Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

The Cytoprotective and Antioxidant Effects of Resveratrol on Human Lymphocytes Modified with Hydrogen Peroxide and UV Light

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A decrease in the intensity of the processes of apoptotic and necrotic death of human peripheral blood lymphocytes was found after exposure to UV light (254 nm, 1510 J/m2) and hydrogen peroxide (10–5 mol/L) in the presence of resveratrol (10–7, 10–6, 10–5 mol/L). It was revealed that the cytoprotective effect of resveratrol on lymphocytes is due to a decrease in the level of production of intracellular reactive oxygen species and calcium ions, an increase in the activity of antioxidant enzymes, that is, catalase and glutathione reductase, an increase in peroxide resistance of plasma membranes, and interaction with DNA. Possible mechanisms of action of resveratrol as a regulator of the processes of apoptotic and necrotic death of lymphocytes induced by exposure to hydrogen peroxide and UV radiation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Abbreviations

ROS:

reactive oxygen species

REFERENCES

  1. Nakvasina, M.A., Holyavka, M.G., Artyukhov, V.G., Radchenko, M.S., and Lidokhova, O.V., Mechanisms of UV-induced human lymphocytes apoptosis, Biophys. Rev., 2023, vol. 15, no. 5, pp. 1257–1267. https://doi.org/10.1007/s12551-023-01142-w

    Article  Google Scholar 

  2. Nakvasina, M.A., Artyukhov, V.G., and Sveklo, L.S., Mechanisms of UV-induced death of human lymphocytes and active oxygen species, Vestn. Voronezh. Gos. Univ., Ser.: Khim., Biol., Farm., 2023, vol. 1, pp. 61–74.

    Google Scholar 

  3. Kalantari, H. and Das, D.K., Physiologocal effects of resveratrol, BioFactors, 2010, vol. 36, no. 5, pp. 401–406. https://doi.org/10.1002/biof.100

    Article  MATH  Google Scholar 

  4. Yu, W., Fu, Y.-C., and Wang, W., Cellular and molecular effects of resveratrol in health and disease, J. Cell. Biochem., 2012, vol. 113, no. 3, pp. 752–759. https://doi.org/10.1002/jcb.23431

    Article  MATH  Google Scholar 

  5. Sebastia, N., Almonacid, M., Villaescusa, J.I., Cervera, J., Such, E., Silla, M.A., Soriano, J.M., and Montoro, A., Radioprotective activity and cytogenetic effect of resveratrol in human lymphocytes: An in vitro evaluation, Food Chem. Toxicol., 2013, vol. 51, pp. 391–395. https://doi.org/10.1016/j.fct.2012.10.013

    Article  Google Scholar 

  6. Park, E.-J. and Pezzuto, J.M., The pharmacology of resveratrol in animals and humans, Biochim. Biophys. Acta, 2015, vol. 1852, no. 6, pp. 1071–1113. https://doi.org/10.1016/bbadis.2015.01.014

    Article  MATH  Google Scholar 

  7. Singh, A., Sati, S., and Mishra, R.I., Resveratrol: antioxidant-pro-oxidant, Int. J. Tech. Res. Sci., 2016, vol. 1, no. 6, pp. 106–112.

    Google Scholar 

  8. Koohian, F., Shanei, A., Shahbazi-Gahrouei, D., and Moradi, M.-T., The radioprotective effect of resveratrol against genotoxicity induced by γ-irradiation in mice blood lymphocytes, Dose-Response, 2017, vol. 15, no. 2, p. 1559325817705699. https://doi.org/10.11177/1559325817705699

    Article  Google Scholar 

  9. Ivanova, D., Zhelev, Z., Semkova, S., Aoki, I., and Bakalova, R., Resveratrol modulates the redox-status and cytotoxicity of anticancer drugs by sensitizing leukemic lymphocytes and protecting normal lymphocytes, Anticancer Res., 2019, vol. 39, no. 7, pp. 3745–3755. https://doi.org/10.21873/anti-canres.13523

    Article  Google Scholar 

  10. Malaguarnera, L., Influence of resveratrol on the immune response, Nutrients, 2019, vol. 11, no. 5, p. 946. https://doi.org/10.3390/nu11050946

    Article  MATH  Google Scholar 

  11. Shaito, A., Posadino, A.M., Younes, N., Nasan, H., Halabi, S., Alhababi, D., Al-Mohannadi, A., Abdel-Rahman, V., Eid, A.H., Nasrallah, G.K., and Pintus, G., Potential adverse effects of resveratrol: a literature review, Int. J. Sci., 2020, vol. 21, no. 6, p. 2084. .https://doi.org/10.3390/ijms21062084

    Article  Google Scholar 

  12. Agbele, A.T., Fasoro, O.J., Fabamise, O.M., Oluyide, O.O., Idolor, O.R., and Bamise, E.A., Normal tissue damage by resveratrol: a systematic review, Eurasian J. Med., 2020, vol. 52, no. 3, pp. 298–303. https://doi.org/10.5152/eurasianjmed.2020.20143

    Article  Google Scholar 

  13. Pal'tsyn, A.A., Resveratrol, Patol. Fiziol. Eksp. Ter., 2021, vol. 65, no. 1, pp. 116–123. https://doi.org/10.25557/0031-2991.2021.01.116-123

    Article  Google Scholar 

  14. Alesci, A., Nicosia, N., Fumia, A., Giorgianni, F., Santini, A., and Cicero, N., Resveratrol and immune cells: a link to impove human health, Molecules, 2022, vol. 27, no. 2, p. 424. https://doi.org/10.3390/molecules27020424

    Article  Google Scholar 

  15. Gramatyka, M., The radioprotective activity of resveratrol – metabolomics point of view, Metabolites, 2022, vol. 12, no. 6, p. 478. https://doi.org/10.3390/metabo12060478

    Article  Google Scholar 

  16. Kovalenko, N.A., Zhdanov, D.D., and Kovalenko, T.F., Possibilities and effects of telomerase activation, Mol. Biol., 2013, vol. 47, no. 4, pp. 544–557.

    Article  MATH  Google Scholar 

  17. Bastianetto, S., Ménard, C., and Quirion, R., Neuroprotective action of resveratrol, Biochim. Biophys. Acta, 2015, vol. 1852, no. 6, pp. 1195–1201. https://doi.org/10.1016/j.bbadis.2014.09.011

    Article  Google Scholar 

  18. Vlasova, O.A., Borunova, A.A., Safina, A., Smetanina, I.V., Lesovaya, E.A., Belitskii, G.A., Zabotina, T.N., Gurova, K., Kirsanov, K.I., and Yakubovskaya, M.G., Activation of interferon-α signaling by resveratrol, genistein and quercetin, Sib. Onkol. Zh., 2019, vol. 18, no. 1, pp. 50–55. https://doi.org/10.21294/1814-4861-2019.-18-1-50-55

    Article  Google Scholar 

  19. Mukherjee, S., Dudley, D.I., and Das, D.K., Dose-dependency of resveratrol in providing health benefits, Dose-Response, 2010, vol. 8, no. 4, pp. 478–500. . Mukherjeehttps://doi.org/10.2203/dose-response.09-015

    Article  MATH  Google Scholar 

  20. Lin, H.Y., Tang, H.Y, Davis, F.B., and Davis, P.J., Resveratrol and apoptosis, Ann. N. Y. Acad. Sci., 2011, vol. 1215, pp. 79–88. https://doi.org/10.1111/j.1749-6632.2010.05846.x

    Article  ADS  MATH  Google Scholar 

  21. Delmas, D., Solary, E., and Latruffe, N., Resveratrol, a phytochemical inducer of multiple cell death pathways: apoptosis, autophage and mitotic catastrophe, Curr. Med. Chem., 2011, vol. 18, no. 8, pp. 1100–1121. https://doi.org/10.2174/092986711795029708

    Article  Google Scholar 

  22. Fu, X., Li, M., Huang, Z., and Najafi, M., Targeting of cancer cell death mechanisms by resveratrol: a review, Apoptosis, 2021, vol. 26, nos. 11–12, pp. 561–573. https://doi.org/10.1007/s10495-021-01689-7

    Article  MATH  Google Scholar 

  23. Martinovich, G.G., Martinovich, I.V., Golubeva, E.N., Cherenkevich, S.N., Demidchik, Yu.E., Gain, Yu.M., Vladimirskaya, T.E., and Lushchik, M.L., Redox biotechnology as a basis for a new strategy in antitumor therapy, Vestsi Nats. Akad. Navuk Belarusi, 2012, vol. 2, pp. 85–104.

    MATH  Google Scholar 

  24. Basso, E., Regazzo, G., Fiore, M., Palma, V., Traversi, G., Testa, A., Degrassi, F., and Cozzi, R., Resveratrol affects DNA damage induced by ionizing radiation in human lymphocytes in vitro, Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2016, vol. 806, pp. 40–46. https://doi.org/10.1016/j.mrgentox.2016.07.005

    Article  Google Scholar 

  25. Dobrzynska, M.M. and Gajowik, A., Protection and mitigation by resveratrol of DNA damage induced in irradiated human lymphocytes in vitro, Radiat. Res., 2022, vol. 197, no. 2, pp. 149–156. https://doi.org/10.1667/RADE-20-00037.1

    Article  Google Scholar 

  26. Legeza, V.I., Grebenyuk, A.N., and Drachev, I.S., Radiomitigators: classification, pharmacological properties, and application prospects, Biol. Bull., 2019, vol. 46, pp. 1625–1632. https://doi.org/10.1134/S0869803119020097

    Article  Google Scholar 

  27. Bykov, V.N., Grebenyuk, A.N., and Ushakov, I.B., The use of radioprotective agents to prevent the effects associated with aging, Radiats. Biol. Radioekol., 2019, vol. 59, no. 5, pp. 488–502. https://doi.org/10.1134/S0869803119050035

    Article  MATH  Google Scholar 

  28. Limfotsity. Metody (Lymphocytes. Methods), Klausa, Dzh., Ed., Moscow: Mir, 1990.

  29. Krechetov, S.P., Maslennikova, M.S., Solov’eva, N.L., and Krasnyuk, I.I., Development of optimal composition formulation of resveratrol and solubilisers, Ross. Bioter. Zh., 2021, vol. 20, no. 3, pp. 57–65.

    Google Scholar 

  30. Hartmann, A., Agurell, E., Beevers, C., Brendler-Schwaab, S., Burlinson, B., Clay, P., Collins, A., Smith, A., Speit, G., Thybaud, V., and Tice, R.R., Recommendations for conducting the in vivo alkaline comet assay, Mutagenesis, 2003, vol. 18, pp. 45–51. .https://doi.org/10.1093/mutage/18.1.45

    Article  Google Scholar 

  31. Rastogi, R.P., Singh, S.P., Häder, D.P., and Sinha, R.P., Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2',7'-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937, Biochem. Biophys. Res. Commun., 2010, vol. 397, no. 3, pp. 603–607. https://doi.org/10.1016/j.bbrc.2010.06.006

    Article  Google Scholar 

  32. Hirst, R.A., Harrison, C., Hirota, K., and Lambert, D.G., Measurement of [Ca2+]i in whole cell suspensions using fura-2, Methods Mol. Biol., 2005, vol. 312, pp. 37–45. https://doi.org/10.1385/1-59259-949-4:037

    Article  MATH  Google Scholar 

  33. Galiniak, S., Aebisher, D., and Bartusik-Aebisher, D., Healt benefits of resveratrol administration, Acta Biochim. Pol., 2019, vol. 66, no. 1, pp. 13–21. https://doi.org/10.18388/abp.2018_2749

