Abstract
The multidimensional potential energy surfaces of the peptide chains consisting of three and six alanine (Ala) residues have been studied with respect to the degrees of freedom related to the twist of these molecules relative to the peptide backbone (these degrees of freedom are responsible for the folding of such peptide molecules and proteins). The potential energy surfaces have been calculated ab initio within the framework of the density functional theory taking into account all electrons in the system. The probabilities of transitions between various stable conformations of polypeptide molecules are evaluated. The results are compared to the data obtained by molecular dynamics simulations and to the available experimental data. The influence of the secondary structure of the polypeptide chain on its conformational properties with respect to rotations has been studied. It is shown that, in a chain of six amino acid (Ala) residues, the secondary structure type (helix or sheet conformation) influences the stable isomer states of the polypeptide.
Similar content being viewed by others
References
Atomic Clusters and Nanoparticles, NATO Advanced Study Institute, Les Houches Session LXXIII, Les Houches, 2000 Ed. by C. Guet, P. Hobza, F. Spiegelman, and F. David (EDP Sci. and Springer, Berlin, 2001).
Latest Advances in Atomic Cluster Collisions Fission, Fusion, Electron, Ion and Photon Impact, Ed. by A. Solov’yov and J.-P. Connerade (World Sci., Singapore, 2004).
M. Karas and F. Hillenkamp, Anal. Chem. 60, 2299 (1988).
F. Hillenkamp and M. Karas, Int. J. Mass Spectrom. 200, 71 (2000).
M. Karas, U. Bahr, I. Fournier, et al., Int. J. Mass Spectrom. 226, 239 (2003).
M. Wind and W. Lehmann, J. Anal. At. Spectrom. 19, 20 (2004).
A. V. Finkelstein and O. B. Ptitsyn, Protein Physics: A Course of Lectures (Mosk. Gos. Univ., Moscow, 2002; Academic, Amsterdam, 2002).
A. Mülberg, Protein Folding (St. Petersburg Univ. Press, St. Petersburg, 2004).
H. Berman, J. Westbrook, Z. Feng, et al., Nucleic Acids Res. 28, 235 (2000).
A. Rubin, Biophysics: Theoretical Biophysics (Mosk. Gos. Univ., Moscow, 2004) [in Russian].
T. Head-Gordon, M. Head-Gordon, M. Frisch, et al., J. Am. Chem. Soc. 113, 5989 (1991).
I. Gould, W. Cornell, and I. Hillier, J. Am. Chem. Soc. 116, 9250 (1994).
Z. Wang and Y. Duan, J. Comput. Chem. 25, 1699 (2004).
A. Perczel, O. Farkas, I. Jákli, et al., J. Comput. Chem. 24, 1026 (2003).
I. Hudáky, P. Hudáky, and A. Perczel, J. Comput. Chem. 25, 1522 (2004).
R. Improta and V. Barone, J. Comput. Chem. 25, 1333 (2004).
R. Vargas, J. Garza, B. Hay, and D. Dixon, J. Phys. Chem. A 106, 3213 (2002).
R. Kaschner and D. Hohl, J. Phys. Chem. A 102, 5111 (1998).
D. Wei, H. Guo, and D. Salahub, Phys. Rev. E 64, 011907 (2001).
X. Wu and S. Sung, Proteins: Struct., Funct., Genet. 34, 295 (1999).
P. Pliego-Pastrana and M. D. Carbajal-Tinoco, Phys. Rev. E 68, 011903 (2003).
S. Woutersen, Y. Mu, G. Stock, and P. Hamm, Chem. Phys. 266, 137 (2001).
S. Woutersen, R. Pfister, Y. Mu, et al., J. Chem. Phys. 117, 6833 (2002).
Y. Mu and G. Stock, J. Phys. Chem. B 106, 5294 (2002).
Y. Mu, D. Kosov, and G. Stock, J. Phys. Chem. B 107, 5064 (2003).
P. Nguyen and G. Stock, J. Chem. Phys. 119, 11350 (2003).
H. Torii and M. Tasumi, J. Raman Spectrosc. 29, 81 (1998).
S. Woutersen and P. Hamm, J. Phys. Chem. B 104, 11316 (2000).
S. Woutersen and P. Hamm, J. Chem. Phys. 114, 2727 (2001).
R. Schweitzer-Stenner, F. Eker, Q. Huang, and K. Griebenow, J. Am. Chem. Soc. 123, 9628 (2000).
Y. Levy and O. Becker, J. Chem. Phys. 114, 993 (2001).
Z. Shi, C. Olson, G. Rose, et al., Proc. Natl. Acad. Sci. USA 99, 9190 (2002).
A. Garcia, Polymer 45, 669 (2004).
A. Yakubovitch, I. Solov’yov, A. Solov’yov, and W. Greiner, physics/0406093.
A. Yakubovitch, I. Solov’yov, A. Solov’yov, and W. Greiner, physics/0406094.
L. Lindgren and J. Morrison, Atomic Many-Body Theory (Springer, New York, 1986).
P. Hohenberg and W. Kohn, Phys. Rev. [Sect. B] 136, 864 (1964).
A. Becke, Phys. Rev. A 38, 3098 (1988).
C. Lee, W. Yang, and R. Parr, Phys. Rev. B 37, 785 (1988).
R. Parr and W. Yang, Density-Functional of Atoms and Molecules (Oxford Univ. Press, Oxford, 1989).
A. Bax, Protein Sci. 12, 1 (2003).
D. Voet and J. Voet, Biochemistry, 3rd ed. (Wiley, New York, 2004).
S. Sheik, P. Sundararajan, A. Hussain, and K. Sekar, Bioinformatics 18, 1548 (2002).
Author information
Authors and Affiliations
Additional information
Original Russian Text © I.A. Solov’yov, A.V. Yakubovitch, A.V. Solov’yov, W. Greiner, 2006, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2006, Vol. 129, No. 2, pp. 356–370.
Rights and permissions
About this article
Cite this article
Solov’yov, I.A., Yakubovitch, A.V., Solov’yov, A.V. et al. Potential energy surface of alanine polypeptide chains. J. Exp. Theor. Phys. 102, 314–326 (2006). https://doi.org/10.1134/S1063776106020129
Received:
Issue date:
DOI: https://doi.org/10.1134/S1063776106020129