Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Advertisement

Log in

Bio synthesis of Zinc oxide nanoparticles using Clerodendrum phlomidis extract for antibacterial, anticancer, antioxidant and photocatalytic studies

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Biosynthesis of nanoparticles has recently attracted the attention of scientists because of the need to develop new methods of synthesis that are safe, cost-effective and reliable. In a wide variety of applications, metal oxide nanoparticles are attracting growing attention in particular. In this paper, we synthesized ZnO nanoparticles through green technology using Clerodendrum phlomidis extract, a natural non-toxic hydrocolloid, and investigated its possible antibacterial, anticancer and antioxidant application. The biosynthesized zinc oxide nanoparticles (ZnO NPs) were characterized by Scanning electron microscopy, Energy dispersive X-ray spectroscopy, X-ray diffraction, UV–visible spectroscopy and photoluminescence spectroscopy. The results showed that ZnO NPs developed from Clerodendrum phlomidis had higher antimicrobial activity against Methicillin-resistant Staphylococcus aureus and Staphylococcus aureus. The synthesized ZnO NPs shows significant free radical scavenging activity. However, we suggest that ZnO NPs can be used as an antimicrobial agent. An invitro cell assay showed that ZnO nanoparticles were significantly cytotoxic against the renal cancer cell line. The synthesized ZnO NPs displayed potential photocatalytic activity against the degradation of methylene blue dye on presenting to xenon lamp irradiation. For chemical and biosynthesized ZnO-NPs, respectively, the degradation efficacy against methylene blue dye was found to be 86%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

The data used to support the findings of this study are included within the article.

References

  1. S. Hong, S. Myung, Nat. Nanotechnol. 2(4), 207–208 (2007). https://doi.org/10.1038/nnano.2007.89

    Article  CAS  Google Scholar 

  2. B.K. Teo, X.H. Sun, Chem. Rev. 107(5), 1454–1532 (2007). https://doi.org/10.1021/cr030187n

    Article  CAS  Google Scholar 

  3. D.F. Emerich, C.G. Thanos, Expert Opin. Biol. Ther. 3(4), 655–663 (2003). https://doi.org/10.1517/14712598.3.4.655

    Article  CAS  Google Scholar 

  4. E. Roduner, Chem. Soc. Rev. 35(7), 583 (2006). https://doi.org/10.1039/b502142c

    Article  CAS  Google Scholar 

  5. S.M. Moghimi, A.C. Hunter, J.C. Murray, FASEB J. 19(3), 311–330 (2005). https://doi.org/10.1096/fj.04-2747rev

    Article  CAS  Google Scholar 

  6. K. Riehemann, S.W. Schneider, T.A. Luger, B. Godin, M. Ferrari, H. Fuchs, Angew. Chem. Int. Ed. 48(5), 872–897 (2009). https://doi.org/10.1002/anie.200802585

    Article  CAS  Google Scholar 

  7. O. Farokhzad, R. Langer, Adv. Drug Deliv. Rev. 58(14), 1456–1459 (2006). https://doi.org/10.1016/j.addr.2006.09.011

    Article  CAS  Google Scholar 

  8. R.R. Arvizo, S. Bhattacharyya, R.A. Kudgus, K. Giri, R. Bhattacharya, P. Mukherjee, Chem. Soc. Rev. 41(7), 2943 (2012). https://doi.org/10.1039/c2cs15355f

    Article  CAS  Google Scholar 

  9. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Van der Elst, R.N. Muller, Chem. Rev. 108(6), 2064–2110 (2008). https://doi.org/10.1021/cr068445e

    Article  CAS  Google Scholar 

  10. Z. Fei Yin, L. Wu, H. Gui Yang, Y. Hua Su, Phys. Chem. Chem. Phys. 15(14), 4844 (2013). https://doi.org/10.1039/c3cp43938k

    Article  CAS  Google Scholar 

  11. L. Lacerda, A. Bianco, M. Prato, K. Kostarelos, Adv. Drug Deliv. Rev. 58(14), 1460–1470 (2006). https://doi.org/10.1016/j.addr.2006.09.015

