LLVM_ABI OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI bool canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
canCreateUndefOrPoison returns true if Op can create undef or poison from non-undef & non-poison oper...
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
LLVM_ABI bool isKnownInversion(const Value *X, const Value *Y)
Return true iff:
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI bool isNotCrossLaneOperation(const Instruction *I)
Return true if the instruction doesn't potentially cross vector lanes.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
LLVM_ABI RetainedKnowledge getKnowledgeValidInContext(const Value *V, ArrayRef< Attribute::AttrKind > AttrKinds, AssumptionCache &AC, const Instruction *CtxI, const DominatorTree *DT=nullptr)
Return a valid Knowledge associated to the Value V if its Attribute kind is in AttrKinds and the know...
LLVM_ABI bool isSafeToSpeculativelyExecuteWithOpcode(unsigned Opcode, const Instruction *Inst, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
This returns the same result as isSafeToSpeculativelyExecute if Opcode is the actual opcode of Inst.
LLVM_ABI bool onlyUsedByLifetimeMarkers(const Value *V)
Return true if the only users of this pointer are lifetime markers.
LLVM_ABI Intrinsic::ID getIntrinsicForCallSite(const CallBase &CB, const TargetLibraryInfo *TLI)
Map a call instruction to an intrinsic ID.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
LLVM_ABI const Value * getUnderlyingObjectAggressive(const Value *V)
Like getUnderlyingObject(), but will try harder to find a single underlying object.
LLVM_ABI Intrinsic::ID getMinMaxIntrinsic(SelectPatternFlavor SPF)
Convert given SPF to equivalent min/max intrinsic.
LLVM_ABI SelectPatternResult matchDecomposedSelectPattern(CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, FastMathFlags FMF=FastMathFlags(), Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Determine the pattern that a select with the given compare as its predicate and given values as its t...
LLVM_ABI OverflowResult computeOverflowForSignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const SimplifyQuery &SQ)
LLVM_ABI bool propagatesPoison(const Use &PoisonOp)
Return true if PoisonOp's user yields poison or raises UB if its operand PoisonOp is poison.
LLVM_ABI ConstantRange computeConstantRangeIncludingKnownBits(const WithCache< const Value * > &V, bool ForSigned, const SimplifyQuery &SQ)
Combine constant ranges from computeConstantRange() and computeKnownBits().
SelectPatternNaNBehavior
Behavior when a floating point min/max is given one NaN and one non-NaN as input.
@ SPNB_RETURNS_NAN
NaN behavior not applicable.
@ SPNB_RETURNS_OTHER
Given one NaN input, returns the NaN.
@ SPNB_RETURNS_ANY
Given one NaN input, returns the non-NaN.
LLVM_ABI bool isKnownNonEqual(const Value *V1, const Value *V2, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the given values are known to be non-equal when defined.
DWARFExpression::Operation Op
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return the number of times the sign bit of the register is replicated into the other bits.
constexpr unsigned BitWidth
LLVM_ABI KnownBits analyzeKnownBitsFromAndXorOr(const Operator *I, const KnownBits &KnownLHS, const KnownBits &KnownRHS, const SimplifyQuery &SQ, unsigned Depth=0)
Using KnownBits LHS/RHS produce the known bits for logic op (and/xor/or).
LLVM_ABI OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
LLVM_ABI bool isKnownNeverInfOrNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point value can never contain a NaN or infinity.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isKnownNeverNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
gep_type_iterator gep_type_begin(const User *GEP)
LLVM_ABI Value * isBytewiseValue(Value *V, const DataLayout &DL)
If the specified value can be set by repeating the same byte in memory, return the i8 value that it i...
LLVM_ABI std::optional< std::pair< CmpPredicate, Constant * > > getFlippedStrictnessPredicateAndConstant(CmpPredicate Pred, Constant *C)
Convert an integer comparison with a constant RHS into an equivalent form with the strictness flipped...
LLVM_ABI unsigned ComputeMaxSignificantBits(const Value *Op, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Get the upper bound on bit size for this Value Op as a signed integer.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
LLVM_ABI OverflowResult computeOverflowForUnsignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const SimplifyQuery &SQ)
unsigned Log2(Align A)
Returns the log2 of the alignment.
LLVM_ABI bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return true if the given value is known to have exactly one bit set when defined.
LLVM_ABI std::optional< bool > isImpliedByDomCondition(const Value *Cond, const Instruction *ContextI, const DataLayout &DL)
Return the boolean condition value in the context of the given instruction if it is known based on do...
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
LLVM_ABI Value * FindInsertedValue(Value *V, ArrayRef< unsigned > idx_range, std::optional< BasicBlock::iterator > InsertBefore=std::nullopt)
Given an aggregate and an sequence of indices, see if the scalar value indexed is already around as a...
LLVM_ABI bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false, bool AllowPoison=true)
Return true if the two given values are negation.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI bool isKnownPositive(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be positive (i.e.
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
LLVM_ABI bool cannotBeOrderedLessThanZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is either NaN or never less than -0....
LLVM_ABI void getUnderlyingObjects(const Value *V, SmallVectorImpl< const Value * > &Objects, const LoopInfo *LI=nullptr, unsigned MaxLookup=MaxLookupSearchDepth)
This method is similar to getUnderlyingObject except that it can look through phi and select instruct...
LLVM_ABI bool mayHaveNonDefUseDependency(const Instruction &I)
Returns true if the result or effects of the given instructions I depend values not reachable through...
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
LLVM_ABI bool isIdentifiedObject(const Value *V)
Return true if this pointer refers to a distinct and identifiable object.
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
LLVM_ABI std::optional< bool > computeKnownFPSignBit(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return false if we can prove that the specified FP value's sign bit is 0.
LLVM_ABI bool canIgnoreSignBitOfNaN(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is NaN.
