Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Does Amia Calva aestivate?

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

During gradual air exposure, Amia calva show no reduction in oxygen consumption, no increase in plasma urea levels or in urea excretion. Blood pH remains constant, and plasma total CO2, PCO 2, HCO3 -. total ammonia and NH3 concentrations all rise significantly. Exposure to 923 μmol/l NH4Cl does not elicit an increase in urea production or airbreathing. Aquatic hypoxia without access to air does not cause a reduction in aerobic metabolism, and moderate levels result in death. These results suggest that Amia are incapable of aestivation, due to an inability to detoxify ammonia to urea and reduce metabolism, and die following three to five days of air exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Babikker, M.M. and El Hakeem, O. 1979. Changes in blood characteristics and constituents associated with aestivation in the African lungfish, Protopterus annectens. Zool. Anz. 202: 9–16.

    Google Scholar 

  • Bicudo, J.E.P.W. and Johansen, K. 1979. Respiratory gas exchange in the air breathing fish, Symbranchus marmoratus. Environ. Biol. Fish. 4: 55–64.

    Article  Google Scholar 

  • Boutilier, R.G., Randall, D.J. Shelton, G. and Toews, D.P. 1979. Acid-base relationships in the blood of the toad, Bufo marinus. III. The effects of burrowing. J. Exp. Biol. 82: 357–365.

    PubMed  CAS  Google Scholar 

  • Boutilier, R.G., Heming, T.A. and Iwama, G.K. 1984. Physicochemical parameters for use in fish respiratory physiology. In Fish Physiology. Vol. 9. pp. 401–430. Edited by W.S. Hoar and D.J. Randall. Academic Press, New York.

  • Boutilier, R.G., Dobson, G., Hoeger, U. and Randall, D.J. 1988. Acute exposure to graded levels of hypoxia in rainbow trout (Salmo gairdneri): Metabolic and respiratory adaptations. Respir. Physiol. 71: 69–82.

    Article  PubMed  CAS  Google Scholar 

  • Burggren, W.W. and Randall, D.J. 1978. Oxygen uptake and transport during hypoxic exposure in the sturgeon (Acipenser transmontanus) Respir. Physiol. 34: 171–183.

    Article  PubMed  CAS  Google Scholar 

  • Cameron, J.N. and Heisler, N. 1983. Studies of ammonia in the rainbow trout: physico-chemical parameters, acid-base behaviour and respiratory clearance. J. Exp. Biol. 105: 107–125.

    CAS  Google Scholar 

  • Claireaux, G., Thomas, S., Fievet, B. and Motais, R. 1988. Adaptive respiratory responses of trout to acute hypoxia. II. Blood oxygen carrying properties during hypoxia. Respir. Physiol. 74: 91–98.

    Article  PubMed  CAS  Google Scholar 

  • Crocker, C.L. 1967. Rapid method for serum and plasma deproteinization. Am. J. Med. Technol. 33: 361–365.

    PubMed  CAS  Google Scholar 

  • Daxboeck, C., Barnard, D.K. and Randall, D.J. 1981. Functional significance of the gills of the bowfin, Amia calva, with special reference to their significance during air-exposure. Respir. Physiol. 43: 349–364.

    Article  PubMed  CAS  Google Scholar 

  • Delaney, R.G., Lahiri, S. and Fishman, A.P. 1977. Aestivation of the African lungfish Protopterus aethiopicus: cardiovascular and respiratory functions. J. Exp. Biol. 61: 111–128.

    Google Scholar 

  • Delaney, R.G., Lahiri, S., Hamilton, R. and Fishman, A.P. 1977. Acid-base balance and plasma composition in the aestivating lungfish, Protopterus. Am. J. Physiol. 232: R10–R17.

    PubMed  CAS  Google Scholar 

  • Dence, W.A. 1933. Notes on a large bowfin (Amia calva) living in a mud puddle. Copiea 1: 35.

    Article  Google Scholar 

  • Heming, T.A. and Watson, T.A. 1986. Activity and inhibition of carbonic anhydrase in Amia calva, a bimodal-breathing holostean fish. J. Fish Biol. 28: 385–392.

    Article  CAS  Google Scholar 

  • Janssens, P.A. 1964. The metabolism of the aestivating african lungfish. Comp. Biochem. Physiol. 11: 105–117.