    Article  CAS  Google Scholar 

  12. H. Hong, T. Gao, W. Cai, Nano Today 4(3), 252–261 (2009). https://doi.org/10.1016/j.nantod.2009.04.002

    Article  CAS  Google Scholar 

  13. Y. Wang, L. Chen, Nanomed. Nanotechnol. Biol. Med. 7(4), 385–402 (2011). https://doi.org/10.1016/j.nano.2010.12.006

    Article  CAS  Google Scholar 

  14. R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao, S. Sun, Adv. Mater. 22(25), 2729–2742 (2010). https://doi.org/10.1002/adma.201000260

    Article  CAS  Google Scholar 

  15. A.E. Nel, L. Mädler, D. Velegol, T. Xia, E.M.V. Hoek, P. Somasundaran, M. Thompson, Nat. Mater. 8(7), 543–557 (2009). https://doi.org/10.1038/nmat2442

    Article  CAS  Google Scholar 

  16. Y. Jin, J. Wang, B. Sun, J.C. Blakesley, N.C. Greenham, Nano Lett. 8(6), 1649–1653 (2008). https://doi.org/10.1021/nl0803702

    Article  CAS  Google Scholar 

  17. H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, D. Que, J. Phys. Chem. B 108(13), 3955–3958 (2004). https://doi.org/10.1021/jp036826f

    Article  CAS  Google Scholar 

  18. P.R. Patil, S.S. Joshi, Mater. Chem. Phys. 105(2–3), 354–361 (2007). https://doi.org/10.1016/j.matchemphys.2007.04.072

    Article  CAS  Google Scholar 

  19. X. Jiaqiang, C. Yuping, C. Daoyong, S. Jianian, Sens. Actuators B Chem. 113(1), 526–531 (2006). https://doi.org/10.1016/j.snb.2005.03.097

    Article  CAS  Google Scholar 

  20. D. Sharma, J. Rajput, B.S. Kaith, M. Kaur, S. Sharma, Thin Solid Films 519(3), 1224–1229 (2010). https://doi.org/10.1016/j.tsf.2010.08.073

    Article  CAS  Google Scholar 

  21. N. Zhang, K. Yu, Z. Zhu, D. Jiang, Sens. Actuators A 143(2), 245–250 (2008). https://doi.org/10.1016/j.sna.2007.10.079

    Article  CAS  Google Scholar 

  22. S.S. Joshi, P.R. Patil, M.S. Nimase, P.P. Bakare, J. Nanopart. Res. 8(5), 635–643 (2006). https://doi.org/10.1007/s11051-005-9033-x

    Article  CAS  Google Scholar 

  23. M. Jitianu, D.V. Goia, J. Colloid Interface Sci. 309(1), 78–85 (2007). https://doi.org/10.1016/j.jcis.2006.12.020

    Article  CAS  Google Scholar 

  24. M. Li, X. Lv, X. Ma, F. Sun, L. Tang, Z. Wang, Mater. Lett. 61(3), 690–693 (2007). https://doi.org/10.1016/j.matlet.2006.05.043

    Article  CAS  Google Scholar 

  25. B. Liu, H.C. Zeng, Langmuir 20(10), 4196–4204 (2004). https://doi.org/10.1021/la035264o

    Article  CAS  Google Scholar 

  26. S. Cho, S.H. Jung, K.H. Lee, J. Phys. Chem. C 112(33), 12769–12776 (2008). https://doi.org/10.1021/jp803783s

    Article  CAS  Google Scholar 

  27. L. Chen, Y. Zhang, P. Zhu, F. Zhou, W. Zeng, D.D. Lu, C. Wong, Sci. Rep. 5(1), 258 (2015). https://doi.org/10.1038/srep09672

    Article  CAS  Google Scholar 

  28. N. Tabet, R. Al Ghashani, S. Achour, Superlattices Microstruct. 45(6), 598–603 (2009). https://doi.org/10.1016/j.spmi.2009.03.002

    Article  CAS  Google Scholar 

  29. M. Barzegar, A. Habibi-Yangjeh, M. Behboudnia, J. Phys. Chem. Solids 70(10), 1353–1358 (2009). https://doi.org/10.1016/j.jpcs.2009.07.025

    Article  CAS  Google Scholar 

  30. A.H. Salam, R. Sivaraj, R. Venckatesh, Mater. Lett. 131, 16–18 (2014). https://doi.org/10.1016/j.matlet.2014.05.033

    Article  CAS  Google Scholar 

  31. P. Rajiv, S. Rajeshwari, R. Venckatesh, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 112, 384–387 (2013). https://doi.org/10.1016/j.saa.2014.08.022

    Article  CAS  Google Scholar 

  32. S. Vijayakumar, G. Vinoj, B. Malaikozhundan, S. Shanthi, B. Vaseeharan, Spectrochim. Acta Part A Mol. Biomol Spectrosc. 137, 886–891 (2015). https://doi.org/10.1016/j.saa.2014.08.064

    Article  CAS  Google Scholar 

  33. N.A. Samat, R.M. Nor, Ceram. Int. 39, S545–S548 (2013). https://doi.org/10.1016/j.ceramint.2012.10.132

    Article  CAS  Google Scholar 

  34. J.L. Venkataraju, R. Sharath, M.N. Chandraprabha, E. Neelufar, A. Hazra, M. Patra, J. Biochem. Technol. 3(5), S151–S154 (2012)

    Google Scholar 

  35. P.K. Mishra, H. Mishra, A. Ekielski, S. Talegaonkar, B. Vaidya, Drug Discov. Today 22, 1825–1834 (2017). https://doi.org/10.1016/j.drudis.2017.08.006

    Article  CAS  Google Scholar 

  36. B. Malaikozhundan, B. Vaseeharan, S. Vijayakumar, K. Pandiselvi, M.A. Kalanjiam, K. Murugan, G. Benelli, Microb. Pathog. 104, 268–277 (2017). https://doi.org/10.1016/j.micpath.2017.01.029

    Article  CAS  Google Scholar 

  37. A. Muthuvel, M. Jothibas, C. Manoharan, J. Environ. Chem. Eng. 8, 103705 (2020). https://doi.org/10.1016/j.jece.2020.103705

    Article  CAS  Google Scholar 

  38. P. Scherrer, Nachr. Ges. Wiss. Göttingen 26, 98 (1918)

    Google Scholar 

  39. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11, 102 (1978)

    Article  CAS  Google Scholar 

  40. V. Uvarov, I. Popov, Mater. Charact. 85, 111 (2013)

    Article  CAS  Google Scholar 

  41. A.M. Awwad, N.M. Salem, A.O. Abdeen, Int. J. Ind. Chem. 4, 29 (2013). https://doi.org/10.1186/2228-5547-4-29

    Article  Google Scholar 

  42. L. Rastogi, J. Arunachalam, Mater. Chem. Phys. 129, 558–563 (2011)

    Article  CAS  Google Scholar 

  43. R.K. Das, N. Gogoi, U. Bora, Bioprocess Biosyst. Eng. 34, 615–619 (2011)

    Article  CAS  Google Scholar 

  44. W.R. Rajesh, R.L. Jaya, S.K. Niranjan, D.M. Vijay, B.K. Sahebrao, Curr. Nanosci. 5(1), 117–122 (2009). https://doi.org/10.2174/157341309787314674

    Article  Google Scholar 

  45. P. Rajiv, S. Rajeshwari, R. Venckatesh, Spectrochim. Acta A Mol. Biomol. Spectrosc. 112, 384–387 (2013)

    Article  CAS  Google Scholar 

  46. M.J. Divya, C. Sowmia, K. Joona, K.P. Dhanya, Res. J. Pharm. Biol. Chem. Sci. 4, 1137–1142 (2013)

    CAS  Google Scholar 

  47. Y.T. Prabhu, B. Siva Kumari, K. Venkateswara, V. Rao Kavitha, D. Aruna Padmavathi, Int. J. Curr. Eng. Technol. 4, 1038–1041 (2014)

    Google Scholar 

  48. M. Darroudi, Z. Sabouri, R. Kazemi Oskuee, A. Khorsand Zak, H. Kargar, M.H.N. Abd Hamid, Ceram. Int. 40(3), 4827–4831 (2014). https://doi.org/10.1016/j.ceramint.2013.09.032

    Article  CAS  Google Scholar 

  49. K. Elumalai, S. Velmurugan, Appl. Surf. Sci. 345, 329–336 (2015). https://doi.org/10.1016/j.apsusc.2015.03.176

    Article  CAS  Google Scholar 

  50. V. Adimule, M.G. Revaigh, H.J. Adarsha, J. Mater. Eng. Perform. (2020). https://doi.org/10.1007/s11665-020-04979-4

    Article  Google Scholar 

  51. M. Meddouri, L. Hammiche, D. Djouadi, A. Chelouche, T. Touam, B. Boudine, J. Sol-Gel. Sci. Technol. 80(3), 642–650 (2016). https://doi.org/10.1007/s10971-016-4152-7

    Article  CAS  Google Scholar 

  52. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79(10), 7983–7990 (1996). https://doi.org/10.1063/1.362349

    Article  CAS  Google Scholar 

  53. G. Xiong, U. Pal, J.G. Serrano, J. Appl. Phys. 101(2), 024317 (2007). https://doi.org/10.1063/1.2424538

    Article  CAS  Google Scholar 

  54. H. Mahdhi, Z. Ben-Ayadi, N. Hadded, L. Gauffier, K. Djessas, J. Mater. Sci. Mater. Electron. 26(12), 9873–9881 (2015). https://doi.org/10.1007/s10854-015-3663-2

    Article  CAS  Google Scholar 

  55. E.S. Contreras-Guzman, F.C. Strong, J. AOAC Int. 65, 1215–1217 (1982)

    Article  CAS  Google Scholar 

  56. D. Huang, B. Ou, R.L. Prior, J. Agric. Food Chem. 53, 1841–1856 (2005)

    Article  CAS  Google Scholar 

  57. S.R. Schaffazick, A.R. Pohlmann, C.A. de Cordova, T.B. Creczynski-Pasa, S.S. Guterres, Int. J. Pharm. 28, 209–213 (2005)

    Article  Google Scholar 

  58. H. Hema, Indian J. Clin. Biochem. 17, 33–43 (2002)

    Article  Google Scholar 

  59. Z.Y. Zhang, H.M. Xiong, Materials 8, 3101–3127 (2015)

    Article  CAS  Google Scholar 

  60. C. Anupama, A. Kaphle, G. Nagaraju, J. Mater. Sci.: Mater. Electron. 29(5), 4238–4249 (2017). https://doi.org/10.1007/s10854-017-8369-1

    Article  CAS  Google Scholar 

  61. M.M. Abutalib, A. Rajeh, J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03483-8

    Article  Google Scholar 

  62. M. Sathishkumar, A.T. Rajamanickam, M. Saroja, J. Mater. Sci.: Mater. Electron. 29(16), 14200–14209 (2018). https://doi.org/10.1007/s10854-018-9553-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the management of SRM Institute of Science and technology, Kattankulathur, Tamil Nadu, India for providing the facilities and are also thankful to the Nanotechnology Research Centre (NRC). Facilities utilized from DST/FIST sanctioned to the department of chemistry and HRTEM FACILITY at srmist set up with support from MNRE (Project No.31/03/2014-15/PVSE-R&D), Government of India.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

The authors read and approved the final manuscript. SR—Design the paper, writing and interpretation data. JR—Planning and supervised the work. PS—Manuscript correction. RR—Interpreting the data. RR—Interpreting the data. KDA—Analysis the result and supervised.

Corresponding author

Correspondence to Jeyalakshmi Radhakrishnan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravichandran, S., Radhakrishnan, J., Sengodan, P. et al. Bio synthesis of Zinc oxide nanoparticles using Clerodendrum phlomidis extract for antibacterial, anticancer, antioxidant and photocatalytic studies. J Mater Sci: Mater Electron 33, 11455–11466 (2022). https://doi.org/10.1007/s10854-022-08118-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08118-8