Abstract
Biosynthesis of nanoparticles has recently attracted the attention of scientists because of the need to develop new methods of synthesis that are safe, cost-effective and reliable. In a wide variety of applications, metal oxide nanoparticles are attracting growing attention in particular. In this paper, we synthesized ZnO nanoparticles through green technology using Clerodendrum phlomidis extract, a natural non-toxic hydrocolloid, and investigated its possible antibacterial, anticancer and antioxidant application. The biosynthesized zinc oxide nanoparticles (ZnO NPs) were characterized by Scanning electron microscopy, Energy dispersive X-ray spectroscopy, X-ray diffraction, UV–visible spectroscopy and photoluminescence spectroscopy. The results showed that ZnO NPs developed from Clerodendrum phlomidis had higher antimicrobial activity against Methicillin-resistant Staphylococcus aureus and Staphylococcus aureus. The synthesized ZnO NPs shows significant free radical scavenging activity. However, we suggest that ZnO NPs can be used as an antimicrobial agent. An invitro cell assay showed that ZnO nanoparticles were significantly cytotoxic against the renal cancer cell line. The synthesized ZnO NPs displayed potential photocatalytic activity against the degradation of methylene blue dye on presenting to xenon lamp irradiation. For chemical and biosynthesized ZnO-NPs, respectively, the degradation efficacy against methylene blue dye was found to be 86%.
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data availability
The data used to support the findings of this study are included within the article.
References
S. Hong, S. Myung, Nat. Nanotechnol. 2(4), 207–208 (2007). https://doi.org/10.1038/nnano.2007.89
B.K. Teo, X.H. Sun, Chem. Rev. 107(5), 1454–1532 (2007). https://doi.org/10.1021/cr030187n
D.F. Emerich, C.G. Thanos, Expert Opin. Biol. Ther. 3(4), 655–663 (2003). https://doi.org/10.1517/14712598.3.4.655
E. Roduner, Chem. Soc. Rev. 35(7), 583 (2006). https://doi.org/10.1039/b502142c
S.M. Moghimi, A.C. Hunter, J.C. Murray, FASEB J. 19(3), 311–330 (2005). https://doi.org/10.1096/fj.04-2747rev
K. Riehemann, S.W. Schneider, T.A. Luger, B. Godin, M. Ferrari, H. Fuchs, Angew. Chem. Int. Ed. 48(5), 872–897 (2009). https://doi.org/10.1002/anie.200802585
O. Farokhzad, R. Langer, Adv. Drug Deliv. Rev. 58(14), 1456–1459 (2006). https://doi.org/10.1016/j.addr.2006.09.011
R.R. Arvizo, S. Bhattacharyya, R.A. Kudgus, K. Giri, R. Bhattacharya, P. Mukherjee, Chem. Soc. Rev. 41(7), 2943 (2012). https://doi.org/10.1039/c2cs15355f
S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Van der Elst, R.N. Muller, Chem. Rev. 108(6), 2064–2110 (2008). https://doi.org/10.1021/cr068445e
Z. Fei Yin, L. Wu, H. Gui Yang, Y. Hua Su, Phys. Chem. Chem. Phys. 15(14), 4844 (2013). https://doi.org/10.1039/c3cp43938k
L. Lacerda, A. Bianco, M. Prato, K. Kostarelos, Adv. Drug Deliv. Rev. 58(14), 1460–1470 (2006). https://doi.org/10.1016/j.addr.2006.09.015
H. Hong, T. Gao, W. Cai, Nano Today 4(3), 252–261 (2009). https://doi.org/10.1016/j.nantod.2009.04.002
Y. Wang, L. Chen, Nanomed. Nanotechnol. Biol. Med. 7(4), 385–402 (2011). https://doi.org/10.1016/j.nano.2010.12.006
R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao, S. Sun, Adv. Mater. 22(25), 2729–2742 (2010). https://doi.org/10.1002/adma.201000260
A.E. Nel, L. Mädler, D. Velegol, T. Xia, E.M.V. Hoek, P. Somasundaran, M. Thompson, Nat. Mater. 8(7), 543–557 (2009). https://doi.org/10.1038/nmat2442
