Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Friction
  3. Article

Tailored surface textures to increase friction—A review

  • Review Article
  • Open access
  • Published: 28 March 2022
  • Volume 10, pages 1285–1304, (2022)
  • Cite this article
Download PDF

You have full access to this open access article

Friction Aims and scope
Tailored surface textures to increase friction—A review
Download PDF
  • Henara L. Costa1,
  • Jörg Schille2 &
  • Andreas Rosenkranz3 
  • 3939 Accesses

  • Explore all metrics

Abstract

Surface textures with micro-scale feature dimensions still hold great potential to enhance the frictional performance of tribological systems. Apart from the ability of surface texturing to reduce friction, surface textures can also be used to intentionally increase friction in various applications that rely on friction for their adequate functioning. Therefore, this review aims at presenting the state-of-the-art regarding textured surfaces for high-friction purposes. After a brief general introduction, the recent trends and future paths in laser surface texturing are summarized. Then, the potential of surface textures to increase friction in different applications including adhesion, movement transmission and control, biomimetic applications, and road-tire contacts is critically discussed. Special emphasis in this section is laid on the involved mechanisms responsible for friction increase. Finally, current short-comings and future research directions are pointed out thus emphasizing the great potential of (laser-based) surface texturing methods for innovations in modern surface engineering.

Article PDF

Download to read the full article text

Similar content being viewed by others

Research progress of improving surface friction properties by surface texture technology

Article 15 July 2021

A Study of the Influence of Surface Layer Properties on the Tribotechnical Characteristics of Plain Machine Tool Slideways

Chapter © 2021

Selection of micro-fabrication techniques on stainless steel sheet for skin friction

Article Open access 15 June 2016

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Clusters and Nanostructures on Surfaces
  • Surface Chemistry
  • Surface patterning
  • Surface Spectroscopy
  • Tribology
  • Laser Material Processing
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Shah R, Woydt M, Huq N, Rosenkranz A. Tribology meets sustainability. Ind Lubr Tribol 73(3): 430–435 (2021)

    Article  Google Scholar 

  2. Taylor RI. Tribology and energy efficiency: From molecules to lubricated contacts to complete machines. Faraday Discuss 156: 361–382 (2012)

    Article  Google Scholar 

  3. Holmberg K, Erdemir A. The impact of tribology on energy use and CO2 emission globally and in combustion engine and electric cars. Tribol Int 135: 389–396 (2019)

    Article  Google Scholar 

  4. Holmberg K, Erdemir A. Influence of tribology on global energy consumption, costs and emissions. Friction 5(3): 263–284 (2017)

    Article  Google Scholar 

  5. John S, El-Ghoul Z, Dimkovski Z, Lööf P J, Lundmark J, Mohlin J. Friction between pin and roller of a truck’s valvetrain. Surf Topogr: Metrol Prop 7(1): 014001 (2019)

    Article  Google Scholar 

  6. Ballam M H, Karimzadeh F, Enayati M H, Sanati A. Developing a nanostructured surface layer on AISI 316 stainless steel by ultrasonic surface nanocrystallization and evaluating its tribological properties. Surf Topogr: Metrol Prop 9(2): 025010 (2021)

    Article  Google Scholar 

  7. He J Q, Sun J L, Meng Y N, Yan X D. Preliminary investigations on the tribological performance of hexagonal boron nitride nanofluids as lubricant for steel/steel friction pairs. Surf Topogr: Metrol Prop 7(1): 015022 (2019)

    Article  Google Scholar 

  8. Patel P R, Sharma S, Tiwari S K. Tribological properties of aluminium reinforced with differently oriented carbon nanotube: A molecular dynamics study. Surf Topogr: Metrol Prop 9(2): 025035 (2021)

    Article  Google Scholar 

  9. Morais R R Jr, Cardoso G V, Ferreira E S, Costa H L. Surface characterization, mechanical and abrasion resistance of nanocellulose-reinforced wood panels. Surf Topogr: Metrol Prop 8(2): 025011 (2020)

    Article  Google Scholar 

  10. Katta J, Jin Z M, Ingham E, Fisher J. Biotribology of articular cartilage—A review of the recent advances. Med Eng Phys 30(10): 1349–1363 (2008)

    Article  Google Scholar 

  11. Gebeshuber I C. Biotribology inspires new technologies. Nano Today 2(5): 30–37 (2007)

    Article  Google Scholar 

  12. Meng Y G, Xu J, Jin Z M, Prakash B, Hu Y Z. A review of recent advances in tribology. Friction 8(2): 221–300 (2020)

    Article  Google Scholar 

  13. Austin R S, Mullen F, Bartlett D W. Surface texture measurement for dental wear applications. Surf Topogr: Metrol Prop 3(2): 023002 (2015)

    Article  Google Scholar 

  14. Richard C. Lipstick adhesion measurement. In Surface Science and Adhesion in Cosmetics. Mittal K, Bui H, eds. Wiley, 2021: 635–662.

  15. Bui H S, Coleman-Nally D. Film-forming technology and skin adhesion in long-wear cosmetics. In Adhesion in Pharmaceutical, Biomedical and Dental Fields. Mittal K, Etzler F, eds. Hoboken (USA): John Wiley & Sons, Inc., 2017: 141–166.