LLVM_ABI void findValuesAffectedByCondition(Value *Cond, bool IsAssume, function_ref< void(Value *)> InsertAffected)
Call InsertAffected on all Values whose known bits / value may be affected by the condition Cond.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
static LLVM_ABI unsigned int semanticsPrecision(const fltSemantics &)
static LLVM_ABI bool isRepresentableAsNormalIn(const fltSemantics &Src, const fltSemantics &Dst)
This struct is a compact representation of a valid (non-zero power of two) alignment.
SmallPtrSet< Value *, 4 > AffectedValues
Represents offset+length into a ConstantDataArray.
const ConstantDataArray * Array
ConstantDataArray pointer.
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
constexpr bool outputsAreZero() const
Return true if output denormals should be flushed to 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ IEEE
IEEE-754 denormal numbers preserved.
constexpr bool inputsAreZero() const
Return true if input denormals must be implicitly treated as 0.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
static constexpr DenormalMode getIEEE()
InstrInfoQuery provides an interface to query additional information for instructions like metadata o...
bool isExact(const BinaryOperator *Op) const
MDNode * getMetadata(const Instruction *I, unsigned KindID) const
bool hasNoSignedZeros(const InstT *Op) const
bool hasNoSignedWrap(const InstT *Op) const
bool hasNoUnsignedWrap(const InstT *Op) const
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
static LLVM_ABI KnownBits sadd_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.sadd.sat(LHS, RHS)
static LLVM_ABI std::optional< bool > eq(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_EQ result.
KnownBits anyextOrTrunc(unsigned BitWidth) const
Return known bits for an "any" extension or truncation of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
LLVM_ABI KnownBits blsi() const
Compute known bits for X & -X, which has only the lowest bit set of X set.
void makeNonNegative()
Make this value non-negative.
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinLeadingOnes() const
Returns the minimum number of leading one bits.
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits ssub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.ssub.sat(LHS, RHS)
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
LLVM_ABI KnownBits blsmsk() const
Compute known bits for X ^ (X - 1), which has all bits up to and including the lowest set bit of X se...
void makeNegative()
Make this value negative.
void setAllConflict()
Make all bits known to be both zero and one.
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
KnownBits byteSwap() const
bool hasConflict() const
Returns true if there is conflicting information.
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
void setAllZero()
Make all bits known to be zero and discard any previous information.
KnownBits reverseBits() const
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
bool isConstant() const
Returns true if we know the value of all bits.
void resetAll()
Resets the known state of all bits.
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
unsigned countMinTrailingOnes() const
Returns the minimum number of trailing one bits.
static KnownBits add(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from addition of LHS and RHS.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS)
Return true if LHS and RHS have no common bits set.
bool isNegative() const
Returns true if this value is known to be negative.
static KnownBits sub(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from subtraction of LHS and RHS.
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
void setAllOnes()
Make all bits known to be one and discard any previous information.
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
static LLVM_ABI KnownBits uadd_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.uadd.sat(LHS, RHS)
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI std::optional< bool > sgt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGT result.
static LLVM_ABI std::optional< bool > uge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGE result.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
KnownBits sextOrTrunc(unsigned BitWidth) const
Return known bits for a sign extension or truncation of the value we're tracking.
FPClassTest KnownFPClasses
Floating-point classes the value could be one of.
bool isKnownNeverInfinity() const
Return true if it's known this can never be an infinity.
bool cannotBeOrderedGreaterThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never greater tha...
static constexpr FPClassTest OrderedGreaterThanZeroMask
static constexpr FPClassTest OrderedLessThanZeroMask
void knownNot(FPClassTest RuleOut)
void copysign(const KnownFPClass &Sign)
bool isKnownNeverSubnormal() const
Return true if it's known this can never be a subnormal.
LLVM_ABI bool isKnownNeverLogicalZero(DenormalMode Mode) const
Return true if it's know this can never be interpreted as a zero.
bool isKnownNeverNegInfinity() const
Return true if it's known this can never be -infinity.
bool isKnownNeverNegSubnormal() const
Return true if it's known this can never be a negative subnormal.
bool isKnownNeverPosZero() const
Return true if it's known this can never be a literal positive zero.
std::optional< bool > SignBit
std::nullopt if the sign bit is unknown, true if the sign bit is definitely set or false if the sign ...
bool isKnownNeverNaN() const
Return true if it's known this can never be a nan.
bool isKnownNever(FPClassTest Mask) const
Return true if it's known this can never be one of the mask entries.
bool isKnownNeverNegZero() const
Return true if it's known this can never be a negative zero.
void propagateNaN(const KnownFPClass &Src, bool PreserveSign=false)
bool cannotBeOrderedLessThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never less than -...
void signBitMustBeOne()
Assume the sign bit is one.
LLVM_ABI void propagateCanonicalizingSrc(const KnownFPClass &Src, DenormalMode Mode)
Report known classes if Src is evaluated through a potentially canonicalizing operation.
void signBitMustBeZero()
Assume the sign bit is zero.
LLVM_ABI bool isKnownNeverLogicalPosZero(DenormalMode Mode) const
Return true if it's know this can never be interpreted as a positive zero.
bool isKnownNeverPosInfinity() const
Return true if it's known this can never be +infinity.
LLVM_ABI bool isKnownNeverLogicalNegZero(DenormalMode Mode) const
Return true if it's know this can never be interpreted as a negative zero.
bool isKnownNeverPosSubnormal() const
Return true if it's known this can never be a positive subnormal.
Represent one information held inside an operand bundle of an llvm.assume.
SelectPatternFlavor Flavor
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?
SimplifyQuery getWithoutCondContext() const
SimplifyQuery getWithInstruction(const Instruction *I) const
const DomConditionCache * DC