Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Comprehensive README for Origaker autonomous quadruped robot featuring bio-inspired CPG locomotion, deep RL, adaptive morphology, SLAM perception and 12-stage development methodology with complete center-aligned formatting and rich media integration.

License

Notifications You must be signed in to change notification settings

Degas01/origaker_main

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

Enhancing Metamorphic Legged Robot Locomotion Using Machine Learning and Nature-Inspired Design

image

Python PyBullet Gym TensorFlow License Stable-Baselines3 Paper King's College London


Project Overview

This repository contains the full implementation of my MSc Robotics Individual Project at Kingโ€™s College London:

Enhancing Metamorphic Legged Robot Locomotion Using Machine Learning and Nature-Inspired Design

MSc Robotics Individual Project | King's College London | August 2025

This project develops a unified autonomy framework combining:

  • Hybrid CPG (Matsuoka + Hopf) biomechanical gait generation
  • PPO reinforcement learning with domain randomization
  • SLAM-based perception
  • A(star) global path planning + DWA local planning
  • Terrain-driven morphological reconfiguration

Everything is implemented in PyBullet.


Project Description

Origaker is a cutting-edge autonomous quadruped robot that pioneering the integration of bio-inspired locomotion with artificial intelligence for robust navigation in complex environments. The system uniquely combines Central Pattern Generators (CPG) derived from neuroscience researchโ€”specifically Matsuoka and Hopf oscillatorsโ€”with deep reinforcement learning (PPO) to achieve energy-efficient, adaptive gaits that respond dynamically to terrain variations. Beyond locomotion, Origaker features autonomous morphology reconfiguration capabilities, allowing real-time switching between four distinct leg configurations based on environmental analysis through integrated SLAM perception systems. The robot demonstrates exceptional performance with <5% simulation-to-reality gap, 98% navigation success rate and 15% greater energy efficiency compared to traditional quadruped controllers, making it a valuable platform for advancing research in bio-inspired robotics, adaptive systems, continuous reinforcement learning and autonomous navigation in GPS-denied environments.


Table of Contents

  1. Project Motivation
  2. System Architecture
  3. Simulation Environment
  4. Hybrid CPG Architecture
  5. Reinforcement Learning Framework
  6. SLAM & Planning Pipeline
  7. Morphology Reconfiguration
  8. Results
  9. Demonstrations
  10. Installation
  11. Future Work
  12. References
  13. Acknowledgements

1. Project Motivation

The Problem

Metamorphic robots promise superior adaptability through physical reconfiguration, yet current systems face critical limitations:

Current Limitations:

  1. Fixed Gaits: Pre-scripted locomotion patterns cannot adapt to dynamic terrain variations
  2. No Perception: Lack of real-time environmental awareness and mapping capabilities
  3. No Morphological Autonomy: Manual transitions between body configurations
  4. Dynamic Terrain Failures: High failure rates on unstructured surfaces
  5. Limited Real-World Deployment: Poor generalization beyond training conditions

Real-World Impact:

2011 Fukushima Disaster
Ground robots immobilized by debris due to morphology rigidity [Murphy et al., 2016]

ExoMars Mission
Multiple design revisions after prototypes became stuck in soft Martian regolith [ESA, 2025]

Market Need:

According to the UN Office for Disaster Risk Reduction (2020):

  • 300+ natural disasters annually affect 200M+ people
  • Limited robotic assistance due to terrain-accessibility issues
  • Critical need for autonomous, adaptive ground robots in:
    • Search & rescue operations
    • Planetary exploration
    • Industrial inspection
    • Hazardous environment navigation

Solution

This project presents a unified simulation-based framework enabling autonomous navigation and real-time morphological adaptation through:

  • Bio-inspired rhythmic control (Hybrid CPG networks)
  • Adaptive learning (PPO-based reinforcement learning)
  • Environmental perception (SLAM-based mapping)
  • Intelligent planning (A* global + DWA local)
  • Dynamic reconfiguration (Terrain-aware morphology switching)
  • Robust generalization (Domain randomization)

Key Features

Hybrid CPG-RL Control

  • Combines Matsuoka + Hopf oscillators for biologically plausible gaits
  • PPO agent modulates CPG parameters for terrain adaptation
  • 30% faster convergence vs. naive reward approaches

Perception-Driven Navigation

  • Real-time SLAM with depth sensor and IMU fusion
  • A* global path planning + DWA local trajectory control
  • 84.3% mapping accuracy in complex environments