  16. Sterner O, Aeschlimann R, Zürcher S, Scales C, Riederer D, Spencer N D, Tosatti S G P. Tribological classification of contact lenses: From coefficient of friction to sliding work. Tribol Lett 63(1): 1–13 (2016)

    Article  Google Scholar 

  17. Roba M, Duncan E G, Hill G A, Spencer N D, Tosatti S G P. Friction measurements on contact lenses in their operating environment. Tribol Lett 44(3): 387–397 (2011)

    Article  Google Scholar 

  18. Whitehouse S, Myant C, Cann P M, Stephens A. Fluorescent imaging of razor cartridge/skin lubrication. Surf Topogr: Metrol Prop 9(2): 024001 (2021)

    Article  Google Scholar 

  19. Neumann A, Frank D, Vondenhoff T, Schmitt R. Comparison of two metrological approaches for the prediction of human haptic perception. Surf Topogr Metrol Prop 4(2): 025004 (2016)

    Article  Google Scholar 

  20. Sergachev D, Matthews D, van der Heide E. Design of bidirectional frictional behaviour for tactile contact using ellipsoidal asperity micro-textures. Frictionhttps://doi.org/10.1007/s40544-021-0527-z (2021)

  21. Marian M, Shah R, Gashi B, Zhang S, Bhavnani K, Wartzack S, Rosenkranz A. Exploring the lubrication mechanisms of synovial fluids for joint longevity—A perspective. Colloids Surf B Biointerfaces 206: 111926 (2021)

    Article  Google Scholar 

  22. Popov V L, Poliakov A M, Pakhaliuk V I. Synovial joints. tribology, regeneration, regenerative rehabilitation and arthroplasty. Lubricants 9(2): 15 (2021)

    Article  Google Scholar 

  23. Meenakshi C V R, Kumar K S, Ramana S V. Tribological aspects on human knee joint — AReview. Mater Today Proc 22: 3100–3105 (2020)

    Article  Google Scholar 

  24. Link JM, Salinas EY, Hu JC, Athanasiou KA. The tribology of cartilage: Mechanisms, experimental techniques, and relevance to translational tissue engineering. Clin Biomech (Bristol, Avon) 79: 104880 (2020)

    Article  Google Scholar 

  25. Laguna L, Sarkar A. Oral tribology: Update on the relevance to study astringency in wines. Tribol Mater Surf Interfaces 11(2): 116–123 (2017)

    Article  Google Scholar 

  26. Sarkar A, Krop E M. Marrying oral tribology to sensory perception: A systematic review. Curr Opin Food Sci 27: 64–73 (2019)

    Article  Google Scholar 

  27. Upadhyay R, Chen J S. Smoothness as a tactile percept: Correlating ‘oral’ tribology with sensory measurements. Food Hydrocoll 87: 38–47 (2019)

    Article  Google Scholar 

  28. Strey N F, Scandian C. Tribological transitions during sliding of zirconia against alumina and ZTA in water. Wear 376–377: 343–351 (2017)

    Article  Google Scholar 

  29. Balarini R, Strey N F, Sinatora A, Scandian C. The influence of initial roughness and circular axial Run-out on friction and wear behavior of Si3N4-Al2O3 sliding in water. Tribol Int 101: 226–233 (2016)

    Article  Google Scholar 

  30. Wang X D, Sato H, Adachi K. Low friction in self-mated silicon carbide tribosystem using nanodiamond as lubricating additive in water. Friction 9(3): 598–611 (2021)

    Article  Google Scholar 

  31. Donato M T, Colaço R, Branco L C, Saramago B. A review on alternative lubricants: Ionic liquids as additives and deep eutectic solvents. J Mol Liq 333: 116004 (2021)

    Article  Google Scholar 

  32. Seed C M, Acharya B, Krim J. QCM study of tribotronic control in ionic liquids and nanoparticle suspensions. Tribol Lett 69(3): 1–12 (2021)

    Article  Google Scholar 

  33. Spikes H. The history and mechanisms of ZDDP. Tribol Lett 17(3): 469–489 (2004)

    Article  Google Scholar 

  34. Spikes H. Friction modifier additives. Tribol Lett 60(1): 1–26 (2015)

    Article  Google Scholar 

  35. Dias H W J, Medeiros A B, Binder C, Rodrigue Neto J B, Klein A N, de Mello J D B. Tribological evaluation of turbostratic 2D graphite as oil additive. Lubricants 9(4): 43 (2021)

    Article  Google Scholar 

  36. Furlan K P, de Mello J D B, Klein A N. Self-lubricating composites containing MoS2: A review. Tribol Int 120: 280–298 (2018)

    Article  Google Scholar 

  37. Scharf T W, Prasad S V. Solid lubricants: A review. J Mater Sci 48(2): 511–531 (2013)

    Article  Google Scholar 

  38. Grützmacher P G, Suarez S, Tolosa A, Gachot C, Song G C, Wang B, Presser V, Mücklich F, Anasori B, Rosenkranz A. Superior wear-resistance of Ti3C2Tx multilayer coatings. ACS Nano 15(5): 8216–8224 (2021)

    Article  Google Scholar 

  39. Wyatt B C, Rosenkranz A, Anasori B. 2D MXenes: Tunable mechanical and tribological properties. Adv Mater 33(17): 2007973 (2021)