    Article  PubMed  CAS  Google Scholar 

  • Janssens, P.A. and Cohen, P.P. 1968a. Nitrogen metabolism in the african lungfish. Comp. Biochem. Physiol. 24: 879–886.

    Article  PubMed  CAS  Google Scholar 

  • Janssens, P.A. and Cohen, P.P. 1968b. Biosynthesis of urea in the african lungfish and in Xenopus laevis under conditions of water shortage. Comp. Biochem. Physiol. 24: 887–898.

    Article  PubMed  CAS  Google Scholar 

  • Johansen, K., Hanson, D. and Lenfant, C. 1970. Respiration in the primitive air breather, Amia calva. Respir. Physiol. 9: 162–174.

    Article  PubMed  CAS  Google Scholar 

  • Loveridge, J.P. and Withers, P.C. 1981. Metabolism and water balance of active and cocooned african bullfrogs, Pyxicephalus adspersus. Physiol. Zool. 54: 203–214.

    CAS  Google Scholar 

  • Mommsen, T.P. and Walsh, P.J. 1989. Evolution of urea synthesis in vertebrates: The Piscine connection. Science, 243: 72–75.

    PubMed  CAS  Google Scholar 

  • Neill, W.T. 1950. An aestivating bowfin. Copiea 240.

  • Olson, K.R. and Fromm, P.O. 1971. Excretion of urea by two teleosts exposed to different concentrations of ambient ammonia. Comp. Biochem. Physiol. 40A: 999–1007.

    Article  CAS  Google Scholar 

  • Pusey, B.J. 1986. The effect of starvation on oxygen consumption and nitrogen excretion in Lepidogalaxias salamandroides (Mees). J. Comp. Physiol. 156: 701–705.

    CAS  Google Scholar 

  • Randall, D.J., Cameron, J.N., Daxboeck, C. and Smatresk, N. 1981. Aspects of bimodal gas exchange in the bowfin Amia calva L. (Actinopterygii: Amiiformes). Respir. Physiol. 43: 339–348.

    Article  PubMed  CAS  Google Scholar 

  • Randall, D.J. and Wright, P.A. 1987. Ammonia distribution and excretion in fish. Fish Physiol. Biochem. 3: 107–120.

    Article  CAS  Google Scholar 

  • Saha, N. and Ratha, B.K. 1987. Active ureogenesis in a freshwater, air breathing teleost Heteropneustes fossilis. J. Exp. Zool. 241: 137–141.

    Article  CAS  Google Scholar 

  • Seymour, R.S. 1973. Energy metabolism of dormant spadefoot toads (Scaphiopus). Copiea 3: 436–445.

    Google Scholar 

  • Smatresk, N. and Cameron, J.N. 1982. Respiration and acid-base physiology of the spotted gar, a bimodal breather. I. Normal values and the response to severe hypoxia. J. Exp. Biol. 96: 263–280.

    Google Scholar 

  • Smatresk, N.J. 1988. Control of the respiratory mode in air breathing fishes. Can. J. Zool. 66: 144–151.

    Article  Google Scholar 

  • Smith, H.W. 1961. From Fish to Philosopher. Doubleday and Co., New York.

    Google Scholar 

  • Soivio, A., Westman, D.C. and Nyholm, K. 1972. Improved method of dorsal aorta catheterisation: haematological effects followed for three weeks in rainbow trout (Salmo gairdneri). Finn. Fish. Res. 1: 11–21.

    Google Scholar 

  • Verdouw, H., van Echteld, C.J.A. and Dekkers, E.M.G. 1978. Ammonia determination based on indophenol formation with sodium salicylate. Water. Res. 12: 399–402.

    Article  CAS  Google Scholar 

  • Wolf, K. 1963. Physiological salines for freshwater teleosts. Prog. Fish-Cult. 25: 135–140.

    CAS  Google Scholar 

  • Zar, J.H. 1984. Biostatistical Analysis (2nd ed.) Prentice-Hall Inc., New Jersey.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKenzie, D.J., Randall, D.J. Does Amia Calva aestivate?. Fish Physiol Biochem 8, 147–158 (1990). https://doi.org/10.1007/BF00004442

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1007/BF00004442

Keywords