Thanks to visit codestin.com
Credit goes to github.com

Skip to content

andvg3/eVGGT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

arXivProjectHuggingFace

Installation

Create a conda environment

$ conda create -n eVGGT python=3.10 -y
$ conda activate eVGGT

To install basic environments and CuRobo:

$ bash script/_install.sh

Download assets for RoboTwin:

$ bash script/_download_assets.sh

Install required packages:

$ cd policy/VGGT/vggt/
$ pip install -r requirements.txt
$ pip install -e . # Install VGGT dependency
cd ..
$ pip install -e . # Install diffusion_policy depenedency
$ cd ../..

For weights of eVGGT used for training policy, please download at this link. Place it at:

policy/VGGT/checkpoints/distillation

For more details of RoboTwin, follow RoboTwin 2.0 Document (Usage - Install & Download).

Training & Evaluation

Step 1: Collect data:

$ cd ../..
$ bash collect_data.sh ${task_name} ${task_config} ${gpu_id}
# Example: bash collect_data.sh beat_block_hammer demo_randomized 0
  • Step 2: Process data:
$ cd policy/VGGT
$ bash process_data.sh ${task_name} ${task_config} ${expert_data_num}
# bash process_data.sh beat_block_hammer demo_randomized 50
  • Step 3: Train policy:
$ bash train.sh ${task_name} ${task_config} ${expert_data_num} ${seed} ${action_dim} ${gpu_id}
# bash train.sh beat_block_hammer demo_randomized 50 0 14 0
# For `aloha-agilex` embodiment, the action_dim is 14
  • Step 4: Eval policy:
$ bash eval.sh ${task_name} ${task_config} ${ckpt_setting} ${expert_data_num} ${seed} ${gpu_id}
# bash eval.sh beat_block_hammer demo_randomized demo_randomized 50 0 0
# This command trains the policy using the `demo_randomized` setting ($ckpt_setting)
# and evaluates it using the same `demo_randomized` setting ($task_config).
#
# To evaluate a policy trained on the `demo_randomized` setting and tested on the `demo_clean` setting, run:
# bash eval.sh beat_block_hammer demo_clean demo_randomized 50 0 0

For other policies, please refer to RoboTwin 2.0 Document (Usage).

Acknowledgement

Thanks to Tianxing Chen et al. for their amazing RoboTwin platform.

About

Code for "Improving Robotic Manipulation with Efficient Geometry-Aware Vision Encoder"

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published