    Article  Google Scholar 

  40. Tavares A F, Lopes A P O, Mesquita E A, Almeida D T, Souza J H C, Costa H L. Effect of transfer layers on friction and wear mechanisms in strip drawing tests of commercially coated forming tools. Wear 476: 203733 (2021)

    Article  Google Scholar 

  41. Hamilton D B, Walowit J A, Allen C M. A theory of lubrication by microirregularities. J Basic Eng 88(1): 177–185 (1966)

    Article  Google Scholar 

  42. Anno J N, Walowit J A, Allen C M. Load support and leakage from microasperity-lubricated face seals. J Lubr Technol 91(4): 726–731 (1969)

    Article  Google Scholar 

  43. Etsion I. State of the art in laser surface texturing. J Tribol 127(1): 248–253 (2005)

    Article  Google Scholar 

  44. Rapoport L, Moshkovich A, Perfilyev V, Gedanken A, Koltypin Y, Sominski E, Halperin G, Etsion I. Wear life and adhesion of solid lubricant films on laser-textured steel surfaces. Wear 267(5–8): 1203–1207 (2009)

    Article  Google Scholar 

  45. Shinkarenko A, Kligerman Y, Etsion I. Theoretical analysis of surface-textured elastomer sleeve in lubricated rotary sliding. Tribol Trans 53(3): 376–385 (2010)

    Article  Google Scholar 

  46. Rosenkranz A, Reinert L, Gachot C, Mücklich F. Alignment and wear debris effects between laser-patterned steel surfaces under dry sliding conditions. Wear 318(1–2): 49–61 (2014)

    Article  Google Scholar 

  47. Shimizu J, Nakayama T, Watanabe K, Yamamoto T, Onuki T, Ojima H, Zhou L B. Friction characteristics of mechanically microtextured metal surface in dry sliding. Tribol Int 149: 105634 (2020)

    Article  Google Scholar 

  48. Rodrigues T A, Arencibia R V, Costa H L, da Silva W M. Roughness analysis of electrochemically textured surfaces: Effects on friction and wear of lubricated contacts. Surf Topogr Metrol Prop 8(2): 024011 (2020)

    Article  Google Scholar 

  49. da Silva L R R, Costa H L. Tribological behavior of gray cast iron textured by maskless electrochemical texturing. Wear 376–377: 1601–1610 (2017)

    Article  Google Scholar 

  50. Braun D, Greiner C, Schneider J, Gumbsch P. Efficiency of laser surface texturing in the reduction of friction under mixed lubrication. Tribol Int 77: 142–147 (2014)

    Article  Google Scholar 

  51. Rosenkranz A, Szurdak A, Gachot C, Hirt G, Mücklich F. Friction reduction under mixed and full film EHL induced by hot micro-coined surface patterns. Tribol Int 95: 290–297 (2016)

    Article  Google Scholar 

  52. Wang X L, Kato K, Adachi K, Aizawa K. The effect of laser texturing of SiC surface on the critical load for the transition of water lubrication mode from hydrodynamic to mixed. Tribol Int 34(10): 703–711 (2001)

    Article  Google Scholar 

  53. Krupka I, Hartl M, Zimmerman M, Houska P, Jang S. Effect of surface texturing on elastohydrodynamically lubricated contact under transient speed conditions. Tribol Int 44(10): 1144–1150 (2011)

    Article  Google Scholar 

  54. Mourier L, Mazuyer D, Ninove F P, Lubrecht A A. Lubrication mechanisms with laser-surface-textured surfaces in elastohydrodynamic regime. Proc Inst Mech Eng Part J J Eng Tribol 224(8): 697–711 (2010)

    Article  Google Scholar 

  55. Choo J W, Glovnea R P, Olver A V, Spikes H A. The effects of three-dimensional model surface roughness features on lubricant film thickness in EHL contacts. J Tribol 125(3): 533–542 (2003)

    Article  Google Scholar 

  56. Costa H L, Hutchings I M. Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions. Tribol Int 40(8): 1227–1238 (2007)

    Article  Google Scholar 

  57. Rosenkranz A, Costa H L, Profito F, Gachot C, Medina S, Dini D. Influence of surface texturing on hydrodynamic friction in plane converging bearings—An experimental and numerical approach. Tribol Int 134: 190–204 (2019)

    Article  Google Scholar 

  58. dos Santos M B, Costa H L, de Mello J D B. Potentiality of triboscopy to monitor friction and wear. Wear 332–333: 1134–1144 (2015)

    Article  Google Scholar 

  59. Gu C X, Meng X H, Xie Y B, Yang Y M. Effects of surface texturing on ring/liner friction under starved lubrication. Tribol Int 94: 591–605 (2016)

    Article  Google Scholar 

  60. Suh N P, Mosleh M, Howard P S. Control of friction. Wear 175(1–2): 151–158 (1994)

    Article  Google Scholar 

  61. Hichri Y, Cerezo V, Do M T, Zahouani H. Effect of particles’ characteristics and road surface’s texture on the tire/road friction. Surf Topogr: Metrol Prop 6(3): 034014 (2018)

    Article  Google Scholar 

  62. Yu A B, Niu W Y, Hong X, He Y, Wu M C, Chen Q J, Ding M L. Influence of tribo-magnetization on wear debris trapping processes of textured dimples. Tribol Int 121: 84–93 (2018)

    Article  Google Scholar 

  63. Zhu Y M, Chen J J, Du J J, Fan Y J, Zheng J F. Tribological behavior of laser textured nodular cast iron surface. Ind Lubr Tribol 71(7): 949–955 (2019)

    Article  Google Scholar 

  64. Pettersson U, Jacobson S. Influence of surface texture on boundary lubricated sliding contacts. Tribol Int 36(11): 857–864 (2003)

    Article  Google Scholar 

  65. Gachot C, Hsu C, Suárez S, Grützmacher P, Rosenkranz A, Stratmann A, Jacobs G. Microstructural and chemical characterization of the tribolayer formation in highly loaded cylindrical roller thrust bearings. Lubricants 4(2): 19 (2016)

    Article  Google Scholar 

  66. Hsu C J, Stratmann A, Medina S, Jacobs G, Mücklich F, Gachot C. Does laser surface texturing really have a negative impact on the fatigue lifetime of mechanical components? Friction 9(6): 1766–1775 (2021)

    Article  Google Scholar 

  67. Olver A V, Fowell M T, Spikes H A, Pegg I G. ‘Inlet suction’, a load support mechanism in non-convergent, pocketed, hydrodynamic bearings. Proc Inst Mech Eng Part J J Eng Tribol 220(2): 105–108 (2006)

    Article  Google Scholar 

  68. Fowell M, Olver A V, Gosman A D, Spikes H A, Pegg I. Entrainment and inlet suction: Two mechanisms of hydrodynamic lubrication in textured bearings. J Tribol 129 (2): 336–347 (2006).

    Article  Google Scholar 

  69. Gropper D, Wang L, Harvey T J. Hydrodynamic lubrication of textured surfaces: A review of modeling techniques and key findings. Tribol Int 94: 509–529 (2016)

    Article  Google Scholar 

  70. Gachot C, Rosenkranz A, Hsu S M, Costa H L. A critical assessment of surface texturing for friction and wear improvement. Wear 372–373: 21–41 (2017)

    Article  Google Scholar 

  71. Rosenkranz A, Grützmacher P G, Gachot C, Costa H L. Surface texturing in machine elements—A critical discussion for rolling and sliding contacts. Adv Eng Mater 21(8): 1900194 (2019)

    Article  Google Scholar 

  72. Rosenkranz A, Costa H L, Baykara M Z, Martini A. Synergetic effects of surface texturing and solid lubricants to tailor friction and wear — A review. Tribol Int 155: 106792 (2021)

    Article  Google Scholar 

  73. Lu P, Wood R J K. Tribological performance of surface texturing in mechanical applications—A review. Surf Topogr: Metrol Prop 8(4): 043001 (2020)

    Article  Google Scholar 

  74. Vineeth Kumar V, Senthil Kumaran S. Friction material composite: Types of brake friction material formulations and effects of various ingredients on brake performance—A review. Mater Res Express 6(8): 082005 (2019)

    Article  Google Scholar 

  75. Xiao X M, Yin Y, Bao J S, Lu L J, Feng X J. Review on the friction and wear of brake materials. Adv Mech Eng 8(5): 168781401664730 (2016)

    Article  Google Scholar 

  76. Terleeva O P, Slonova A I, Rogov A B, Matthews A, Yerokhin A. Wear resistant coatings with a high friction coefficient produced by plasma electrolytic oxidation of Al alloys in electrolytes with basalt mineral powder additions. Materials 12(17): 2738 (2019)

    Article  Google Scholar 

  77. Wu J P, Ma B, Li H Y, Ma C N. Friction and wear properties of three different steels against paper-based friction material. Ind Lubr Tribol 71(10): 1206–1212 (2019)

    Article  Google Scholar 

  78. Johnson K L, Kendall K, Roberts A D, Tabor D. Surface energy and the contact of elastic solids. Proc R Soc Lond A 324(1558): 301–313 (1971)

    Article  Google Scholar 

  79. Sutcliffe M P F. Surface finish and friction in cold metal rolling. In Metal Forming Science and Practice. Lenard J G, ed. Oxford (UK): Elsevier Science Ltd., 2002: 19–59.

  80. Costa H L, Hutchings I M. Some innovative surface texturing techniques for tribological purposes. Proc Inst Mech Eng Part J J Eng Tribol 229(4): 429–448 (2015)

    Article  Google Scholar 

  81. Martan J, Moskal D, Kucera M. Laser surface texturing with shifted method—Functional surfaces at high speed. J Laser Appl 31(2): 022507 (2019)

    Article  Google Scholar 

  82. Volpe A, Gaudiuso C, Ancona A. Laser fabrication of anti-icing surfaces: A review. Materials 13(24): 5692 (2020)

    Article  Google Scholar 

  83. Luo X, Yao S L, Zhang H J, Cai M Y, Liu W J, Pan R, Chen C H, Wang X M, Wang L N, Zhong M L. Biocompatible nano-ripples structured surfaces induced by femtosecond laser to rebel bacterial colonization and biofilm formation. Opt Laser Technol 124: 105973 (2020)

    Article  Google Scholar 

  84. Shivakoti I, Kibria G, Cep R, Pradhan B B, Sharma A. Laser surface texturing for biomedical applications: A review. Coatings 11(2): 124 (2021)

    Article  Google Scholar 

  85. Schille J, Schneider L, Mauersberger S, Szokup S, Höhn S, Pötschke J, Reiß F, Leidich E, Löschner U. High-rate laser surface texturing for advanced tribological functionality. Lubricants 8(3): 33 (2020)

    Article  Google Scholar 

  86. Sitar A, Crivellari M, Schille J, Mauersberger S, Löschner U, Golobic I. Improved boiling heat transfer in dry etched microchannels with laser structured surfaces. In ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels, Dubrovnik, Croatia, 2018: V001T02A015.

