Thanks to visit codestin.com
Credit goes to journals.plos.org

Skip to main content
Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

< Back to Article

Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers

Figure 2

Sequenced RAD marker mapping.

(A) A native saltwater stickleback population, Rabbit Slough (RS), have complete lateral plate armor (brackets) while these structures are absent in the derived, freshwater Bear Paw (BP) population. The freshwater fish also have a reduction in pelvic structure (arrow) compared to the oceanic population. These two phenotypes segregate independently in an F2 mapping cross. Using SbfI (B) or EcoRI (C), we mapped polymorphic RAD markers from RS (red) and BP (green) parental fish along the 21 stickleback linkage groups. The apparent size differences of the linkage groups between (B) and (C) reflect the fact that the EcoRI recognition sequence occurs more frequently than SbfI. Red and green bars above the linkage groups are measures of lateral plate linkage in the F2 progeny, indicating the number of tightly linked markers in the local region. (D) Sequence reads per barcoded F2 individual used to create (C). Variable numbers of reads were obtained from each of the 96 individuals used in our analysis, reflecting different concentrations of starting DNA template. 68% of individuals had between 50 K and 150 K RAD tags sequenced (∼0.4–1.0× coverage of the ∼150 K tags present in the genome). Only 2 individuals had less than 10,000 reads (red). (E) A close-up of the boxed region from (C) showing recombination breakpoints in six informative low plate F2 fish on LGIV. Black tick marks are 1 Mb apart in physical distance. (F) F2 individuals were repooled in silico based on the pelvic structure phenotype (A, arrow). Linkage was determined as in (B, C), mapping the locus for a reduction in pelvic structure to the end of LGVII.

Figure 2

doi: https://doi.org/10.1371/journal.pone.0003376.g002