Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Experimental study of the excited-state properties and photostability of the mycosporine-like amino acid palythine in aqueous solution

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Characterization of the excited states of the mycosporine-like amino acid palythine (λmax = 320 nm) in aqueous solutions was achieved experimentally. The low value for the photodegradation quantum yield, (1.2 ± 0.2) × 10−5, confirms that palythine is highly photostable in air saturated-aqueous solutions. Laser flash photolysis of acetone in the presence of palythine allowed for the observation of a transient spectrum which is consistent with the triplet-triplet absorption of palythine. Kinetic treatment of the transient signals yields a lifetime of the triplet state of ca. 9 ώs and a triplet energy around 330 kJ mol−1. The photoacoustic calorimetry results are consistent with non-radiative decay as the major fate of excited palythine. A comparison of the photodegradation quantum yields and photophysical properties of palythine with those previously determined for the other mycosporine-like amino acids, shinorine and porphyra-334, suggests that geometrical isomerization around the CN bond may contribute to the rapid deactivation of this group of molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Roy, Strategies for the minimisation of UV-induced damage, in The effects of UV radiation in the marine environment, ed. S. de Mora, S. Demers and M. Vernet, Cambridge University Press, Cambridge, UK, 2000.

    Google Scholar 

  2. W. M. Bandaranayake, Mycosporines: are they nature’s sunscreens? Nat. Prod. Rep. 1998 159–172.

    Google Scholar 

  3. J. M. Shick and W. C. Dunlap, Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation, and UV-protective functions in aquatic organisms Annu. Rev. Physiol. 2002 64 223–262.

    Article  CAS  PubMed  Google Scholar 

  4. D. Karentz, F. S. Mc Euen, M. C. Land and W. C. Dunlap, Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: potential protection from ultraviolet exposure Mar. Biol. 1991 108 157–166.

    Article  CAS  Google Scholar 

  5. C. S. Cockell and J. Knowland, Ultraviolet radiation screening compounds Biol. Rev. 1999 74 311–345.

    Article  CAS  PubMed  Google Scholar 

  6. R. P. Sinha, M. Klisch, D.-P. Häder, Induction of a mycosporine-like amino acid (MAA) in the rice-field cyanobacterium Anabaena sp. by UV radiation J. Photochem. Photobiol., B 1999 52 59–64.

    Article  CAS  Google Scholar 

  7. N. Korbee, F. Figueroa and J. Aguilera, Accumulation of mycosporine-like amino acids (MAAs): biosynthesis, photocontrol and ecophysiological functions Rev. Chil. Hist. Nat. 2006 79 119–132.

    Article  Google Scholar 

  8. H.-J. Suh, H.-W. Lee and J. Jung, Mycosporine glycine protects biological systems against photodynamic damage by quenching singlet oxygen with a high efficiency Photochem. Photobiol. 2003 78 109–113.

    Article  CAS  PubMed  Google Scholar 

  9. W. C. Dunlap and Y. Yamamoto, Small-molecule antioxidants in marine organisms: antioxidant activity of mycosporine-glycine Comp. Biochem. Physiol. 1995 112B 105–114.

    Article  CAS  Google Scholar 

  10. A. Oren, Mycosporine-like amino acids as osmotic solutes in a community of Halophilic cyanobacteria Geomicrobiol. J. 1997 14 231–240.

    Article  CAS  Google Scholar 

  11. T. Kogej, C. Gostinčar, M. Volkmann, A. A. Gorbushina, N. Gunde-Cimerman, Mycosporines in extremophilic Fungi - novel complementary osmolytes? Environ. Chem. 2006 3 105–110.

    Article  CAS  Google Scholar 

  12. W. M. Bandaranayake, D. J. Bourne and R. G. Sim, Chemical composition during maturing and spawning of the sponge Dysidea herbacea (Porifera: demospongiae) Comp. Biochem. Physiol. 1997 118B 851–859.

    Article  CAS  Google Scholar 

  13. N. Korbee, R. T. Abdala-Diaz, F. L. Figueroa, E. W. Helbling Ammonium, UV radiation stimulate the accumulation of mycosporine-like amino acids in Porphyra columbina (Rhodophyta) from Patagonia, Argentina J. Phycol. 2004 40 248–259.

    Article  CAS  Google Scholar 

  14. P. M. Sivalingam, T. Ikawa, Y. Yokohama and K. Nisikawa, Distribution of a 334 UV-absorbing-substance in algae, with special regard of its possible physiological roles Bot. Mar. 1974 XVII 23–29.

    Google Scholar 

  15. T. A. Moisan and B. G. Mitchell, UV absorption by mycosporine-like amino acids in Phaeocystis antartica Karsten induced by photosynthetically available radiation Mar. Biol. 2001 138 217–227.

    Article  CAS  Google Scholar 

  16. F. R. Conde, M. S. Churio and C. M. Previtali, The photoprotector mechanism of mycosporine-like amino acids. Excited-state properties and photostability of porphyra-334 in aqueous solution J. Photochem. Photobiol., B 2000 56 139–144.

    Article  CAS  Google Scholar 

  17. F. R. Conde, M. S. Churio and C. M. Previtali, The deactivation pathways of the excited-state mycosporine-like amino acids shinorine and porphyra-334 in aqueous solution Photochem. Photobiol. Sci. 2004 3 960–968.

    Article  CAS  PubMed  Google Scholar 

  18. Y. Inoue, H. Hori, T. Sakurai, Y. Tokimoto, J. Saito and T. Misonou, Measurement of fluorescence quantum yield of ultraviolet-absorbing substance extracted from red alga: Porphyra yezoensis and its photothermal spectroscopy Opt. Rev. 2002 9 75–80.

    Article  CAS  Google Scholar 

  19. R. Sommaruga, K. Whitehead, J. M. Shick and C. S. Lobban, Mycosporine-like amino acids in the zooxanthella-ciliate symbiosis Maristentor dinoferus Protist 2006 157 185–191.

    Article  CAS  PubMed  Google Scholar 

  20. F. Garcia-Pichel, C. E. Wingard and R. W. Castenholz, Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. Appl. Environ. Microbiol. 1993 170–176.

    Google Scholar 

  21. A. I Callone, M. Carignan, N. G. Montoya and J. I. Carreto, Biotransformation of mycosporine-like amino acids (MAAs) in the toxic dinoflagellate Alexandrium tamarense J. Photochem. Photobiol., B 2006 84 204–212.

    Article  CAS  Google Scholar 

  22. K. Whitehead and J. I. Hedges, Photodegradation and photosensitization of mycosporine-like amino acids J. Photochem. Photobiol., B 2005 80 115–121.

    Article  CAS  Google Scholar 

  23. N. L. Adams and J. M. Shick, Mycosporine-like amino acids provide protection against ultraviolet radiation in eggs of the green sea urchin Strongylocentrotus droebachiensis Photochem. Photobiol. 1996 64 149–158.

    Article  CAS  Google Scholar 

  24. R. P. Sinha, M. Klisch, A. Gröniger, D.-P. Häder, Mycosporine-like amino acids in the marine red alga Gracilaria cornea-effects of UV and heat Environ. Exp. Bot. 2000 43 33–43.

    Article  CAS  Google Scholar 

  25. W. C. Dunlap, B. E. Chalker, W. M. Bandaranayake and J. J. Wuwon, Nature’s sunscreen from the Great Barrier Reef, Australia Int. J. Cosmetic Sci. 1998 20 41–51.

    Article  CAS  Google Scholar 

  26. D. Schmid, C. Schürch and F. Zülli, UV-A sunscreen from red algae for protection against premature skin aging, Cosmetics and Toiletries Manufacture Worldwide, 2004, 139–143.

    Google Scholar 

  27. K. H. M. Cardozo, T. Guarantini, M. P. Barros, V. R. Falcăo, Angela P. Tonon, N. P. Lopes, S. Campos, M. A. Torres, A. O. Souza, P. Colepicolo and E. Pinto, Metabolites from algae with economical impact Comp. Biochem. Physiol., C: Toxicol. Pharmacol. 2006. 10.1016/j.cbpc.2006.05.007

    Google Scholar 

  28. A. Torres, C. D. Enk, M. Hochberg and M. Srebnik, Porphyra-334, a potential natural source for UVA protective sunscreens Photochem. Photobiol. Sci. 2006 5 432–435.

    Article  CAS  PubMed  Google Scholar 

  29. T. Misonou, J. Saitoh, S. Oshiba, Y. Tokimoto, M. Maegawa, Y. Inoue, H. Hori and T. Sakurai, UV-absorbing substance in the red alga Porphyra yezoensis (Bangiales, Rhodophyta) block thymine photodimer production Mar. Biotech. 2003 5 194–200.

    Article  CAS  Google Scholar 

  30. F. R. Conde, M. O. Carignan, M. S. Churio and J. I. Carreto, In vitro cis-trans photoisomerization of palythene and usujirene. Implications on the in vivo transformation of mycosporine-like amino acids Photochem. Photobiol. 2003 77 146–150.

    Article  CAS  PubMed  Google Scholar 

  31. J. M. Shick, The continuity and intensity of ultraviolet irradiation affect the kinetics of biosynthesis, accumulation, and conversion of mycosporine-like amino acids (MAAs) in the coral Stylophora pistillata Limnol. Oceanogr. 2004 49 442–458.

    Article  CAS  Google Scholar 

  32. S. Takano, D. Uemura and Y. Hirata, Isolation and structure of a new amino acid, palythine, from the zoanthid, palythoa tuberculosa Tetrahedron Lett. 1978 26 2299–2300.

    Article  Google Scholar 

  33. U. Karsten, L. A. Franklin, K. Lüning and C. Wiencke, Natural ultraviolet radiation and photosynthetically active radiation induce formation of mycosporine-like amino acids in the marine macroalga Chondrus crispus (Rhodophyta) Planta 1998 205 257–262.

    Article  CAS  Google Scholar 

  34. A. Defoin, R. Defoin-Straatmann, K. Hildenbrand, E. Bittersmann, D. Kreft and H. J. Kuhn, A new liquid actinometer: quantum yield and photo-CIDNP study of phenylglyoxylic acid in aqueous solution J. Photochem. 1986 33 237–255.

    Article  CAS  Google Scholar 

  35. S. G. Bertolotti and C. M. Previtali, The excited states quenching of safranine T by p-benzoquinones in polar solvents J. Photochem. Photobiol., A 1997 103 115–119.

    Article  CAS  Google Scholar 

  36. S. E. Braslavsky and G. E. Heibel, Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution Chem. Rev. 1992 92 1381–1410.

    Article  CAS  Google Scholar 

  37. A. Padwa, Photochemistry of the carbon-nitrogen double bond Chem. Rev. 1977 77 37–68.

    Article  CAS  Google Scholar 

  38. V. Bonačić-Koutecký and M. Persico, CI study of geometrical relaxation in the ground and excited singlet and triplet states of unprotonated Schiff bases: allylidenimine and formaldimine J. Am. Chem. Soc. 1986 105 3388–3395.

    Article  Google Scholar 

  39. R. J. Cook and K. Mislow, Barrier to planar inversion in an N-Germyl imine J. Am. Chem. Soc. 1971 93 6703–6704.

    Article  CAS  Google Scholar 

  40. J.-M. Lehn, Conjecture: Imines as unidirectional photodriven molecular motors-motional and constitutional dynamic devices Chem.-Eur. J. 2006 12 5910–5915.

    Article  CAS  PubMed  Google Scholar 

  41. K. Kasama, A. Takematsu and S. Aral, Photochemical reactions of triplet acetone with indole, purine, and pyrimidine derivates J. Phys. Chem. 1982 86 2420–2427.

    Article  CAS  Google Scholar 

  42. S. L. Murov, I. Carmichael and G. L. Hug, Handbook of Photochemistry, Marcel Dekker Inc. New York, 1993.

  43. F. Bosca, V. Lhiaubet-Vallet, M. C. Cuquerella, J. V. Castell and M. A. Miranda, The triplet energy of thymine in DNA J. Am. Chem. Soc. 2006 128 6318–6319.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Sandra Churio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conde, F.R., Churio, M.S. & Previtali, C.M. Experimental study of the excited-state properties and photostability of the mycosporine-like amino acid palythine in aqueous solution. Photochem Photobiol Sci 6, 669–674 (2007). https://doi.org/10.1039/b618314j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1039/b618314j

Profiles

  1. María Sandra Churio