Y. Jin, J. Wang, B. Sun, J.C. Blakesley, N.C. Greenham, Nano Lett. 8(6), 1649–1653 (2008). https://doi.org/10.1021/nl0803702
H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, D. Que, J. Phys. Chem. B 108(13), 3955–3958 (2004). https://doi.org/10.1021/jp036826f
P.R. Patil, S.S. Joshi, Mater. Chem. Phys. 105(2–3), 354–361 (2007). https://doi.org/10.1016/j.matchemphys.2007.04.072
X. Jiaqiang, C. Yuping, C. Daoyong, S. Jianian, Sens. Actuators B Chem. 113(1), 526–531 (2006). https://doi.org/10.1016/j.snb.2005.03.097
D. Sharma, J. Rajput, B.S. Kaith, M. Kaur, S. Sharma, Thin Solid Films 519(3), 1224–1229 (2010). https://doi.org/10.1016/j.tsf.2010.08.073
N. Zhang, K. Yu, Z. Zhu, D. Jiang, Sens. Actuators A 143(2), 245–250 (2008). https://doi.org/10.1016/j.sna.2007.10.079
S.S. Joshi, P.R. Patil, M.S. Nimase, P.P. Bakare, J. Nanopart. Res. 8(5), 635–643 (2006). https://doi.org/10.1007/s11051-005-9033-x
M. Jitianu, D.V. Goia, J. Colloid Interface Sci. 309(1), 78–85 (2007). https://doi.org/10.1016/j.jcis.2006.12.020
M. Li, X. Lv, X. Ma, F. Sun, L. Tang, Z. Wang, Mater. Lett. 61(3), 690–693 (2007). https://doi.org/10.1016/j.matlet.2006.05.043
B. Liu, H.C. Zeng, Langmuir 20(10), 4196–4204 (2004). https://doi.org/10.1021/la035264o
S. Cho, S.H. Jung, K.H. Lee, J. Phys. Chem. C 112(33), 12769–12776 (2008). https://doi.org/10.1021/jp803783s
L. Chen, Y. Zhang, P. Zhu, F. Zhou, W. Zeng, D.D. Lu, C. Wong, Sci. Rep. 5(1), 258 (2015). https://doi.org/10.1038/srep09672
N. Tabet, R. Al Ghashani, S. Achour, Superlattices Microstruct. 45(6), 598–603 (2009). https://doi.org/10.1016/j.spmi.2009.03.002
M. Barzegar, A. Habibi-Yangjeh, M. Behboudnia, J. Phys. Chem. Solids 70(10), 1353–1358 (2009). https://doi.org/10.1016/j.jpcs.2009.07.025
A.H. Salam, R. Sivaraj, R. Venckatesh, Mater. Lett. 131, 16–18 (2014). https://doi.org/10.1016/j.matlet.2014.05.033
P. Rajiv, S. Rajeshwari, R. Venckatesh, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 112, 384–387 (2013). https://doi.org/10.1016/j.saa.2014.08.022
S. Vijayakumar, G. Vinoj, B. Malaikozhundan, S. Shanthi, B. Vaseeharan, Spectrochim. Acta Part A Mol. Biomol Spectrosc. 137, 886–891 (2015). https://doi.org/10.1016/j.saa.2014.08.064
N.A. Samat, R.M. Nor, Ceram. Int. 39, S545–S548 (2013). https://doi.org/10.1016/j.ceramint.2012.10.132
J.L. Venkataraju, R. Sharath, M.N. Chandraprabha, E. Neelufar, A. Hazra, M. Patra, J. Biochem. Technol. 3(5), S151–S154 (2012)
P.K. Mishra, H. Mishra, A. Ekielski, S. Talegaonkar, B. Vaidya, Drug Discov. Today 22, 1825–1834 (2017). https://doi.org/10.1016/j.drudis.2017.08.006
B. Malaikozhundan, B. Vaseeharan, S. Vijayakumar, K. Pandiselvi, M.A. Kalanjiam, K. Murugan, G. Benelli, Microb. Pathog. 104, 268–277 (2017). https://doi.org/10.1016/j.micpath.2017.01.029
A. Muthuvel, M. Jothibas, C. Manoharan, J. Environ. Chem. Eng. 8, 103705 (2020). https://doi.org/10.1016/j.jece.2020.103705
P. Scherrer, Nachr. Ges. Wiss. Göttingen 26, 98 (1918)
J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11, 102 (1978)
V. Uvarov, I. Popov, Mater. Charact. 85, 111 (2013)
A.M. Awwad, N.M. Salem, A.O. Abdeen, Int. J. Ind. Chem. 4, 29 (2013). https://doi.org/10.1186/2228-5547-4-29
L. Rastogi, J. Arunachalam, Mater. Chem. Phys. 129, 558–563 (2011)
R.K. Das, N. Gogoi, U. Bora, Bioprocess Biosyst. Eng. 34, 615–619 (2011)
W.R. Rajesh, R.L. Jaya, S.K. Niranjan, D.M. Vijay, B.K. Sahebrao, Curr. Nanosci. 5(1), 117–122 (2009). https://doi.org/10.2174/157341309787314674
P. Rajiv, S. Rajeshwari, R. Venckatesh, Spectrochim. Acta A Mol. Biomol. Spectrosc. 112, 384–387 (2013)
M.J. Divya, C. Sowmia, K. Joona, K.P. Dhanya, Res. J. Pharm. Biol. Chem. Sci. 4, 1137–1142 (2013)
Y.T. Prabhu, B. Siva Kumari, K. Venkateswara, V. Rao Kavitha, D. Aruna Padmavathi, Int. J. Curr. Eng. Technol. 4, 1038–1041 (2014)
M. Darroudi, Z. Sabouri, R. Kazemi Oskuee, A. Khorsand Zak, H. Kargar, M.H.N. Abd Hamid, Ceram. Int. 40(3), 4827–4831 (2014). https://doi.org/10.1016/j.ceramint.2013.09.032
K. Elumalai, S. Velmurugan, Appl. Surf. Sci. 345, 329–336 (2015). https://doi.org/10.1016/j.apsusc.2015.03.176
V. Adimule, M.G. Revaigh, H.J. Adarsha, J. Mater. Eng. Perform. (2020). https://doi.org/10.1007/s11665-020-04979-4
M. Meddouri, L. Hammiche, D. Djouadi, A. Chelouche, T. Touam, B. Boudine, J. Sol-Gel. Sci. Technol. 80(3), 642–650 (2016). https://doi.org/10.1007/s10971-016-4152-7
K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79(10), 7983–7990 (1996). https://doi.org/10.1063/1.362349
G. Xiong, U. Pal, J.G. Serrano, J. Appl. Phys. 101(2), 024317 (2007). https://doi.org/10.1063/1.2424538
H. Mahdhi, Z. Ben-Ayadi, N. Hadded, L. Gauffier, K. Djessas, J. Mater. Sci. Mater. Electron. 26(12), 9873–9881 (2015). https://doi.org/10.1007/s10854-015-3663-2
E.S. Contreras-Guzman, F.C. Strong, J. AOAC Int. 65, 1215–1217 (1982)
D. Huang, B. Ou, R.L. Prior, J. Agric. Food Chem. 53, 1841–1856 (2005)
S.R. Schaffazick, A.R. Pohlmann, C.A. de Cordova, T.B. Creczynski-Pasa, S.S. Guterres, Int. J. Pharm. 28, 209–213 (2005)
H. Hema, Indian J. Clin. Biochem. 17, 33–43 (2002)
Z.Y. Zhang, H.M. Xiong, Materials 8, 3101–3127 (2015)
C. Anupama, A. Kaphle, G. Nagaraju, J. Mater. Sci.: Mater. Electron. 29(5), 4238–4249 (2017). https://doi.org/10.1007/s10854-017-8369-1
M.M. Abutalib, A. Rajeh, J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03483-8
M. Sathishkumar, A.T. Rajamanickam, M. Saroja, J. Mater. Sci.: Mater. Electron. 29(16), 14200–14209 (2018). https://doi.org/10.1007/s10854-018-9553-7
Acknowledgements
The authors are thankful to the management of SRM Institute of Science and technology, Kattankulathur, Tamil Nadu, India for providing the facilities and are also thankful to the Nanotechnology Research Centre (NRC). Facilities utilized from DST/FIST sanctioned to the department of chemistry and HRTEM FACILITY at srmist set up with support from MNRE (Project No.31/03/2014-15/PVSE-R&D), Government of India.
Funding
The authors have not disclosed any funding.
Author information
Authors and Affiliations
Contributions
The authors read and approved the final manuscript. SR—Design the paper, writing and interpretation data. JR—Planning and supervised the work. PS—Manuscript correction. RR—Interpreting the data. RR—Interpreting the data. KDA—Analysis the result and supervised.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interests regarding the publication of this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ravichandran, S., Radhakrishnan, J., Sengodan, P. et al. Bio synthesis of Zinc oxide nanoparticles using Clerodendrum phlomidis extract for antibacterial, anticancer, antioxidant and photocatalytic studies. J Mater Sci: Mater Electron 33, 11455–11466 (2022). https://doi.org/10.1007/s10854-022-08118-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-022-08118-8