  87. Birnbaum M. Semiconductor surface damage produced by ruby lasers. J Appl Phys 36(11): 3688–3689 (1965)

    Article  MathSciNet  Google Scholar 

  88. Reif J, Varlamova O, Varlamov S, Bestehorn M. The role of asymmetric excitation in self-organized nanostructure formation upon femtosecond laser ablation. Appl Phys A 104(3): 969–973 (2011)

    Article  Google Scholar 

  89. Bonse J, Höhm S, Kirner S V, Rosenfeld A, Krüger J. Laser-induced periodic surface structures—A scientific evergreen. IEEE J Sel Top Quantum Electron 23(3): 9000615 (2017)

    Article  Google Scholar 

  90. Tsukamoto M, Kayahara T, Nakano H, Hashida M, Katto M, Fujita M, Tanaka M, Abe N. Microstructures formation on titanium plate by femtosecond laser ablation. J Phys: Conf Ser 59: 666–669 (2007)

    Google Scholar 

  91. Bruening S, Du K M, Jarczynski M, Gillner A. High-throughput micromachining with ultrashort pulsed lasers and multiple spots. J Laser Appl 32(1): 012003 (2020)

    Article  Google Scholar 

  92. Gillner A, Finger J, Gretzki P, Niessen M, Bartels T, Reininghaus M. High power laser processing with ultrafast and multi-parallel beams. J Laser Micro/Nanoengin 2019: 218550959 (2019).

    Google Scholar 

  93. Bonse J, Krüger J, Höhm S, Rosenfeld A. Femtosecond laser-induced periodic surface structures. J Laser Appl 24(4): 042006 (2012)

    Article  Google Scholar 

  94. Gregorcic P, Sedlacek M, Podgornik B, Reif J. Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations. Appl Surf Sci 387: 698–706 (2016)

    Article  Google Scholar 

  95. Hirsiger T, Gafner M, Remund S M, Chaja M W, Urniezius A, Butkus S, Neuenschwander B. (2020) Machining metals and silicon with GHz bursts: Surprising tremendous reduction of the specific removal rate for surface texturing applications. In Proceedings Volume 11267 Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXV, San Francisco, USA, SPIE, 2020: 112670T.

  96. Ackerl N, Fisch G, Auerswald J, Wegener K. Evolution of microstructures on stainless steel induced by ultra-short pulsed laser ablation. SN Appl Sci 2(4): 1–10 (2020)

    Article  Google Scholar 

  97. Gedvilas M, Mikšys J, Račiukaitis G. Flexible periodical micro- and nano-structuring of a stainless steel surface using dual-wavelength double-pulse picosecond laser irradiation. RSC Adv 5(92): 75075–75080 (2015)

    Article  Google Scholar 

  98. Hwang T Y, Guo C L. Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals. J Appl Phys 108(7): 073523 (2010)

    Article  Google Scholar 

  99. Dunn A, Carstensen J V, Wlodarczyk K L, Hansen E B, Gabzdyl J, Harrison P M, Shephard J D, Hand D P. Nanosecond laser texturing for high friction applications. Opt Lasers Eng 62: 9–16 (2014)

    Article  Google Scholar 

  100. Röcker C, Loescher A, Delaigue M, Hönninger C, Mottay E, Graf T, Ahmed M A. Flexible sub-1 ps ultrafast laser exceeding 1 kw of output power for high-throughput surface structuring. In Laser Congress 2019 (ASSL, LAC, LS&C), Vienna, OSA, 2019.

  101. Müller M, Aleshire C, Klenke A, Haddad E, Légaré F, Tünnermann A, Limpert J. 104 kW coherently combined ultrafast fiber laser. Opt Lett 45(11): 3083 (2020)

    Article  Google Scholar 

  102. Schille J, Schneider L, Streek A, Kloetzer S, Loeschner U. High-throughput machining using a high-average power ultrashort pulse laser and high-speed polygon scanner. OE 55: 096109 (2016)

    Article  Google Scholar 

  103. Lang V, Roch T, Lasagni A. World record in high speed laser surface microstructuring of polymer and steel using direct laser interference patterning. In Proceedings Volume 9736, Laser-based Micro- and Nanoprocessing X, San Francisco, California, USA, SPIE, 2016: 97360Z.

  104. Xing Y Q, Deng J X, Wu Z, Wu F F. High friction and low wear properties of laser-textured ceramic surface under dry friction. Opt Laser Technol 93: 24–32 (2017)

    Article  Google Scholar 

  105. Eichstädt J, Römer G R B E, Veld A J H I. Towards Friction Control using laser-induced periodic Surface Structures. Phys Procedia 12: 7–15 (2011)

    Article  Google Scholar 

  106. Rung S, Bokan K, Kleinwort F, Schwarz S, Simon P, Klein-Wiele J H, Esen C, Hellmann R. Possibilities of dry and lubricated friction modification enabled by different ultrashort laser-based surface structuring methods. Lubricants 7(5): 43 (2019)

    Article  Google Scholar 

  107. van der Poel S, Mezera M, Römer G W, de Vries E, Matthews D. Fabricating laser-induced periodic surface structures on medical grade cobalt—chrome—molybdenum: Tribological, wetting and leaching properties. Lubricants 7(8): 70 (2019)

    Article  Google Scholar 

  108. Alves-Lopes I, Almeida A, Oliveira V, Vilar R. Influence of laser surface nanotexturing on the friction behaviour of the silicon/sapphire system. Opt Laser Technol 121: 105767 (2020)

    Article  Google Scholar 

  109. Wang Z, Zhao Q Z, Wang C W, Zhang Y. Modulation of dry tribological property of stainless steel by femtosecond laser surface texturing. Appl Phys A 119(3): 1155–1163 (2015)

    Article  Google Scholar 

  110. Schille J. Experimental study on laser surface texturing for friction coefficient enhancement. J Laser Micro 10(3): 245–253 (2015)

    Article  Google Scholar 

  111. Joshi G S, Putignano C, Gaudiuso C, Stark T, Kiedrowski T, Ancona A, Carbone G. Effects of the micro surface texturing in lubricated non-conformal point contacts. Tribol Int 127: 296–301 (2018)

    Article  Google Scholar 

  112. del Campo A, Greiner C, Arzt E. Contact shape controls adhesion of bioinspired fibrillar surfaces. Langmuir 23(20): 10235–10243 (2007)

    Article  Google Scholar 

  113. Arzt E, Gorb S, Spolenak R. From micro to nano contacts in biological attachment devices. PNAS 100(19): 10603–10606 (2003)

    Article  Google Scholar 

  114. Jin K J, Cremaldi J C, Erickson J S, Tian Y, Israelachvili J N, Pesika N S. Adhesives: biomimetic bidirectional switchable adhesive inspired by the gecko (adv. funct. mater. 5/2014). Adv Funct Mater 24(5): 573 (2014)

    Article  Google Scholar 

  115. Huang W, Wang X. Biomimetic design of elastomer surface pattern for friction control under wet conditions. Bioinspir Biomim 8(4): 046001 (2013)

    Article  Google Scholar 

  116. Drotlef D M, Stepien L, Kappl M, Barnes W J P, Butt H J, del Campo A. Insights into the adhesive mechanisms of tree frogs using artificial mimics. Adv Funct Mater 23(9): 1137–1146 (2013)

    Article  Google Scholar 

  117. Kang M, Park Y M, Kim B H, Seo Y H. Micro- and nanoscale surface texturing effects on surface friction. Appl Surf Sci 345: 344–348 (2015)

    Article  Google Scholar 

  118. Cañas N, Kamperman M, Völker B, Kroner E, McMeeking R M, Arzt E. Effect of nano- and micro-roughness on adhesion of bioinspired micropatterned surfaces. Acta Biomater 8(1): 282–288 (2012)

    Article  Google Scholar 

  119. Sorrentino L, Marfia S, Parodo G, Sacco E. Laser treatment surface: An innovative method to increase the adhesive bonding of ENF joints in CFRP. Compos Struct 233: 111638 (2020)

    Article  Google Scholar 

  120. Hamilton A, Xu Y, Kartal M E, Gadegaard N, Mulvihill D M. Enhancing strength and toughness of adhesive joints via micro-structured mechanical interlocking. Int J Adhesion Adhesives 105: 102775 (2021)

    Article  Google Scholar 

  121. Wang W Q, Wang S Y, Zhang X G, Xu Y X, Tian Y T, Huang H. Enhanced aluminum alloy-polymer friction stir welding joints by introducing micro-textures. Mater Lett 295: 129872 (2021)

    Article  Google Scholar 

  122. Costa H L, Oliveira M M Jr, de Mello J D B. Effect of debris size on the reciprocating sliding wear of aluminium. Wear 376–377: 1399–1410 (2017)

    Article  Google Scholar 

  123. Liu Y F, Su J H, Tan C W, Feng Z W, Zhang H, Wu L J, Chen B, Song X G. Effect of laser texturing on mechanical strength and microstructural properties of hot-pressing joining of carbon fiber reinforced plastic to Ti6Al4V. J Manuf Process 65: 30–41 (2021)

    Article  Google Scholar 

  124. Zhang K D, Guo X H, Wang C Y, Liu F, Sun L N. Effect of plasma-assisted laser pretreatment of hard coatings surface on the physical and chemical bonding between PVD soft and hard coatings and its resulting properties. Appl Surf Sci 509: 145342 (2020)

    Article  Google Scholar 

  125. Liu X L, Song J F, Chen H C, Zhao G, Qiu J H, Ding Q J. Enhanced transfer efficiency of ultrasonic motors with polyimide based frictional materials and surface texture. Sens Actuat A Phys 295: 671–677 (2019)

    Article  Google Scholar 

  126. Dufils J, Faverjon F, Héau C, Donnet C, Benayoun S, Valette S. Combination of laser surface texturing and DLC coating on PEEK for enhanced tribological properties. Surf Coat Technol 329: 29–41 (2017)

    Article  Google Scholar 

  127. Liu X L, Qiu J H, Zhao G. Improved energy conversion efficiency of the ultrasonic motor with surface texture. Ind Lubr Tribol 70(9): 1729–1736 (2018)

    Article  Google Scholar 

  128. Ito S, Takahashi K, Sasaki S. Generation mechanism of friction anisotropy by surface texturing under boundary lubrication. Tribol Int 149: 105598 (2020)

    Article  Google Scholar 

  129. Wang N, Li D H, Song W L, Xiu S C, Meng X Z. Effect of surface texture and working gap on the braking performance of the magnetorheological fluid brake. Smart Mater Struct 25(10): 105026 (2016)

    Article  Google Scholar 

  130. Santos L V, Trava-Airoldi V J, Corat E J, Nogueira J, Leite N F. DLC cold welding prevention films on a Ti6Al4V alloy for space applications. Surf Coat Technol 200(8): 2587–2593 (2006)

    Article  Google Scholar 

  131. Tiner C, Bapat S, Nath S D, Atre S V, Malshe A. Exploring convergence of snake-skin-inspired texture designs and additive manufacturing for mechanical traction. Procedia Manuf 34: 640–646 (2019)

    Article  Google Scholar 

  132. Sánchez J C, Estupiñán H, Toro A. Friction response of bioinspired AISI 52100 steel surfaces texturized by photochemical machining. Surf Topogr: Metrol Prop 9(1): 014001 (2021)

    Article  Google Scholar 

  133. Xu Y, Li Z P, Zhang G Q, Wang G, Zeng Z X, Wang C T, Wang C C, Zhao S C, Zhang Y D, Ren T H. Electrochemical corrosion and anisotropic tribological properties of bioinspired hierarchical morphologies on Ti-6Al-4V fabricated by laser texturing. Tribol Int 134: 352–364 (2019)

    Article  Google Scholar 

  134. Xu Y, Liu W, Zhang G Q, Li Z P, Hu H X, Wang C C, Zeng X Q, Zhao S C, Zhang Y D, Ren T H. Friction stability and cellular behaviors on laser textured Ti-6Al-4V alloy implants with bioinspired micro-overlapping structures. J Mech Behav Biomed Mater 109: 103823 (2020)

    Article  Google Scholar 

  135. Gerthoffert J, Cerezo V, Thiery M, Bouteldja M, Do M T. A Brush-based approach for modelling runway friction assessment device. Int J Pavement Eng 21(13): 1694–1702 (2020)

    Article  Google Scholar 

  136. Sabey B E, Williams T, Lupton G. Factors affecting the friction of tires on wet roads. SAE Transactions 1203-18 (1970)

  137. Mao C, Lv X, Yang X, Yang Z, Ma Y, Lv S. Design of convex-hull bionic tire tread compounds and mechanism on collaborative improvement of wet resistance and wear resistance. J Appl Polym Sci 138(20): 50446 (2021)

    Article  Google Scholar 

  138. Jin X C, Hou C, Fan X L, Sun Y L, Lv J N, Lu C S. Investigation on the static and dynamic behaviors of non-pneumatic tires with honeycomb spokes. Compos Struct 187: 27–35 (2018)

    Article  Google Scholar 

  139. Zhou H C, Zhai H H, Ding Y M, Wang G L. Numerical investigation of passive control flow to improve tire hydroplaning performance using a V-riblet non-smooth surface. Adv Mech Eng 9(11): 168781401772724 (2017)

    Article  Google Scholar 

  140. Zhang Z W, Luan B, Liu X, Zhang M Q. Effects of surface texture on tire-pavement noise and skid resistance in long freeway tunnels: From field investigation to technical practice. Appl Acoust 160: 107120 (2020)

    Article  Google Scholar 

  141. Zhu X Y, Yang Y, Zhao H D, Jelagin D, Chen F, Gilabert F A, Guarin A. Effects of surface texture deterioration and wet surface conditions on asphalt runway skid resistance. Tribol Int 153: 106589 (2021)

    Article  Google Scholar 

  142. Moreno-Ríos M, Gallardo-Hernández E A, Yáñez-Escoto M J, Márquez-Tamayo L A, Iturbe-Salas E. Evaluation of surface modification in a steel track for the rubber tyred Metro. Wear 426–427: 1265–1271 (2019)

    Article  Google Scholar 

  143. Kawazoe M, Miki N. Tactile samples with variable surface textures to investigate tactile perception characteristic. J Micromech Microeng 30(10): 105011 (2020)

    Article  Google Scholar 

  144. Renganathan P, Schwartz C J. Investigation of human perception of tactile graphics and its dependence on fundamental friction mechanisms. Wear 476: 203729 (2021)

    Article  Google Scholar 

  145. Dione M, Watkins R H, Vezzoli E, Lemaire-Semail B, Wessberg J. Human low-threshold mechanoafferent responses to pure changes in friction controlled using an ultrasonic haptic device. Sci Rep 11: 11227 (2021)

    Article  Google Scholar 

  146. Culbertson H, Kuchenbecker K J. Ungrounded haptic augmented reality system for displaying roughness and friction. IEEE/ASME Trans Mechatron 22(4): 1839–1849 (2017)

    Article  Google Scholar 

  147. Etsion I. Modeling of surface texturing in hydrodynamic lubrication. Friction 1(3): 195–209 (2013)

    Article  Google Scholar 

  148. Grützmacher P G, Profito F J, Rosenkranz A. Multi-scale surface texturing in tribology—Current knowledge and future perspectives. Lubricants 7(11): 95 (2019)

    Article  Google Scholar 

  149. Spikes H A. Sixty years of EHL. Lubr Sci 18(4): 265–291 (2006)

    Article  Google Scholar 

  150. Bi Z M, Mueller D W, Zhang C W J. State of the art of friction modelling at interfaces subjected to elastohydrodynamic lubrication (EHL). Friction 9(2): 207–227 (2021)

    Article  Google Scholar 

  151. Marian M, Weikert T, Tremmel S. On friction reduction by surface modifications in the TEHL cam/tappet-contact-experimental and numerical studies. Coatings 9(12): 843 (2019)

    Article  Google Scholar 

  152. Marian M, Grützmacher P, Rosenkranz A, Tremmel S, Mücklich F, Wartzack S. Designing surface textures for EHL point-contacts—Transient 3D simulations, meta-modeling and experimental validation. Tribol Int 137: 152–163 (2019)

    Article  Google Scholar 

  153. Marian M, Weschta M, Tremmel S, Wartzack S. Simulation of microtextured surfaces in starved EHL contacts using commercial FE software. Matls Perf Charact 6(2): MPC20160010 (2017)

    Article  Google Scholar 

  154. Gu C X, Meng X H, Xie Y B, Li P. A study on the tribological behavior of surface texturing on the nonflat piston ring under mixed lubrication. Proc Inst Mech Eng Part J J Eng Tribol 230(4): 452–471 (2016)

    Article  Google Scholar 

  155. Profito F J, Tomanik E, Zachariadis D C. Effect of cylinder liner wear on the mixed lubrication regime of TLOCRs. Tribol Int 93: 723–732 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by ANID-CONICYT within the project Fondecyt 11180121 and Fondequip EQM190057 as well as the VID of the University of Chile in the framework of “U-Inicia UI013/2018”. HLC acknowledges financial support from Fapergs/Brazil (No. 19/2551-0001849-5) and CNPq/Brazil (No. 305453/2017-3). JS thanks the German Federal Ministry of Education and Research (BMBF) for financial support in the project FH-Europa 2020: MACH-XLT (No. 13FH009EX0).

Author information

Authors and Affiliations

  1. School of Engineering, Surface Engineering Group, Universidade Federal do Rio Grande, Rio Grande, 96203900, Brazil

    Henara L. Costa

  2. University of Applied Sciences Mittweida, Laserinstitut Hochschule Mittweida, Mittweida, 09648, Germany

    Jörg Schille

  3. Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, 8370459, Chile

    Andreas Rosenkranz

Authors
  1. Henara L. Costa
    View author publications

    Search author on:PubMed Google Scholar

  2. Jörg Schille
    View author publications

    Search author on:PubMed Google Scholar

  3. Andreas Rosenkranz
    View author publications

    Search author on:PubMed Google Scholar

Corresponding authors

Correspondence to Henara L. Costa or Andreas Rosenkranz.

Additional information

Henara L. COSTA. She is a full professor at the Federal University of Rio Grande and a visiting professor at Federal University of Uberlândia and Federal University of Pelotas, Brazil. She obtained her B.S. (1992) and M.S. (1995) degrees in mechanical engineering from the Federal University of Uberlândia, Brazil, and her Ph.D. degree from Cambridge University, UK (2005). She has worked with tribology for over 25 years, with a main focus on reducing friction losses using surface modification and coatings or lubrication. She has authored over 180 manuscripts in journals, book chapters, and conference proceedings. She is a member of IFToMM and of editorial boards of a several tribology-related journals and the Brazilian representative at IEA/AMT. Currently she is the editor-in-chief of the journal “Surface Topography: Metrology and Properties”.

Andreas ROSENKRANZ. He is a professor for materials-oriented tribology and new 2D materials in the Department of Chemical Engineering, Biotechnology and Materials at the University of Chile. His research focuses on the characterization, chemical functionalization, and application of new 2D materials. His main field of research is related to tribology (friction, wear, and energy efficiency), but in the last couple of years, he has also expanded his fields towards water purification, catalysis, and biological properties. He has published more than 100 peer-reviewed journal publications, is a fellow of the Alexander von Humboldt Foundation, and acts as a scientific editor for different well-reputed scientific journals including Applied Nanoscience and Frontiers of Chemistry.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, H.L., Schille, J. & Rosenkranz, A. Tailored surface textures to increase friction—A review. Friction 10, 1285–1304 (2022). https://doi.org/10.1007/s40544-021-0589-y

Download citation

  • Received: 14 October 2021

  • Revised: 10 November 2021

  • Accepted: 12 December 2021

  • Published: 28 March 2022

  • Issue Date: September 2022

  • DOI: https://doi.org/10.1007/s40544-021-0589-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • surface texturing
  • tribology
  • laser processing
  • friction increase
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature