Thanks to visit codestin.com
Credit goes to github.com

Skip to content

This paper has been published on Interdisciplinary Sciences: Computational Life Sciences.

NethanHu/MultiKD-DTA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MultiKD-DTA

Enhancing Drug-Target Affinity Prediction through Width and Depth Feature Extraction with Knowledge Distillation

Get Started

Environment

  • Python=3.10
  • CUDA=12.2
  • PyTorch=2.2.0

BioToolKit Dependencies

pip install fair-esm
conda install conda-forge::rdkit

APEX Dependency

1. git clone https://github.com/NVIDIA/apex
2. cd apex
3. python setup.py install --cuda_ext --cpp_ext

How to run?

Prepare the Embedded Protein file

python datahelper.py

This would consume most of the time, as it involves downloading the parameters of the ESM-2 model and then generating embeddings for the proteins.

Convert SMILES to Graph

1. conda install pyg -c pyg
2. python generate_drug_profile.py

File Structure

├── README.md
├── data
│   ├── DTI_plot.ipynb
│   ├── davis
│   │   ├── Y
│   │   ├── davis_test_fold0.csv
│   │   ├── davis_test_fold1.csv
│   │   ├── davis_test_fold2.csv
│   │   ├── davis_test_fold3.csv
│   │   ├── davis_test_fold4.csv
│   │   ├── davis_train_fold0.csv
│   │   ├── davis_train_fold1.csv
│   │   ├── davis_train_fold2.csv
│   │   ├── davis_train_fold3.csv
│   │   ├── davis_train_fold4.csv
│   │   ├── drug-drug_similarities_2D.txt
│   │   ├── drug-target_interaction_affinities_Kd__Davis_et_al.2011v1.txt
│   │   ├── folds
│   │   │   ├── test_fold_setting1.txt
│   │   │   └── train_fold_setting1.txt
│   │   ├── ligands_can.txt
│   │   ├── ligands_iso.txt
│   │   ├── proteins.txt
│   │   └── target-target_similarities_WS.txt
│   ├── davis_test.csv
│   ├── davis_train.csv
│   ├── kiba
│   │   ├── Y
│   │   ├── folds
│   │   │   ├── test_fold_setting1.txt
│   │   │   └── train_fold_setting1.txt
│   │   ├── kiba_binding_affinity_v2.txt
│   │   ├── kiba_drug_sim.txt
│   │   ├── kiba_target_sim.txt
│   │   ├── kiba_test_fold0.csv
│   │   ├── kiba_test_fold1.csv
│   │   ├── kiba_test_fold2.csv
│   │   ├── kiba_test_fold3.csv
│   │   ├── kiba_test_fold4.csv
│   │   ├── kiba_train_fold0.csv
│   │   ├── kiba_train_fold1.csv
│   │   ├── kiba_train_fold2.csv
│   │   ├── kiba_train_fold3.csv
│   │   ├── kiba_train_fold4.csv
│   │   ├── ligands_can.txt
│   │   ├── ligands_iso.txt
│   │   └── proteins.txt
│   ├── kiba_test.csv
│   ├── kiba_train.csv
│   └── processed
│       ├── davis_test.pt
│       ├── davis_train.pt
│       ├── kiba_test.pt
│       └── kiba_train.pt
├── datahelper.py
├── davis.npz
├── generate_drug_profile.py
├── kiba.npz
├── model
├── src
│   ├── ISBRA.py
│   ├── statistics.py
│   └── utils.py
└── train.py

Start to Train

python train.py

You can change the parameters in the train.py and ISBRA.py file.

📖 Citation

@article{hu2025multikd,
  title     = {MultiKD-DTA: Enhancing Drug-Target Affinity Prediction Through Multiscale Feature Extraction},
  author    = {Hu, Riqian and Ge, Ruiquan and Deng, Guojian and Fan, Jin and Tang, Bowen and Wang, Changmiao},
  journal   = {Interdisciplinary Sciences: Computational Life Sciences},
  pages     = {1--11},
  year      = {2025},
  publisher = {Springer},
  doi       = {10.1007/s12539-025-00697-4},
  url       = {https://doi.org/10.1007/s12539-025-00697-4}
}

About

This paper has been published on Interdisciplinary Sciences: Computational Life Sciences.

Topics

Resources

Stars

Watchers

Forks

Languages