Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

The Effects of Free Radicals on Pulmonary Surfactant Lipids and Proteins

  • Chapter
  • First Online:
Oxidative Stress in Lung Diseases
  • 717 Accesses

  • 1 Citation

Abstract

The pulmonary surfactant forms a mixed protein–lipid film at the air–lung interface. It plays a dual role of surface tension reduction and host defense against inhaled pathogens. In acute lung injury (ALI) and its more severe form of acute respiratory distress syndrome (ARDS), high surface tension throughout the lung results in intrapulmonary shunts and edema leading to atelectasis and hypoxemia. Pulmonary surfactant inhibition is associated with various pulmonary diseases. ALI/ARDS is common (150,000 new cases per year in the United States) with mortality ranging from 30% to 60% depending on disease stage. High surface tension can result from an absence of a surfactant film over significant portions of this interface, or from the presence of dysfunctional layer of surfactant. Elevated cholesterol levels are shown to be a potent surfactant inhibitor. Oxidative damage to both phospholipids and proteins is shown to inhibit surfactant function. The pulmonary surfactant may be degraded by reactive oxygen and nitrogen (RONS) species in the inflamed lung in the presence of physiological cholesterol levels. The inhibitory mechanism of oxidative damage on the surfactant film is outlined in this chapter. Lipid-sequestering therapies, including cyclodextrins, may offer a potential treatment to restore surfactant function and reduce pulmonary inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Leonenko Z, Gill S, Baoukina S, Monticelli L, Doehner J, Gunasekara L, Felderer F, Rodenstein M, Eng LM, Amrein M (2007) An elevated level of cholesterol impairs self-assembly of pulmonary Surfactant into a functional film. Biophys J 93:674–683. https://doi.org/10.1529/biophysj.107.106310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Manzanares D, Rodriguez-Capote K, Liu S, Haines T, Ramos Y, Zhao L, Doherty-Kirby A, Lajoie G, Possmayer F (2007) Modification of tryptophan and methionine residues is implicated in the oxidative inactivation of surfactant protein B. Biochemistry 46:5604–5615. https://doi.org/10.1021/bi062304p

    Article  CAS  PubMed  Google Scholar 

  3. Gunasekara L, Al-Saiedy M, Green F, Pratt R, Bjornson C, Yang A, Michael Schoel W, Mitchell I, Brindle M, Montgomery M, Keys E, Dennis J, Shrestha G, Amrein M (2017) Pulmonary surfactant dysfunction in pediatric cystic fibrosis: mechanisms and reversal with a lipid-sequestering drug. J Cyst Fibros 16:565–572. https://doi.org/10.1016/J.JCF.2017.04.015

    Article  CAS  PubMed  Google Scholar 

  4. Akella A, Deshpande SB (2013) Pulmonary surfactants and their role in pathophysiology of lung disorders. http://nopr.niscair.res.in/handle/123456789/15282

    Google Scholar 

  5. Al-Saiedy M, Pratt R, Lai P, Kerek E, Joyce H, Prenner E, Green F, Ling C-C, Veldhuizen R, Ghandorah S, Amrein M (2018) Dysfunction of pulmonary surfactant mediated by phospholipid oxidation is cholesterol-dependent. Biochim Biophys Acta Gen Subj 1862:1040–1049. https://doi.org/10.1016/J.BBAGEN.2018.01.008

    Article  CAS  PubMed  Google Scholar 

  6. Patrick P, Li-Juan Y, John W, Fred P, Ruud V, James L (2009) The effects of Hyperoxia exposure on lung function and pulmonary surfactant in a rat model of acute lung injury. Exp Lung Res 35:380–398. https://doi.org/10.1080/01902140902745166

    Article  Google Scholar 

  7. Vockeroth D, Gunasekara L, Amrein M, Possmayer F, Lewis JF, Veldhuizen RAW (2010) Role of cholesterol in the biophysical dysfunction of surfactant in ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 298:L117–L125. https://doi.org/10.1152/ajplung.00218.2009.

    Article  CAS  PubMed  Google Scholar 

  8. Parra E, Pérez-Gil J (2015) Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films. Chem Phys Lipids 185:153–175. https://doi.org/10.1016/j.chemphyslip.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  9. Terrasa AM, Guajardo MH, De Armas Sanabria E, Catalá A (2005) Pulmonary surfactant protein A inhibits the lipid peroxidation stimulated by linoleic acid hydroperoxide of rat lung mitochondria and microsomes. Biochim Biophys Acta Mol Cell Biol Lipids 1735:101–110. https://doi.org/10.1016/j.bbalip.2005.05.007

    Article  CAS  Google Scholar 

  10. Al-Saiedy M, Tarokh A, Nelson S, Hossini K, Green F, Ling CC, Prenner EJ, Amrein M (2017) The role of multilayers in preventing the premature buckling of the pulmonary surfactant. Biochim Biophys Acta Biomembr 1859:1372–1380. https://doi.org/10.1016/j.bbamem.2017.05.004

    Article  CAS  PubMed  Google Scholar 

  11. Ding J, Takamoto DY, Von Nahmen A, Lipp MM, Lee KYC, Waring AJ, Zasadzinski JA (2001) Effects of lung surfactant proteins, SP-B and SP-C, and palmitic acid on monolayer stability. Biophys J 80:2262–2272. https://doi.org/10.1016/S0006-3495(01)76198-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Keating E, Rahman L, Francis J, Petersen A, Possmayer F, Veldhuizen R, Petersen NO (2007) Effect of cholesterol on the biophysical and physiological properties of a clinical pulmonary surfactant. Biophys J 93:1391–1401. https://doi.org/10.1529/biophysj.106.099762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bachofen H, Schürch S, Urbinelli M, Weibel ER (1987) Relations among alveolar surface tension, surface area, volume, and recoil pressure. J Appl Physiol 62:1878–1887. http://jap.physiology.org/content/jap/62/5/1878.full.pdf%5Cn, http://www.ncbi.nlm.nih.gov/pubmed/3597262

    Article  CAS  PubMed  Google Scholar 

  14. Schürch S, Bachofen H, Possmayer F (2001) Surface activity in situ, in vivo, and in the captive bubble surfactometer. Comp Biochem Physiol Mol Integr Physiol 129:195–207. https://doi.org/10.1016/S1095-6433(01)00316-6

    Article  Google Scholar 

  15. Al-Saiedy M, Tarokh A, Nelson S, Hossini K, Green F, Ling C-C, Prenner EJ, Amrein M (2017) The role of multilayers in preventing the premature buckling of the pulmonary surfactant. Biochim Biophys Acta Biomembr 1859:1372–1380. https://doi.org/10.1016/J.BBAMEM.2017.05.004

    Article  CAS  PubMed  Google Scholar 

  16. Gunasekara L, Schoel WM, Schürch S, Amrein MW (2008) A comparative study of mechanisms of surfactant inhibition. Biochim Biophys Acta Biomembr 1778:433–444. https://doi.org/10.1016/j.bbamem.2007.10.027

    Article  CAS  Google Scholar 

  17. Bachofen H, Gerber U, Gehr P, Amrein M, Schürch S (2005) Structures of pulmonary surfactant films adsorbed to an air-liquid interface in vitro. Biochim Biophys Acta Biomembr 1720:59–72. https://doi.org/10.1016/j.bbamem.2005.11.007

    Article  CAS  Google Scholar 

  18. Al-saiedy M, Pratt RM, Gunasekara L, Todorov N, Lam DK, Amrein MW (n.d) Dysfunction of oxidized pulmonary surfactant is cholesterol-dependent. Methods & Materials Elevated levels of cholesterol in surfactant:8192

    Google Scholar 

  19. Gunasekara L, Schürch S, Schoel WM, Nag K, Leonenko Z, Haufs M, Amrein M (2005) Pulmonary surfactant function is abolished by an elevated proportion of cholesterol. Biochim Biophys Acta Mol Cell Biol Lipids 1737:27–35. https://doi.org/10.1016/j.bbalip.2005.09.002

    Article  CAS  Google Scholar 

  20. Kramer A, Wintergalen A, Sieber M, Galla HJ, Amrein M, Guckenberger R (2000) Distribution of the surfactant-associated protein C within a lung surfactant model film investigated by near-field optical microscopy. Biophys J 78:458–465. https://doi.org/10.1016/S0006-3495(00)76608-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. a Creuwels L, van Golde LM, Haagsman HP (1997) The pulmonary surfactant system: biochemical and clinical aspects. Lung 175:1–39. https://doi.org/10.1007/PL00007554

    Article  PubMed  Google Scholar 

  22. Serrano AG, Pérez-Gil J (2006) Protein-lipid interactions and surface activity in the pulmonary surfactant system. Chem Phys Lipids 141:105–118. https://doi.org/10.1016/j.chemphyslip.2006.02.017

    Article  CAS  PubMed  Google Scholar 

  23. Raghavendran K, Willson D, Notter R (2012) Surfactant therapy of ALI and ARDS. Cirt Care Clin 27:525–559. https://doi.org/10.1016/j.ccc.2011.04.005.Surfactant

    Article  Google Scholar 

  24. Nakajima D, Liu M, Ohsumi A, Kalaf R, Iskender I, Hsin M, Kanou T, Chen M, Baer B, Coutinho R, Maahs L, Behrens P, Azad S, Martinu T, Waddell TK, Lewis JF, Post M, Veldhuizen RAW, Cypel M, Keshavjee S (2017) Lung lavage and Surfactant replacement during ex vivo lung perfusion for treatment of gastric acid aspiration–induced donor lung injury. J Hear Lung Transplant 36:577–585. https://doi.org/10.1016/J.HEALUN.2016.11.010

    Article  Google Scholar 

  25. Maruscak A, Lewis JF (2006) Exogenous surfactant therapy for ARDS. Expert Opin Investig Drugs 15:47–58. https://doi.org/10.1517/13543784.15.1.47

    Article  CAS  PubMed  Google Scholar 

  26. Lewis JF, Veldhuizen R (2003) The role of exogenous surfactant in the treatment of acute lung injury. Annu Rev Physiol 65:613–642. https://doi.org/10.1146/annurev.physiol.65.092101.142434

    Article  CAS  PubMed  Google Scholar 

  27. Meng H, Sun Y, Lu J, Fu S, Meng Z, Scott M, Li Q (2012) Exogenous surfactant may improve oxygenation but not mortality in adult patients with acute lung injury/acute respiratory distress syndrome: a meta-analysis of 9 clinical trials. J Cardiothorac Vasc Anesth 26:849–856. https://doi.org/10.1053/j.jvca.2011.11.006

    Article  CAS  PubMed  Google Scholar 

  28. Gunasekara L, Al-Saiedy M, Green F, Pratt R, Bjornson C, Yang A, Michael Schoel W, Mitchell I, Brindle M, Montgomery M, Keys E, Dennis J, Shrestha G, Amrein M (2017) Pulmonary surfactant dysfunction in pediatric cystic fibrosis: mechanisms and reversal with a lipid-sequestering drug. J Cyst Fibros 16:565–572. https://doi.org/10.1016/J.JCF.2017.04.015

    Article  CAS  PubMed  Google Scholar 

  29. Griese M, Stiftung WS (1999) Pulmonary surfactant in health and human lung diseases: state of the art. Eur Respir J 13:1455–1476

    Article  CAS  PubMed  Google Scholar 

  30. Truscott EA, McCaig LA, Yao L-J, Veldhuizen RAW, Lewis JF (2010) Surfactant protein-A reduces translocation of mediators from the lung into the circulation. Exp Lung Res 36:431–439. https://doi.org/10.3109/01902141003721440

    Article  CAS  PubMed  Google Scholar 

  31. Günther A, Siebert C, Schmidt R, Ziegler S, Grimminger F, Yabut M, Temmesfeld B, Walmrath D, Morr H, Seeger W (1996) Surfactant alterations in severe pneumonia, acute respiratory distress syndrome, and cardiogenic lung edema. Am J Respir Crit Care Med 153:176–184. https://doi.org/10.1164/ajrccm.153.1.8542113

    Article  PubMed  Google Scholar 

  32. Gunasekara LC, Pratt RM, Schoel WM, Gosche S, Prenner EJ, Amrein MW (2010) Methyl-β-cyclodextrin restores the structure and function of pulmonary surfactant films impaired by cholesterol. Biochim Biophys Acta Biomembr 1798:986–994. https://doi.org/10.1016/j.bbamem.2009.12.003

    Article  CAS  Google Scholar 

  33. Hohlfeld J, Fabel H, Hamm H (1997) The role of pulmonary surfactant in obstructive airways disease. Eur Respir J 10:482–491. https://doi.org/10.1183/09031936.97.10020482

    Article  CAS  PubMed  Google Scholar 

  34. Robinson TW, Roberts AM (2002) Effects of exogenous surfactant on gas exchange and compliance in rabbits after meconium aspiration. Pediatr Pulmonol 33:117–123. https://doi.org/10.1002/ppul.10056

    Article  PubMed  Google Scholar 

  35. Manson ME, Corey DA, Bederman I, Burgess JD, Kelley TJ (2012) Regulatory role of β-arrestin-2 in cholesterol processing in cystic fibrosis epithelial cells. J Lipid Res 53:1268–1276. https://doi.org/10.1194/jlr.M021972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zasadzinski JA, Ding J, Warriner HE, Bringezu F, Waring AJ (2001) The physics and physiology of lung surfactants. Curr Opin Colloid Interface Sci 6:506–513. https://doi.org/10.1016/S1359-0294(01)00124-8

    Article  CAS  Google Scholar 

  37. Whitsett JA, Wert SE, Weaver TE (2010) Alveolar surfactant homeostasis and the pathogenesis of pulmonary disease. Annu Rev Med 61:105–119. https://doi.org/10.1146/annurev.med.60.041807.123500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ciencewicki J, Trivedi S, Kleeberger SR (2008) Oxidants and the pathogenesis of lung diseases. J Allergy Clin Immunol 122:456–468. https://doi.org/10.1016/j.jaci.2008.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zuo YY, Veldhuizen RAW, Neumann AW, Petersen NO, Possmayer F (2008) Current perspectives in pulmonary surfactant – inhibition, enhancement and evaluation. Biochim Biophys Acta Biomembr 1778:1947–1977. https://doi.org/10.1016/j.bbamem.2008.03.021

    Article  CAS  Google Scholar 

  40. Rodríguez-Capote K, Manzanares D, Haines T, Possmayer F (2006) Reactive oxygen species inactivation of Surfactant involves structural and functional alterations to surfactant proteins SP-B and SP-C. Biophys J 90:2808–2821. https://doi.org/10.1529/biophysj.105.073106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Robbins CG, Davis JM, Merritt TA, Amirkhanian JD, Sahgal N, Morin FC 3rd, Horowitz S (1995) Combined effects of nitric oxide and hyperoxia on surfactant function and pulmonary inflammation. Am J Phys 269:L545–L550

    CAS  Google Scholar 

  42. Wyncoll DL, Evans TW (1999) Acute respiratory distress syndrome. Lancet 354:497–501. https://doi.org/10.1016/S0140-6736(98)08129-X

    Article  CAS  PubMed  Google Scholar 

  43. Luh S, Chiang C (2007) Acute lung injury/acute respiratory distress syndrome (ALI/ARDS): the mechanism, present strategies and future perspectives of therapies. J Zhejiang Univ Sci B 8:60–69. https://doi.org/10.1631/jzus.2007.B0060

    Article  CAS  PubMed  Google Scholar 

  44. Cantin AM, White TB, Cross CE, Forman HJ, Sokol RJ, Borowitz D (2007) Antioxidants in cystic fibrosis. Conclusions from the CF antioxidant workshop, Bethesda, Maryland, November 11–12, 2003. Free Radic Biol Med 42:15–31. https://doi.org/10.1016/j.freeradbiomed.2006.09.022

    Article  CAS  PubMed  Google Scholar 

  45. Aruoma OI (1998) Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil Chemists Soc 75:199–212

    Article  CAS  Google Scholar 

  46. a a Comhair S, Erzurum SC (2002) Antioxidant responses to oxidant-mediated lung diseases. Am J Physiol Lung Cell Mol Physiol 283:L246–L255. https://doi.org/10.1152/ajplung.00491.2001

    Article  Google Scholar 

  47. Asikainen TM, White CW (2004) Pulmonary antioxidant defenses in the preterm newborn with respiratory distress and bronchopulmonary dysplasia in evolution: implications for antioxidant therapy. Antioxid Redox Signal 6:155–167. https://doi.org/10.1089/152308604771978462

    Article  CAS  PubMed  Google Scholar 

  48. Halliwell B (1996) Antioxidants in human health and disease. Annu Rev Nutr 16:33–50. https://doi.org/10.1146/annurev.nu.16.070196.000341

    Article  CAS  PubMed  Google Scholar 

  49. Chintagari NR, Jin N, Wang P, Narasaraju TA, Chen J, Liu L (2006) Effect of cholesterol depletion on exocytosis of alveolar type II cells. Am J Respir Cell Mol Biol 34:677–687. https://doi.org/10.1165/rcmb.2005-0418OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Al-Saiedy M, Gunasekara L, Green F, Pratt R, Chiu A, Yang A, Dennis J, Pieron C, Bjornson C, Winston B, Amrein M (2018) Surfactant dysfunction in ARDS and bronchiolitis is repaired with cyclodextrins. Mil Med 183:207. https://doi.org/10.1093/milmed/usx204

    Article  PubMed  PubMed Central  Google Scholar 

  51. Al-Saiedy M, Pratt R, Lai P, Kerek E, Joyce H, Prenner E, Green F, Ling C-C, Veldhuizen R, Ghandorah S, Amrein M (2018) Dysfunction of pulmonary surfactant mediated by phospholipid oxidation is cholesterol-dependent. Biochim Biophys Acta Gen Subj 1862:1040. https://doi.org/10.1016/j.bbagen.2018.01.008

    Article  CAS  PubMed  Google Scholar 

  52. Seeger W, Gunther A, Thede C (1992) Differential sensitivity to fibrinogen inhibition of SP-C- vs. SP-B-based surfactants. Am J Phys 261:L286–L291

    Google Scholar 

  53. Walther FJ, Gordon LM (2000) J. a Zasadzinski, M. a Sherman, a J. Waring, Surfactant protein B and C analogues. Mol Genet Metab 71:342–351. https://doi.org/10.1006/mgme.2000.3053.

    Article  CAS  PubMed  Google Scholar 

  54. Bachofen H, Schürch S (2001) Alveolar surface forces and lung architecture. Comp Biochem Physiol Mol Integr Physiol 129:183–193. https://doi.org/10.1016/S1095-6433(01)00315-4

    Article  CAS  Google Scholar 

  55. Mander A, Langton-Hewer S, Bernhard W, Warner JO, Postle AD (2002) Altered phospholipid composition and aggregate structure of lung Surfactant is associated with impaired lung function in young children with respiratory infections. Am J Respir Cell Mol Biol 27:714–721. https://doi.org/10.1165/rcmb.4746

    Article  CAS  PubMed  Google Scholar 

  56. Nkadi PO, Merritt TA, Pillers DAM (2009) An overview of pulmonary surfactant in the neonate: genetics, metabolism, and the role of surfactant in health and disease. Mol Genet Metab 97:95. https://doi.org/10.1016/j.ymgme.2009.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Catalá A (2009) Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem Phys Lipids 157:1–11. https://doi.org/10.1016/j.chemphyslip.2008.09.004

    Article  CAS  PubMed  Google Scholar 

  58. Taeusch HW, Bernardino de la Serna J, Perez-Gil J, Alonso C, a Zasadzinski J (2005) Inactivation of pulmonary surfactant due to serum-inhibited adsorption and reversal by hydrophilic polymers: experimental. Biophys J 89:1769–1779. https://doi.org/10.1529/biophysj.105.062620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hallman M, Bry K (1996) Nitric oxide and lung surfactant. Semin Perinatol 20:173–185. https://doi.org/10.1016/S0146-0005(96)80046-2

    Article  CAS  PubMed  Google Scholar 

  60. Haddad IY, Ischiropoulos H, Holm BA, Beckman JS, Baker JR, Matalon S (1993) Mechanisms of peroxynitrite-induced injury to pulmonary surfactants. Am J Phys 265:L555–L564

    CAS  Google Scholar 

  61. Sevanian A, Peterson AR (1986) The cytotoxic and mutagenic properties of cholesterol oxidation products. Food Chem Toxicol 24:1103–1110. https://doi.org/10.1016/0278-6915(86)90295-4

    Article  CAS  PubMed  Google Scholar 

  62. Beckman JS, Beckman TW, Chen J, a Marshall P, a Freeman B (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 87:1620–1624. https://doi.org/10.1073/pnas.87.4.1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhu S, Manuel M, Tanaka S, Choe N, Kagan E, Matalon S (1998) Contribution of reactive oxygen and nitrogen species to particulate-induced lung injury. Environ Health Perspect 106(Suppl):1157–1163

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Andersson S, Kheiter A, Merritt TA (1999) Oxidative inactivation of surfactants. Lung 177:179–189. https://doi.org/10.1007/PL00007639

    Article  CAS  PubMed  Google Scholar 

  65. Gilliard N, Heldt GP, Loredo J, Gasser H, Redl H, Merritt TA, Spragg RG (1994) Exposure of the hydrophobic components of porcine lung surfactant to oxidant stress alters surface tension properties. J Clin Invest 93:2608–2615. https://doi.org/10.1172/JCI117273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fubini B, Hubbard A (2003) Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic Biol Med 34:1507–1516. https://doi.org/10.1016/S0891-5849(03)00149-7

    Article  CAS  PubMed  Google Scholar 

  67. Okamoto T, Akaike T, Nagano T, Miyajima S, Suga M, Ando M, Ichimori K, Maeda H (1997) Activation of human neutrophil Procollagenase by nitrogen dioxide and Peroxynitrite: a novel mechanism for Procollagenase activation involving nitric oxide. Arch Biochem Biophys 342:261–274. https://doi.org/10.1006/ABBI.1997.0127

    Article  CAS  PubMed  Google Scholar 

  68. Greene JF, Newman JW, Williamson KC, Hammock BD (2000) Toxicity of epoxy fatty acids and related compounds to cells expressing human soluble epoxide hydrolase. Chem Res Toxicol 13:217–226. https://doi.org/10.1021/Tx990162c

    Article  CAS  PubMed  Google Scholar 

  69. Fretland AJ, Omiecinski CJ (2000) Epoxide hydrolases: biochemistry and molecular biology. Chem Biol Interact 129:41–59. https://doi.org/10.1016/S0009-2797(00)00197-6

    Article  CAS  PubMed  Google Scholar 

  70. Logani MK, Davies RE (1980) Lipid oxidation: biologic effects and antioxidants – a review. Lipids 15:485–495. https://doi.org/10.1007/BF02534079

    Article  CAS  PubMed  Google Scholar 

  71. Hallman M, Glumoff V, Rämet M (2001) Surfactant in respiratory distress syndrome and lung injury. Comp Biochem Physiol Mol Integr Physiol 129:287–294. https://doi.org/10.1016/S1095-6433(01)00324-5

    Article  CAS  Google Scholar 

  72. Günther A, Ruppert C, Schmidt R, Markart P, Grimminger F, Walmrath D, Seeger W (2001) Surfactant alteration and replacement in acute respiratory distress syndrome. Respir Res 2:353–364. https://doi.org/10.1186/rr86

    Article  PubMed  PubMed Central  Google Scholar 

  73. Spragg RG, Lewis JF, Wurst W, Häfner D, Baughman RP, Wewers MD, Marsh JJ (2003) Treatment of acute respiratory distress syndrome with recombinant Surfactant protein C Surfactant. Am J Respir Crit Care Med 167:1562–1566. https://doi.org/10.1164/rccm.200207-782OC

    Article  PubMed  Google Scholar 

  74. Kiss T, Fenyvesi F, Bácskay I, Váradi J, Fenyvesi É, Iványi R, Szente L, Tósaki Á, Vecsernyés M (2010) Evaluation of the cytotoxicity of β-cyclodextrin derivatives: evidence for the role of cholesterol extraction. Eur J Pharm Sci 40:376–380. https://doi.org/10.1016/j.ejps.2010.04.014

    Article  CAS  PubMed  Google Scholar 

  75. Cataldo D, Evrard B, Noel A, Foidart J-M (2010) Use of cyclodextrin for treatment and prevention of bronchial inflammatory diseases, US 7,829,550 B2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Saiedy, M., Green, F., Amrein, M. (2020). The Effects of Free Radicals on Pulmonary Surfactant Lipids and Proteins. In: Chakraborti, S., Parinandi, N., Ghosh, R., Ganguly, N., Chakraborti, T. (eds) Oxidative Stress in Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-32-9366-3_1

Download citation

Keywords

Publish with us

Policies and ethics