    Article  Google Scholar 

  34. Zhou, D.-D., Luo, M., Huang, S.-Y., Saimaiti, A., Shang, A., Gan, R.-Y., and Li, H.-B., Effects and mechanisms of resveratrol on aging and age-related diseases, Oxidative Med. Cell. Longevity, 2021, vol. 4, p. 1. https://doi.org/10.1155/2021/9932218

    Article  Google Scholar 

  35. Pinyaev, S.I., Mel’nikova, N.A., Morozova, A.A., Revina, N.V., Spirina, Yu.P., Dulenova, E.A., and Revin, V.V., Effect of resveratrol on fatty acid conformational state and lipid peroxidation level in injured somatic nerves, Vestn. Voronezh. Gos. Univ., Ser.: Khim., Biol., Farm., 2016, vol. 2, pp. 78–85.

    Google Scholar 

  36. Nakvasina, M.A., Artyukhov, V.G., Starikova, T.I., and Saradzhi, N.G., Pathways of hydrogen peroxide-induced human lymphocyte apoptosis and their regulation, Aktual. Vopr. Biol. Fiz. Khim., 2022, vol. 7, no. 3, pp. 440–445.

    Google Scholar 

  37. McCalley, A.E., Kaja, S., Payne, A.J., and Koulen, P., Resveratrol and calcium signaling: molecular mechanisms and clinical relevance, Molecules, 2014, vol. 19, no. 6, pp. 7327–7340. https://doi.org/10.3390/molecules19067327

    Article  Google Scholar 

  38. Zang, S., Sun, X., Jing, Z., and Qu, F., Spectroscopic analysis on the resveratrol-DNA binding interactions at physiological pH, Spectrochim. Acta, Part A, 2011, vol. 82, no. 1, pp. 213–216. https://doi.org/10.1016/j.saa.2011.07.037

    Article  ADS  MATH  Google Scholar 

  39. Leone, S., Cornetta, T., Basso, E., and Cozzi, R., Resveratrol induces DNA double-strand breaks through human topoisomerase II interaction, Cancer Lett., 2010, vol. 295, no. 2, pp. 167–172. https://doi.org/10.1016/j.canlet.2010.02.022

    Article  Google Scholar 

  40. Delmas, D., Aires, V., Colin, D.J., Limagne, E., Scagliarini, A., Cotte, A.K., and Ghiringheli, F., Importance of lipid microdomains, rafts, in absorption, delivery, and biological effects of resveratrol, Ann. N. Y. Acad. Sci., 2013, vol. 1290, no. 1, pp. 90–97. https://doi.org/10.1111/nyas.1277

    Article  ADS  Google Scholar 

  41. Neves, A.R., Nunes, C., and Reis, S., Resveratrol induces ordered domains formation in biomembranes: Implicationfor its pleiotropic action, Biochim. Biophys. Acta, 2016, vol. 1858, no. 1, pp. 12–18. https://doi.org/10.1016/j.bbamem.2015.10.005

    Article  MATH  Google Scholar 

  42. Plachta, L., Mach, M., Kowalska, M., and Wydro, P., The effect of trans-resveratrol on the physicochemical properties of lipid membranes with different cholesterol content, Biochim. Biophys. Acta, 2024, vol. 1866, no. 1, p. 184. https://doi.org/10.1016/j.bbamem.2023.184212

    Article  Google Scholar 

Download references

Funding

The work was carried out with the support of the Ministry of Science and Higher Education of the Russian Federation within the framework of the State Assignment to Universities in the Sphere of Scientific Activity for 2023–2025, project No. FZGU-2023-0009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Nakvasina.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

AI tools may have been used in the translation or editing of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakvasina, M.A., Artyukhov, V.G., Chursanova, E.N. et al. The Cytoprotective and Antioxidant Effects of Resveratrol on Human Lymphocytes Modified with Hydrogen Peroxide and UV Light. BIOPHYSICS 69, 1019–1027 (2024). https://doi.org/10.1134/S0006350924701100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1134/S0006350924701100

Keywords: