Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Potential energy surface of alanine polypeptide chains

  • Electronic Properties of Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The multidimensional potential energy surfaces of the peptide chains consisting of three and six alanine (Ala) residues have been studied with respect to the degrees of freedom related to the twist of these molecules relative to the peptide backbone (these degrees of freedom are responsible for the folding of such peptide molecules and proteins). The potential energy surfaces have been calculated ab initio within the framework of the density functional theory taking into account all electrons in the system. The probabilities of transitions between various stable conformations of polypeptide molecules are evaluated. The results are compared to the data obtained by molecular dynamics simulations and to the available experimental data. The influence of the secondary structure of the polypeptide chain on its conformational properties with respect to rotations has been studied. It is shown that, in a chain of six amino acid (Ala) residues, the secondary structure type (helix or sheet conformation) influences the stable isomer states of the polypeptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atomic Clusters and Nanoparticles, NATO Advanced Study Institute, Les Houches Session LXXIII, Les Houches, 2000 Ed. by C. Guet, P. Hobza, F. Spiegelman, and F. David (EDP Sci. and Springer, Berlin, 2001).

    Google Scholar 

  2. Latest Advances in Atomic Cluster Collisions Fission, Fusion, Electron, Ion and Photon Impact, Ed. by A. Solov’yov and J.-P. Connerade (World Sci., Singapore, 2004).

    Google Scholar 

  3. M. Karas and F. Hillenkamp, Anal. Chem. 60, 2299 (1988).

    Article  Google Scholar 

  4. F. Hillenkamp and M. Karas, Int. J. Mass Spectrom. 200, 71 (2000).

    Article  Google Scholar 

  5. M. Karas, U. Bahr, I. Fournier, et al., Int. J. Mass Spectrom. 226, 239 (2003).

    Article  Google Scholar 

  6. M. Wind and W. Lehmann, J. Anal. At. Spectrom. 19, 20 (2004).

    Article  Google Scholar 

  7. A. V. Finkelstein and O. B. Ptitsyn, Protein Physics: A Course of Lectures (Mosk. Gos. Univ., Moscow, 2002; Academic, Amsterdam, 2002).

    Google Scholar 

  8. A. Mülberg, Protein Folding (St. Petersburg Univ. Press, St. Petersburg, 2004).

    Google Scholar 

  9. H. Berman, J. Westbrook, Z. Feng, et al., Nucleic Acids Res. 28, 235 (2000).

    Article  Google Scholar 

  10. A. Rubin, Biophysics: Theoretical Biophysics (Mosk. Gos. Univ., Moscow, 2004) [in Russian].

    Google Scholar 

  11. T. Head-Gordon, M. Head-Gordon, M. Frisch, et al., J. Am. Chem. Soc. 113, 5989 (1991).

    Article  Google Scholar 

  12. I. Gould, W. Cornell, and I. Hillier, J. Am. Chem. Soc. 116, 9250 (1994).

    Article  Google Scholar 

  13. Z. Wang and Y. Duan, J. Comput. Chem. 25, 1699 (2004).

    Article  Google Scholar 

  14. A. Perczel, O. Farkas, I. Jákli, et al., J. Comput. Chem. 24, 1026 (2003).

    Article  Google Scholar 

  15. I. Hudáky, P. Hudáky, and A. Perczel, J. Comput. Chem. 25, 1522 (2004).

    Article  Google Scholar 

  16. R. Improta and V. Barone, J. Comput. Chem. 25, 1333 (2004).

    Article  Google Scholar 

  17. R. Vargas, J. Garza, B. Hay, and D. Dixon, J. Phys. Chem. A 106, 3213 (2002).

    Article  Google Scholar 

  18. R. Kaschner and D. Hohl, J. Phys. Chem. A 102, 5111 (1998).

    Article  Google Scholar 

  19. D. Wei, H. Guo, and D. Salahub, Phys. Rev. E 64, 011907 (2001).

  20. X. Wu and S. Sung, Proteins: Struct., Funct., Genet. 34, 295 (1999).

    Article  Google Scholar 

  21. P. Pliego-Pastrana and M. D. Carbajal-Tinoco, Phys. Rev. E 68, 011903 (2003).

    Google Scholar 

  22. S. Woutersen, Y. Mu, G. Stock, and P. Hamm, Chem. Phys. 266, 137 (2001).

    Article  Google Scholar 

  23. S. Woutersen, R. Pfister, Y. Mu, et al., J. Chem. Phys. 117, 6833 (2002).

    Article  Google Scholar 

  24. Y. Mu and G. Stock, J. Phys. Chem. B 106, 5294 (2002).

    Article  Google Scholar 

  25. Y. Mu, D. Kosov, and G. Stock, J. Phys. Chem. B 107, 5064 (2003).

    Article  Google Scholar 

  26. P. Nguyen and G. Stock, J. Chem. Phys. 119, 11350 (2003).

    Article  ADS  Google Scholar 

  27. H. Torii and M. Tasumi, J. Raman Spectrosc. 29, 81 (1998).

    Article  Google Scholar 

  28. S. Woutersen and P. Hamm, J. Phys. Chem. B 104, 11316 (2000).

    Article  Google Scholar 

  29. S. Woutersen and P. Hamm, J. Chem. Phys. 114, 2727 (2001).

    Article  ADS  Google Scholar 

  30. R. Schweitzer-Stenner, F. Eker, Q. Huang, and K. Griebenow, J. Am. Chem. Soc. 123, 9628 (2000).

    Article  Google Scholar 

  31. Y. Levy and O. Becker, J. Chem. Phys. 114, 993 (2001).

    Article  ADS  Google Scholar 

  32. Z. Shi, C. Olson, G. Rose, et al., Proc. Natl. Acad. Sci. USA 99, 9190 (2002).

    Article  ADS  Google Scholar 

  33. A. Garcia, Polymer 45, 669 (2004).

    Article  Google Scholar 

  34. A. Yakubovitch, I. Solov’yov, A. Solov’yov, and W. Greiner, physics/0406093.

  35. A. Yakubovitch, I. Solov’yov, A. Solov’yov, and W. Greiner, physics/0406094.

  36. L. Lindgren and J. Morrison, Atomic Many-Body Theory (Springer, New York, 1986).

    Google Scholar 

  37. P. Hohenberg and W. Kohn, Phys. Rev. [Sect. B] 136, 864 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  38. A. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  ADS  Google Scholar 

  39. C. Lee, W. Yang, and R. Parr, Phys. Rev. B 37, 785 (1988).

    Article  ADS  Google Scholar 

  40. R. Parr and W. Yang, Density-Functional of Atoms and Molecules (Oxford Univ. Press, Oxford, 1989).

    Google Scholar 

  41. A. Bax, Protein Sci. 12, 1 (2003).

    Article  Google Scholar 

  42. D. Voet and J. Voet, Biochemistry, 3rd ed. (Wiley, New York, 2004).

    Google Scholar 

  43. S. Sheik, P. Sundararajan, A. Hussain, and K. Sekar, Bioinformatics 18, 1548 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.A. Solov’yov, A.V. Yakubovitch, A.V. Solov’yov, W. Greiner, 2006, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2006, Vol. 129, No. 2, pp. 356–370.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solov’yov, I.A., Yakubovitch, A.V., Solov’yov, A.V. et al. Potential energy surface of alanine polypeptide chains. J. Exp. Theor. Phys. 102, 314–326 (2006). https://doi.org/10.1134/S1063776106020129

Download citation

  • Received:

  • Issue date:

  • DOI: https://doi.org/10.1134/S1063776106020129

PACS numbers