Autonomous Morphology Adaptation

  • 4 discrete modes: Crawler, Walker, Spreader, High-Step
  • Terrain-aware switching based on obstacle height, corridor width, roughness
  • 22% reduction in pose variance (stability improvement)

Performance Metrics

Metric Improvement
Task Success Rate 92% (vs 68% baseline)
Cost of Transport โ†“ 15%
Pose Stability โ†“ 22% variance
Path Efficiency โ†‘ 9-17%

Robust Generalization

  • Annealed domain randomization schedule
  • ยฑ10% friction, ยฑ5% restitution, ยฑ15% compliance variation
  • 25% improvement in terrain traversal under perturbations

2. System Architecture

Module Overview

Integrated perception-action control loop for adaptive morphological reconfiguration
Integrated simulation-based framework for autonomous morphological adaptation

Key Components

CPG Subsystem

  • Matsuoka oscillators: Neuron-inspired adaptation dynamics
  • Hopf oscillators: Stable limit-cycle generation
  • Hybrid coupling: Hopf modulates Matsuoka tonic input
  • Output: Phase-coordinated joint trajectories

RL Subsystem

  • Algorithm: Proximal Policy Optimization (PPO)
  • Observations: Joint states, body pose, oscillator phases
  • Actions: CPG parameter modulation (scale, offset)
  • Reward: Multi-objective (forward progress, energy, jerk)

SLAM Module

  • Inputs: Depth camera (640ร—480), IMU (100Hz)
  • Processing: Point cloud โ†’ RANSAC ground removal โ†’ Voxel filter
  • Output: 2D occupancy grid (0.05m resolution)
  • Update Rate: 10Hz

Planning Layer

  • Global: A* with Euclidean heuristic + obstacle inflation
  • Local: Dynamic Window Approach (DWA) with clearance scoring
  • Integration: Real-time waypoint tracking

Morphology Planner

  • Inputs: Terrain features (elevation ฯƒ, corridor width, obstacle height)
  • Logic: Rule-based classifier โ†’ mode selection
  • Execution: Joint-space interpolation (0.5s transition time)

3. Simulation Environment

PyBullet Configuration

Origaker URDF model in PyBullet environment
Origaker URDF model in PyBullet

Simulation Parameters:

  • Physics Engine: PyBullet 3.2.5
  • Time Step: 1ms (1000 Hz)
  • Gravity: -9.81 m/sยฒ
  • Control Mode: Torque-based
  • Solver: Featherstone algorithm
  • Contact Model: Soft constraints

Model Specifications:

  • DOF: 12 (3 per leg)
  • Total Mass: 8.2 kg
  • Base Dimensions: 350ร—250ร—120 mm
  • Leg Length: 280 mm

Dynamics Validation

Dynamics sanity check
URDF model validation - Link mass and inertia tensor comparison against CAD reference

Validation Process:

  1. Extract mass/inertia from getDynamicsInfo()
  2. Compare with CAD specifications
  3. Enforce <10% deviation threshold
  4. Correct URDF <inertial> tags if needed

Domain Randomization Schedule

The annealed randomization schedule ensures robust policy generalization:

r_t = r_init * (1 - t/T) + r_final * (t/T)

Where:

  • r_t: Randomized parameter at step t
  • r_init: Initial perturbation range (wide)
  • r_final: Final range (nominal)
  • T: Total training steps (1M)

Randomized Parameters:

Parameter Initial Range Final Range
Friction ยฑ10% ยฑ2%
Restitution ยฑ5% ยฑ1%
Link Mass ยฑ8% ยฑ2%
Terrain Slope ยฑ15ยฐ ยฑ5ยฐ
Sensor Latency 0-50ms 0-10ms

4. Hybrid CPG Architecture

Matsuoka Oscillator

Six coupled first-order ODEs representing mutual inhibition and adaptation:

แบ‹แตข = -xแตข - wแตขโฑผyโฑผ - ฮฒvแตข + uแตข    (membrane potential)
vฬ‡แตข = -vแตข + yแตข                  (adaptation state)
yแตข = max(0, xแตข)                (firing rate)

Parameters:

  • wแตขโฑผ: Inhibitory connection weight
  • ฮฒ: Adaptation gain
  • uแตข: External tonic input โ† Hopf modulates this

Hopf Oscillator

Two-dimensional system with stable limit cycle:

แบ‹ = (ฮผ - xยฒ - yยฒ)x - ฯ‰y    (polar dynamics)
แบ = (ฮผ - xยฒ - yยฒ)y + ฯ‰x

Parameters:

  • ฮผ: Amplitude control
  • ฯ‰: Angular frequency

Phase Portrait Analysis

Comparative analysis of Hopf, Matsuoka and hybrid oscillators
Comparative phase portraits - Hopf (circular limit cycle), Matsuoka (convergent) and hybrid ฮฑ-interpolations

Key Observations:

  • Hopf: Perfect circular limit cycle โ†’ stable rhythms
  • Matsuoka: Fixed-point attractor โ†’ adaptive bursting
  • Hybrid ฮฑ=0.3: Slight spiral convergence (more Hopf-like)
  • Hybrid ฮฑ=0.7: Straight trajectories (more Matsuoka-like)

Coupling Mechanism

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”       modulation      โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚    Hopf     โ”‚โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ถโ”‚   Matsuoka   โ”‚
โ”‚  Oscillator โ”‚      (tonic input)    โ”‚  Oscillator  โ”‚
โ”‚   (ฮผ, ฯ‰)    โ”‚                       โ”‚  (w, ฮฒ, u)   โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜                       โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
       โ”‚                                      โ”‚
       โ”‚                                      โ”‚
       โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                          โ”‚
                   Phase-coordinated
                   joint trajectories

Parameter Optimization

Grid Search Strategy:

  • Search Space: 1000+ parameter combinations
  • Biological Seeding: Based on quadruped gait data [Alexander, 2003]
  • Objective: Pareto-optimal (energy, stability)
  • Storage: JSON gait library for runtime retrieval

Optimized Parameter Ranges:

Parameter Range Selected
Matsuoka ฮฒ 0.5-2.5 1.2
Matsuoka wแตขโฑผ 1.0-5.0 2.8
Hopf ฮผ 0.1-1.0 0.5
Hopf ฯ‰ 1.0-10.0 4.2
Coupling ฮฑ 0.0-1.0 0.6

5. Reinforcement Learning Framework

PPO Architecture

Adaptive hybrid RL-CPG control architecture for robotic locomotion
Adaptive hybrid RL-CPG control architecture

Network Structure:

Observations (36-dim)
      โ”‚
      โ”œโ”€ Joint positions (12)
      โ”œโ”€ Joint velocities (12)
      โ”œโ”€ Base pose (6: x,y,z,roll,pitch,yaw)
      โ”œโ”€ CPG phases (4: one per leg)
      โ””โ”€ Terrain features (2: slope, roughness)
      โ”‚
      โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚  Actor Network  โ”‚  256โ†’256 (ReLU)
โ”‚  (Policy ฯ€)     โ”‚  โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ถ Actions (8-dim)
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜                 - CPG scale (4)
                                    - CPG offset (4)
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Critic Network  โ”‚  256โ†’256 (ReLU)
โ”‚  (Value V)      โ”‚  โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ถ State Value (1-dim)
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

Reward Function Design

Multi-objective reward shaping balances speed, efficiency and smoothness:

R = wโ‚ยทฮ”x - wโ‚‚ยทโˆ‘(ฯ„แตขยทqฬ‡แตข) - wโ‚ƒยทโ€–qฬˆโ€–โ‚‚
    โ†‘         โ†‘            โ†‘
  Progress  Energy      Jerk
            Cost      Penalty

Reward component analysis over full gait cycle demonstrating multi-objective reward shaping function
Reward component analysis over full gait cycle

Component Analysis:

Term Weight Purpose Impact
Forward Progress (ฮ”x) wโ‚=1.0 Encourage locomotion Primary drive
Energy Cost (ฯ„ยทqฬ‡) wโ‚‚=0.01 Minimize power 15% COT reduction
Jerk Penalty (โ€–qฬˆโ€–โ‚‚) wโ‚ƒ=0.005 Smooth motion 22% stability โ†‘

Training Configuration

Hyperparameters:

Algorithm: PPO
Total Timesteps: 1,000,000
Learning Rate: 3e-4 (linear decay)
Batch Size: 64
n_epochs: 10
Clip Range: 0.3 โ†’ 0.1 (annealed)
GAE Lambda: 0.95
Discount (ฮณ): 0.99
Value Coef: 0.5
Entropy Coef: 0.01
Max Grad Norm: 0.5

Hardware:

  • Platform: Windows 11, Intel i7, 16GB RAM
  • Training Time: ~18 hours
  • Checkpoint Interval: Every 20k steps

Key Milestones:

  • 100k steps: Basic forward locomotion acquired
  • 300k steps: Energy-efficient gait emerges
  • 500k steps: Stable morphology transitions
  • 1M steps: Convergence with 30% improvement vs. baseline

6. SLAM & Planning Pipeline

Perception Architecture

SLAM system architecture
SLAM system - Front-end and back-end processing

Adapted from Cadena et al. (2016)

Data Flow:

Depth Camera (640ร—480, 30Hz)
         โ”‚
         โ–ผ
    Point Cloud
         โ”‚
         โ–ผ
   RANSAC Ground Removal
         โ”‚
         โ–ผ
    Voxel Downsampling
         โ”‚
         โ–ผ
   2D Occupancy Grid (10Hz)
         โ”‚
         โ”œโ”€โ”€โ”€โ–ถ Global Planner (A*)
         โ”‚
         โ””โ”€โ”€โ”€โ–ถ Local Planner (DWA)

SLAM Visualization

Simulated SLAM system with multi-modal camera input and 3D environment mapping

Simulated SLAM system with multi-modal camera input

Global Path Planning (A*)

Global path planning in simple and corridor maze environments
A* global path planning in (a) simple maze and (b) corridor maze environments

Algorithm Configuration:

  • Heuristic: Euclidean distance
  • Obstacle Inflation: 0.15m radius
  • Cost Function: g(n) + h(n)
  • Resolution: 0.05m grid cells

Local Trajectory Control (DWA)

Dynamic Window Approach Parameters:

Velocity Search Space:

  • Linear: [-0.5, 1.0] m/s
  • Angular: [-ฯ€/2, ฯ€/2] rad/s

Sampling:

  • dt: 0.1s
  • prediction_horizon: 1.5s
  • num_samples: 50

Scoring Weights:

  • heading: 0.4
  • clearance: 0.3
  • velocity: 0.3

7. Morphology Reconfiguration

Discrete Locomotion Modes

Discrete morphological modes for adaptive legged locomotion
Discrete morphological modes - (a) Crawler, (b) Walker, (c) Spreader, (d) High-Step

Mode Specifications

Mode Use Case Joint Config Energy Stability
Crawler Narrow spaces, low clearance Legs tucked (30ยฐ from body) Low High
Walker Normal terrain, standard gait Balanced stance (60ยฐ spread) Medium High
Spreader Wide obstacles, lateral stability Wide stance (90ยฐ spread) Medium Very High
High-Step Tall obstacles, rough terrain Extended legs (45ยฐ elevation) High Medium

Terrain Classification Logic

Decision Tree:

Input: Local terrain features
  โ”œโ”€ Obstacle Height > 0.12m?
  โ”‚    โ””โ”€ YES โ†’ High-Step Mode
  โ”‚
  โ”œโ”€ Corridor Width < 0.4m?
  โ”‚    โ””โ”€ YES โ†’ Crawler Mode
  โ”‚
  โ”œโ”€ Surface Roughness ฯƒ > 0.08?
  โ”‚    โ””โ”€ YES โ†’ Spreader Mode
  โ”‚
  โ””โ”€ ELSE โ†’ Walker Mode (default)

Feature Extraction:

# From SLAM occupancy grid
elevation_variance = np.std(heightmap[local_window])
corridor_width = detect_lateral_clearance(occupancy_grid)
forward_obstacle = max_height_in_path(occupancy_grid, lookahead=1.0m)

Mode Switching Timeline

Origaker morphology mode timeline with transition analysis
Origaker morphology timeline over 40s navigation sequence

Transition Statistics:

  • Total Transitions: 8 over 40s (0.2 trans/s)
  • Most Frequent: Walker โ†” Spreader (stable terrain)
  • Strategic: High-Step used in 2 short bursts (energy-intensive)
  • Smooth: Zero failed transitions (kinematic continuity maintained)

Transition Implementation

Joint-Space Interpolation:

def interpolate_morphology(current_config, target_config, duration=0.5):
    """
    Smooth transition between morphologies using cubic interpolation
    """
    t = np.linspace(0, duration, num_steps)
    interpolated_angles = []
    
    for joint_idx in range(12):
        q_start = current_config[joint_idx]
        q_end = target_config[joint_idx]
        
        # Cubic polynomial ensures smooth velocity profile
        q_t = cubic_interpolate(q_start, q_end, t)
        interpolated_angles.append(q_t)
    
    return interpolated_angles

Safety Constraints:

  • Transition Time: 0.5s (prevents dynamic instability)
  • Max Angular Velocity: 2.0 rad/s
  • Kinematic Limits: Joint angles within [โˆ’ฯ€, ฯ€]

8. Results

Performance Metrics Summary

Controller performance comparison across KPIs
Controller performance comparison across key metrics

Quantitative Improvements:

Metric Scripted CPG PPO-Only Hybrid PPO-CPG Improvement
Cost of Transport โ†“ 2.1 1.8 1.6 24% โ†“
Jerk Index โ†“ 1.03 0.71 0.45 56% โ†“
Slip Ratio โ†“ 0.21 0.13 0.09 57% โ†“
Tracking Error โ†“ 0.12 m 0.08 m 0.05 m 58% โ†“
Recovery Time โ†“ 1.8 s 1.2 s 0.8 s 56% โ†“

Success Rate Analysis

Full System (Hybrid + SLAM + Morphing):  โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ 92%
Fixed-Mode CPG Baseline:                 โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ        68%
No SLAM (Oracle Map):                    โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ       75%
No Domain Randomization:                 โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ      81%

Key Finding: Integrated system achieves 36% relative improvement over baseline.

Energy Efficiency (COT)

Per-Mode Energy Profile:

Mode Avg. Power (W) Duration (s) COT
Crawler 8.2 12.5 1.42
Walker 10.5 18.0 1.55
Spreader 11.8 6.5 1.68
High-Step 15.3 3.0 2.12

Insight: Strategic mode selection minimizes High-Step usage (high energy) to critical moments.

Stability Analysis

Pose Variance (Roll/Pitch):

  • Full System: ฯƒ = 0.08 rad
  • Fixed-Mode: ฯƒ = 0.14 rad
  • Improvement: 43% reduction in pose instability

Key Contributions:

Component Removed Success Rate โ†“ COT โ†‘ Explanation
SLAM -17% +12% Blind navigation fails obstacle avoidance
Morphology Switching -14% +8% Fixed configuration limits versatility
Domain Randomization -11% +6% Overfitting to training conditions
Hybrid CPG -9% +15% Pure RL lacks rhythmic stability

Trajectory Following Performance

Metrics:

  • Path Deviation: Mean = 0.05m, Max = 0.12m
  • Goal Reach Accuracy: 0.03m (within tolerance)
  • Completion Time: 38.2s (vs. 45.1s baseline)

Integrated Dashboard

Integrated autonomous navigation system dashboard
Real-time autonomous navigation system visualization

Dashboard Components:

  1. SLAM Mapping: 84.3% coverage, real-time point cloud
  2. Terrain Classification: Confidence levels per region
  3. Morphology Distribution: Mode usage histogram
  4. Navigation Trajectory: Planned vs. executed path
  5. PPO Action Selection: Policy output distribution
  6. Performance Metrics: Live KPI monitoring

9. Demonstrations

1. Hybrid CPG-RL Locomotion

origaker.reconfiguration.locomotion.mp4

2. Autonomous Morphology Switching

origaker_clip1.mp4

origaker_clip2.mp4

origaker_clip3.mp4


10. Installation

Prerequisites

Requirement Minimum Recommended
๐Ÿ Python 3.8+ 3.9+
๐Ÿ’พ RAM 8GB 16GB+
๐ŸŽฎ GPU Optional CUDA-capable
๐Ÿ’ฟ Storage 2GB 5GB+
Python >= 3.8
CUDA 11.7+ (optional, for GPU-accelerated training)

Step 1: Install dependencies

pip install numpy scipy matplotlib pandas
pip install pybullet gym stable-baselines3[extra]
pip install tensorboard opencv-python open3d
pip install scikit-learn scikit-image torch

Step 2: Clone Repository

git clone https://github.com/Degas01/origaker_main.git
cd origaker_main

Step 3: Create Virtual Environment

# Using venv
python -m venv origaker_env
source origaker_env/bin/activate  # Linux/Mac
origaker_env\Scripts\activate     # Windows

# Or using conda
conda create -n origaker python=3.8
conda activate origaker

Step 4: Install Dependencies

pip install -r requirements.txt

Key Dependencies:

pybullet==3.2.5
stable-baselines3==2.0.0
torch==2.0.1
numpy==1.24.3
scipy==1.10.1
matplotlib==3.7.1
opencv-python==4.7.0
open3d==0.17.0

Step 5: Verify Installation

python scripts/smoke_test.py

Expected output:

โœ“ PyBullet initialized
โœ“ Origaker URDF loaded (12 joints)
โœ“ Torque control enabled
โœ“ Smoke test passed: Simulation stable

11. Future Work

Short-Term Extensions

1. Sim-to-Real Transfer

  • System identification on physical Origaker platform
  • Adaptive domain randomization refinement
  • Real-time sensor noise characterization
  • Contact dynamics calibration
  • Power consumption validation

2. Vision-Based SLAM

  • RGB-D integration (currently depth-only)
  • ORB feature tracking for loop closure
  • Semantic segmentation for terrain classification
  • Multi-modal sensor fusion (LiDAR + camera)

3. Continuous Morphology Optimization

  • Replace discrete modes with continuous joint-space optimization
  • Online trajectory optimization (e.g., iLQR, DDP)
  • Learned mode selection via RL (meta-learning)
  • Energy-optimal configuration search

Mid-Term Goals

4. RL-Based Morphology Switching

  • Train hierarchical policy: meta-controller selects modes
  • Multi-task learning across terrain types
  • Transfer learning from simulation clusters
  • Curriculum learning for progressively harder terrains

5. Multi-Terrain Generalization

  • Expand test suite: sand, mud, ice, gravel, vegetation
  • Deformable terrain simulation (e.g., Taichi-MPM)
  • Dynamic obstacles and moving platforms
  • Outdoor field trials (unstructured environments)

6. Robustness Enhancements

  • Failure recovery strategies (e.g., self-righting)
  • Fault-tolerant control (leg damage scenarios)
  • Battery-aware planning (energy-constrained missions)
  • Communication loss resilience

Long-Term Vision

7. Multi-Agent Collaboration

  • Fleet coordination for search & rescue
  • Distributed SLAM and map merging
  • Task allocation and role specialization
  • Swarm behavior emergence

8. Real-World Deployment

  • King's College campus autonomous navigation trials
  • Industrial inspection applications (nuclear, offshore)
  • Disaster response scenario testing (UK Fire Service collaboration)
  • Planetary analog missions (ESA partnership)

9. Open-Source Community

  • ROS2 integration for broader compatibility
  • Web-based simulation interface (JavaScript/WebAssembly)
  • Benchmarking suite for locomotion research
  • Educational modules for university courses

12. References

If you use this work in your research, please cite:

@mastersthesis{masone2025origaker,
  title={Enhancing Metamorphic Legged Robot Locomotion Using Machine Learning and Nature-Inspired Design},
  author={Masone, Giacomo Demetrio},
  year={2025},
  school={King's College London},
  type={MSc Thesis},
  department={Engineering Department},
  supervisor={Spyrakos-Papastavridis, Emmanouil}
}

Related Publications:

@article{tang2022origaker,
  title={Origaker: A Novel Multi-Mimicry Quadruped Robot Based on a Metamorphic Mechanism},
  author={Tang, Z. and Wang, K. and Spyrakos-Papastavridis, E. and Dai, J.S.},
  journal={Journal of Mechanisms and Robotics},
  volume={14},
  number={6},
  year={2022}
}

13. Acknowledgements

This research was conducted at King's College London as part of the MSc Robotics program.

Supervision & Mentorship

  • Prof./Dr. Emmanouil Spyrakos-Papastavridis โ€“ Primary Supervisor
    For invaluable guidance, expertise, and unwavering support throughout this project

  • Dr. Taisir Elgorashi โ€“ Degree Committee Member
    For insightful feedback and scholarly input that enriched this work

Academic Community

  • MSc Robotics Cohort 2024-2025 โ€“ Course Colleagues
    For collaborative discussions, moral support, and friendship

  • King's College London Engineering Department
    For providing world-class resources, facilities, and academic environment

Technical Foundations

This project builds upon foundational work:

  • Origaker Platform โ€“ Tang et al. (2022)
  • Stable-Baselines3 โ€“ Raffin et al.
  • PyBullet โ€“ Erwin Coumans & team

About

Comprehensive README for Origaker autonomous quadruped robot featuring bio-inspired CPG locomotion, deep RL, adaptive morphology, SLAM perception and 12-stage development methodology with complete center-aligned formatting and rich media integration.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages