Representation and Quantification of Module Activity in single-cell and bulk transcriptomics
- Compute module activity scores for single-cell and bulk RNA-seq data
- Seamless integration with AnnData objects (
scanpy) - Support for GMT pathway files (e.g., MSigDB hallmark gene sets)
- Lightweight and easy to extend
conda env create -f environment.yml
conda activate pyromapip install roma-analysisgit clone https://github.com/altyn-bulmers/pyroma.git
cd pyroma
pip install -e .import pyroma
# Initialize ROMA
roma = pyroma.ROMA()
# Assign your AnnData object and GMT file
roma.adata = adata # AnnData from scanpy
hallmarks_gmt_path = pyroma.genesets.use_hallmarks()
roma.gmt = hallmarks_gmt_path
# Compute module activity scores
roma.compute()
# Inspect results
roma.adata.uns['ROMA_active_modules']Comprehensive tutorials are available on Read the Docs:
If you need submodule content (e.g., additional scripts or data):
git clone --recurse-submodules [email protected]:altyn-bulmers/pyroma.gitCompanion notebooks and detailed workflows are maintained in a dedicated repository (will be available soon):
Core datasets are sourced from rRoma_comp and included as TSV files in the datasets/ directory.
- Martignetti L, Calzone L, Bonnet E, Barillot E, Zinovyev A (2016). ROMA: Representation and Quantification of Module Activity from Target Expression Data. Front. Genet. 7:18.
- Najm M, Cornet M, Albergante L, et al. (2024). Representation and quantification of module activity from omics data with rROMA. npj Syst Biol Appl. 10:8.