Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

TASK-1 Channels: Functional Role in Arterial Smooth Muscle Cells

  • REVIEW
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

The change in the diameter of small arteries and arterioles is a key mechanism for regulating the resistance of the vascular bed and blood pressure and blood flow in organs and tissues. The tone of arterial smooth muscle cells (SMC) depends on the level of membrane potential (MP), which, in turn, is determined by the balance of depolarizing and hyperpolarizing currents. The main hyperpolarizing current of SMC is the outward potassium current. Activation and opening of potassium channels counteract depolarization and inhibit calcium entry into the cell and contraction. Thus, potassium channels play an anticonstrictor role in the arteries. TASK-1 channels, members of the two-pore domain potassium channel family (K2P), have relatively recently been described in the vasculature. It is known that TASK-1 channels mediate outward potassium leakage current in arterial SMC. In addition, TASK-1 channels are regulated by a number of stimuli: their activity augments with an increase of extracellular pH, decreases in hypoxia, and can also change under the influence of inhalation/local anesthetics and vasoactive substances. TASK-1 channels play an important role in the regulation of arterial tone in pulmonary circulation; their dysfunction is one of the causes of arterial pulmonary hypertension development. In systemic arteries of adult animals, the influence of TASK-1 channels under normal pH is small or absent, but it can manifest itself under conditions of extracellular alkalosis. In addition, the anticontractile role of TASK-1 channels is more pronounced at the early stages of postnatal development. This review outlines the current understanding of the functional role and regulation of TASK-1 channels in the vascular system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Tykocki, N.R., Boerman, E.M., and Jackson, W.F., Smooth muscle ion channels and regulation of vascular tone in resistance arteries and arterioles, Comp. Physiol., 2017, vol. 7, no. 2, pp. 485–581.

    Article  Google Scholar 

  2. Gurney, A. and Manoury, B., Two-pore potassium channels in the cardiovascular system, Eur. Biophys. J., 2009, vol. 38, no. 3, pp. 305–318.

    Article  CAS  PubMed  Google Scholar 

  3. Shvetsova, A.A., Gaynullina, D.K., Schmidt, N., Bugert, P., Lukoshkova, E.V., Tarasova, O.S., and Schubert, R., TASK-1 channel blockade by AVE1231 increases vasocontractile responses and BP in 1- to 2‑week-old but not adult rats, Br. J. Pharmacol., 2020, vol. 177, no. 22, pp. 5148–5162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lloyd, E.E., Marrelli, S.P., and Bryan, R.M., cGMP does not activate two-pore domain K+ channels in cerebrovascular smooth muscle, Am. J. Physiol.: Heart Circ. Physiol., 2009, vol. 296, no. 6, pp. 1774–1780.

    Google Scholar 

  5. Antigny, F., Hautefort, A., Meloche, J., et al., Potassium channel subfamily K member 3 (KCNK3) contributes to the development of pulmonary arterial hypertension, Circulation, 2016, vol. 133, no. 14, pp. 1371–1385.

    Article  CAS  PubMed  Google Scholar 

  6. Gardener, M.J., Johnson, I.T., Burnham, M.P., Edward, G., Heagerty, A.M., and Weston, A.H., Functional evidence of a role for two-pore domain potassium channels in rat mesenteric and pulmonary arteries, Br. J. Pharmacol., 2004, vol. 142, no. 1, pp. 192–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ma, L., Roman-Campos, D., Austin, E.D., et al., A novel channelopathy in pulmonary arterial hypertension, N. Engl. J. Med., 2013, vol. 369, no. 4, pp. 351–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Navas, Tejedor, P., Tenorio Castaño, J., Palomino Doza, J., Arias Lajara, P., Gordo Trujillo, G., López Mese-guer, M., Román Broto, A., Lapunzina Abadía, P., and Escribano Subía, P., An homozygous mutation in KCNK3 is associated with an aggressive form of hereditary pulmonary arterial hypertension, Clin. Genet., 2017, vol. 91, no. 3, pp. 453–457.

    Article  CAS  Google Scholar 

  9. Zhang, H.S., Liu, Q., Piao, C.M., Zhu, Y., Li, Q.Q., Du, J., and Gu, H., Genotypes and phenotypes of Chinese pediatric patients with idiopathic and heritable pulmonary arterial hypertension – a single-center study, Can. J. Cardiol., 2019, vol. 35, no. 12, pp. 1851–1856.

    Article  CAS  PubMed  Google Scholar 

  10. Haarman, M.G., Kerstjens-Frederikse, W.S., Vissia-Kazemier, T.R., Breeman, K.T.N., Timens, W., Vos, Y.J., Roofthooft, M.T.R., Hillege, H.L., and Berger, R.M.F., The genetic epidemiology of pediatric pulmonary arterial hypertension, J. Pediatr., 2020, vol. 225, pp. 65–73.

    Article  CAS  PubMed  Google Scholar 

  11. Cox, R.H. and Fromme, S., Functional expression profile of voltage-gated k+ channel subunits in rat small mesenteric arteries, Cell Biochem. Biophys., 2016, vol. 74, no. 2, pp. 263–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mackie, A.R. and Byron, K.L., Cardiovascular KCNQ (Kv7) potassium channels: physiological regulators and new targets for therapeutic intervention, Mol. Pharmacol., 2008, vol. 74, no. 5, pp. 1171–1179.

    Article  CAS  PubMed  Google Scholar 

  13. Cui, J., Yang, H., and Lee, U.S., Molecular mechanisms of BK channel activation, Cell. Mol. Life Sci., 2009, vol. 66, no. 5, pp. 852–875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bi, D., Toyama, K., Lemaitre, V., Takai, J., Fan, F., Jenkins, D.P., Wulff, H., Gutterman, D.D., Park, F., and Miura, H., The intermediate conductance calcium-activated potassium channel KCa3.1 regulates vascular smooth muscle cell proliferation via controlling calcium-dependent signaling, J. Biol. Chem., 2013, vol. 288, no. 22, pp. 15843–15853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tharp, D.L., Wamhoff, B.R., Turk, J.R., and Bowles, D.K., Upregulation of intermediate-conductance Ca2+-activated K+ channel (IKCa1) mediates phenotypic modulation of coronary smooth muscle, Am. J. Physiol.: Heart Circ. Physiol., 2006, vol. 291, no. 5, pp. H2493–H2503.T

  16. Gebremedhin, D., Kaldunski, M., Jacobs, E.R., Harder, D.R., and Roman, R.J., Coexistence of two types of Ca2+-activated K+ channels in rat renal arterioles, Am. J. Physiol., 1996, vol. 270, no. 1, pp. 69–81.

    Google Scholar 

  17. Sun, W.T., Hou, H.T., Chen, H.X., Xue, H.M., Wang, J., He, G.W., and Yang, Q., Calcium-activated potassium channel family in coronary artery bypass grafts, J. Thorac. Cardiovasc. Surg., 2021, vol. 161, no. 5, pp. e399–e409.

    Article  PubMed  CAS  Google Scholar 

  18. Ledoux, J., Werner, M.E., Brayden, J.E., and Nelson, M.T., Calcium-activated potassium channels and the regulation of vascular tone, Physiology, 2006, vol. 21, no. 1, pp. 69–78.

    Article  CAS  PubMed  Google Scholar 

  19. Schubert, R., Wesselman, J.P.M., Nilsson, H., and Mulvany, M.J., Noradrenaline-induced depolarization is smaller in isobaric compared to isometric preparations of rat mesenteric small arteries, Pflügers Arch. Eur. J. Physiol., 1996, vol. 431, no. 5, pp. 794–796.

    Article  CAS  Google Scholar 

  20. Shvetsova, A.A., Gaynullina, D.K., Tarasova, O.S., and Schubert, R., Negative feedback regulation of vasocontraction by potassium channels in 10- to 15-day-old rats: Dominating role of Kv7 channels, Acta Physiol., 2019, vol. 225, no. 2, art. ID e13176.

    Article  CAS  Google Scholar 

  21. Matsuda, H., Saigusa, A., and Irisawa, H., Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+, Nature, 1987, vol. 325, no. 6100, pp. 156–159.

    Article  CAS  PubMed  Google Scholar 

  22. Lopatin, A.N., Makhina, E.N., and Nichols, C.G., Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification, Nature, 1994, vol. 372, no. 6504, pp. 366–369.

    Article  CAS  PubMed  Google Scholar 

  23. Filosa, J.A., Bonev, A.D., Straub, S.V., Meredith, A.L., Wilkerson, M.K., Aldrich, R.W., and Nelson, M.T., Local potassium signaling couples neuronal activity to vasodilation in the brain, Nat. Neurosci., 2006, vol. 9, no. 11, pp. 1397–1403.

    Article  CAS  PubMed  Google Scholar 

  24. Foster, M.N. and Coetzee, W.A., KATP channels in the cardiovascular system, Physiol. Rev., 2016, vol. 96, no. 1, pp. 177–252.

    Article  CAS  PubMed  Google Scholar 

  25. Tinker, A., Aziz, Q., Li, Y., and Specterman, M., ATP-sensitive potassium channels and their physiological and pathophysiological roles, Comp. Physiol., 2018, vol. 8, no. 4, pp. 1463–1511.

    Article  Google Scholar 

  26. Tucker, S.J., Gribble, F.M., Zhao, C., Trapp, S., and Ashcroft, F.M., Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor, Nature, 1997, vol. 387, no. 6629, pp. 179–183.

    Article  CAS  PubMed  Google Scholar 

  27. Ammalia, C., Moorhouse, A., Gribble, F., Ashfield, R., Proks, P., Smith, P.A., Sakura, H., Coles, B., Ashcroft, S.L.H., and Ashcroft, F.M., Promiscuous coupling between the sulphonylurea receptor and inwardly rectifying potassium channels, Nature, 1996, vol. 379, no. 6565, pp. 545–548.

    Article  Google Scholar 

  28. Gurney, A.M., Osipenko, O.N., MacMillan, D., McFarlane, K.M., Tate, R.J., and Kempsill, F.E.J., Two-pore domain K channel, TASK-1, in pulmonary artery smooth muscle cells, Circ. Res., 2003, vol. 93, no. 10, pp. 957–964.

    Article  CAS  PubMed  Google Scholar 

  29. Goldstein, S.A.N., Bockenhauer, D., O’Kelly, I., and Zilberberg, N., Potassium leak channels and the KCNK family of two-p-domain subunits, Nat. Rev. Neurosci., 2001, vol. 2, no. 3, pp. 175–184.

    Article  CAS  PubMed  Google Scholar 

  30. Gardener, M.J., Johnson, I.T., Burnham, M.P., Edward, G., Heagerty, A.M., and Weston, A.H., Functional evidence of a role for two-pore domain potassium channels in rat mesenteric and pulmonary arteries, Br. J. Pharmacol., 2004, vol. 142, no. 1, pp. 192–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lopes, C.M.B., Gallagher, P.G., Buck, M.E., Butler, M.H., and Goldstein, S.A.N., Proton block and voltage gating are potassium-dependent in the cardiac leak channel Kcnk3, J. Biol. Chem., 2000, vol. 275, no. 22, pp. 16969–16978.

    Article  CAS  PubMed  Google Scholar 

  32. Duprat, F., Lesage, F., Fink, M., Reyes, R., Heurteaux, C., and Lazdunski, M., TASK, a human background K+ channel to sense external pH variations near physiological pH, EMBO J., 1997, vol. 16, no. 17, pp. 5464–5471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Olschewski, A., Li, Y., Tang, B., Hanze, J., Eul, B., Bohle, R.M., Wilhelm, J., Morty, R.E., Brau, M.E., Weir, E.K., Kwapiszewska, G., Klepetko, W., Seeger, W., and Olschewski, H., Impact of TASK-1 in human pulmonary artery smooth muscle cells, Circ. Res., 2006, vol. 98, no. 8, pp. 1072–1080.

    Article  CAS  PubMed  Google Scholar 

  34. Yuill, K., Ashmole, I., and Stanfield, P.R., The selectivity filter of the tandem pore potassium channel TASK-1 and its pH-sensitivity and ionic selectivity, Pflügers Arch. Eur. J. Physiol., 2004, vol. 448, no. 1, pp. 63–69.

    Article  CAS  Google Scholar 

  35. Morton, M.J., O’Connell, A.D., Sivaprasadarao, A., and Hunter, M., Determinants of pH sensing in the two-pore domain K+ channels TASK-1 and -2, Pflügers Arch. Eur. J. Physiol., 2003, vol. 445, no. 5, pp. 577–583.

    Article  CAS  Google Scholar 

  36. Bao, L. and Cox, D.H., Gating and ionic currents reveal how the BKCa channel’s Ca2+ sensitivity is enhanced by its β1 subunit, J. Gen. Physiol., 2005, vol. 126, no. 4, pp. 393–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jepps, T.A., Carr, G., Lundegaard, P.R., Olesen, S.-P., and Greenwood, I.A., Fundamental role for the KCNE4 ancillary subunit in Kv7.4 regulation of arterial tone, J. Physiol., 2015, vol. 593, no. 24, pp. 5325–5340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. O’Kelly, I. and Goldstein, S.A.N., Forward transport of K2P3.1: mediation by 14-3-3 and COPI, modulation by p11, Traffic, 2008, vol. 9, no. 1, pp. 72–78.

    Article  PubMed  CAS  Google Scholar 

  39. Renigunta, V., Fischer, T., Zuzarte, M., Kling, S., Zou, X., Siebert, K., Limberg, M.M., Rinne, S., Decher, N., Schlichthorl, G., and Daut, J., Cooperative endocytosis of the endosomal SNARE protein syntaxin-8 and the potassium channel TASK-1, Mol. Biol. Cell, 2014, vol. 25, no. 12, pp. 1877–1891.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kiyoshi, H., Yamazaki, D., Ohya, S., Kitsukawa, M., Muraki, K., Saito, S., Ohizumi, Y., and Imaizumi, Y., Molecular and electrophysiological characteristics of K+ conductance sensitive to acidic pH in aortic smooth muscle cells of WKY and SHR, Am. J. Physiol.: Heart Circ. Physiol., 2006, vol. 291, no. 6, pp. H2723–H2734.

    CAS  Google Scholar 

  41. White, R., Ho, W.S.V., Bottrill, F.E., Ford, W.R., and Hiley, C.R., Mechanisms of anandamide-induced vasorelaxation in rat isolated coronary arteries, Br. J. Pharmacol., 2001, vol. 134, no. 4, pp. 921–929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Van den Bossche, I. and Vanheel, B., Influence of cannabinoids on the delayed rectifier in freshly dissociated smooth muscle cells of the rat aorta, Br. J. Pharmacol., 2000, vol. 131, no. 1, pp. 85–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Martín, P., Enrique, N., Palomo, A.R.R., Rebolledo, A., and Milesi, V., Bupivacaine inhibits large conductance, voltage- and Ca2+- activated K+ channels in human umbilical artery smooth muscle cells, Channels, 2012, vol. 6, no. 3, pp. 174–180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Patel, A.J., Honoré, E., Lesage, F., Fink, M., Romey, G., and Lazdunski, M., Inhalational anesthetics activate two-pore-domain background K+ channels, Nat. Neurosci., 1999, vol. 2, no. 5, pp. 422–426.

    Article  CAS  PubMed  Google Scholar 

  45. Buljubasic, N., Rusch, N.J., Marijic, J., Kampine, J.P., and Bosnjak, Z.J., Effects of halothane and isoflurane on calcium and potassium channel currents in canine coronary arterial cells, Anesthesiology, 1992, vol. 76, no. 6, pp. 990–998.

    Article  CAS  PubMed  Google Scholar 

  46. Kiper, A.K., Rinne, S., Rolfes, C., Ramirez, D., Seebohm, G., Netter, M.F., Gonzalez, W., and Decher, N., Kv1.5 blockers preferentially inhibit TASK-1 channels: TASK-1 as a target against atrial fibrillation and obstructive sleep apnea?, Pflügers Arch. Eur. J. Physiol., 2015, vol. 467, no. 5, pp. 1081–1090.

    Article  CAS  Google Scholar 

  47. Wirth, K.J., Brendel, J., Steinmeyer, K., Linz, D.K., Rütten, H., and Gögelein, H., In vitro and in vivo effects of the atrial selective antiarrhythmic compound AVE1231, J. Cardiovasc. Pharmacol., 2007, vol. 49, no. 4, pp. 197–206.

    Article  CAS  PubMed  Google Scholar 

  48. Ehrlich, J.R., Ocholla, H., Ziemek, D., Rutten, H., Hohnloser, S.H., and Gogelein, H., Characterization of human cardiac Kv1.5 inhibition by the novel atrial-selective antiarrhythmic compound AVE1231, J. Cardiovasc. Pharmacol., 2008, vol. 51, no. 4, pp. 380–387.

    Article  CAS  PubMed  Google Scholar 

  49. Lambert, M., Capuano, V., Boet, A., et al., Characterization of Kcnk3-mutated rat, a novel model of pulmonary hypertension, Circ. Res., 2019, vol. 125, no. 7, pp. 678–695.

    Article  CAS  PubMed  Google Scholar 

  50. Yamaguchi, K., Takasugi, T., Fujita, H., Mori, M., Oyamada, Y., Suzuki, K., Miyata, A., Aoki, T., and Suzuki, Y., Endothelial modulation of pH-dependent pressor response in isolated perfused rabbit lungs, Am. J. Physiol.: Heart Circ. Physiol., 1996, vol. 270, no. 39, pp. 252–258.

    Google Scholar 

  51. Balasubramanyan, N., Halla, T.R., Ghanayem, N.S., and Gordon, J.B., Endothelium-independent and -dependent vasodilation in alkalotic and acidotic piglet lungs, Pediatr. Pulmonol., 2000, vol. 30, no. 3, pp. 241–248.

    Article  CAS  PubMed  Google Scholar 

  52. Post, J.M., Hume, J.R., Archer, S.L., and Weir, E.K., Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction, Am. J. Physiol., 1992, vol. 262, no. 4, pp. C882–C890.

    Article  CAS  PubMed  Google Scholar 

  53. Nagaraj, C., Tang, B., Balint, Z., Wygrecka, M., Hrzenjak, A., Kwapiszewska, G., Stacher, E., Lindenmann, J., Weir, E.K., Olschewski, H., and Olschewski, A., Src tyrosine kinase is crucial for potassium channel function in human pulmonary arteries, Eur. Respir. J., 2013, vol. 41, no. 1, pp. 85–95.

    Article  CAS  PubMed  Google Scholar 

  54. Mackay, C.E. and Knock, G.A., Control of vascular smooth muscle function by Src-family kinases and reactive oxygen species in health and disease, J. Physiol., 2015, vol. 593, no. 17, pp. 3815–3828.

    Article  CAS  PubMed  Google Scholar 

  55. Wu, W., Platoshyn, O., Firth, A.L., and Yuan, J.X.J., Hypoxia divergently regulates production of reactive oxygen species in human pulmonary and coronary artery smooth muscle cells, Am. J. Physiol.: Lung Cell. Mol. Physiol., 2007, vol. 293, no. 4, pp. 952–959.

    Article  CAS  Google Scholar 

  56. Manoury, B., Lamalle, C., Oliveira, R., Reid, J., and Gurney, A.M., Contractile and electrophysiological properties of pulmonary artery smooth muscle are not altered in TASK-1 knockout mice, J. Physiol., 2011, vol. 589, no. 13, pp. 3231–3246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Murtaza, G., Mermer, P., Goldenberg, A., Pfeil, U., Paddenberg, R., Weissmann, N., Lochnit, G., and Kummer, W., TASK-1 potassium channel is not critically involved in mediating hypoxic pulmonary vasoconstriction of murine intra-pulmonary arteries, PLoS One, 2017, vol. 12, no. 3, art. ID e0174071.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Pandit, L.M., Lloyd, E.E., Reynolds, J.O., Lawrence, W.S., Reynolds, C., Wehrens, X.H.T., and Bryan, R.M., TWIK-2 channel deficiency leads to  pulmonary hypertension through a rho-kinase-mediated process, Hypertension, 2014, vol. 64, no. 6, pp. 1260–1265.

    Article  CAS  PubMed  Google Scholar 

  59. Wiedmann, F., Beyersdorf, C., Zhou, X.B., Kraft, M., Foerster, K.I., El-Battrawy, I., Lang, S., Borggrefe, M., Haefeli, W.E., Frey, N., and Schmidt, C., The experimental TASK-1 potassium channel inhibitor A293 can be employed for rhythm control of persistent atrial fibrillation in a translational large animal model, Front. Physiol., 2021, vol. 11, art. ID 629421.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lazarenko, V., Shvetsova, A., Gaynullina, D., and Schubert, R.P., 35 TASK-1 channels play an anticontractile role in rat septal coronary artery under pharmacological blockade of endothelium, Artery Res., 2020, vol. 26, art. ID 58.

    Article  Google Scholar 

  61. Shvetsova, A.A., Gaynullina, D.K., Tarasova, O.S., and Schubert, R., Remodeling of arterial tone regulation in postnatal development: focus on smooth muscle cell potassium channels, Int. J. Mol. Sci., 2021, vol. 22, no. 11, art. ID 5413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shvetsova, A., Lazarenko, V., Gaynullina, D., Tarasova, O., and Schubert, R., TASK-1 channels emerge as contributors to tone regulation in renal arteries at alkaline pH, Front. Physiol., 2022, vol. 13, art. ID 895863.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lockett, M.F., Effects of changes in pO2 and pCO2 and pH on the total vascular resistance of perfused cat kidneys, J. Physiol., 1967, vol. 193, no. 3, pp. 671–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Giaid, A., Yanagisawa, M., Langleben, D., Michel, R.P., Levy, R., Shennib, H., Kimura, S., Masaki, T., Duguid, W.P., and Stewart, D.J., Expression of endothelin-1 in the lungs of patients with pulmonary hypertension, N. Engl. J. Med., 1993, vol. 328, no. 24, pp. 1732–1739.

    Article  CAS  PubMed  Google Scholar 

  65. Tang, B., Li, Y., Nagaraj, C., Morty, R.E., Gabor, S., Stacher, E., Voswinckel, R., Weissmann, N., Leithner, K., Olschewski, H., and Olschewski, A., Endothelin-1 inhibits background two-pore domain channel task-1 in primary human pulmonary artery smooth muscle cells, Am. J. Respir. Cell Mol. Biol., 2009, vol. 41, no. 4, pp. 476–483.

    Article  CAS  PubMed  Google Scholar 

  66. Schiekel, J., Lindner, M., Hetzel, A., Wemhoner, K., Renigunta, V., Schlichthorl, G., Decher, N., Oliver, D., and Daut, J., The inhibition of the potassium channel TASK-1 in rat cardiac muscle by endothelin-1 is mediated by phospholipase C, Cardiovasc. Res., 2013, vol. 97, no. 1, pp. 97–105.

    Article  CAS  PubMed  Google Scholar 

  67. Lopes, C.M.B., Rohacs, T., Czirjak, G., Balla, T., Enyedi, P., and Logothetis, D.E., PIP2 hydrolysis underlies agonist-induced inhibition and regulates voltage gating of two-pore domain K+ channels, J. Physiol., 2005, vol. 564, no. 1, pp. 117–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Czirják, G., Petheo, G.L., Spät, A., and Enyedi, P Inhibition of TASK-1 potassium channel by phospholipase C, Am. J. Physiol.: Lung Cell. Mol. Physiol., 2001, vol. 281, no. 2, pp. 700–708.

    Article  Google Scholar 

  69. Gabriel, L., Lvov, A., Orthodoxou, D., Rittenhouse, A.R., Kobertz, W.R., and Melikian, H.E., The acid-sensitive, anesthetic-activated potassium leak channel, KCNK3, is regulated by 14-3-3β-dependent, protein kinase C (PKC)-mediated endocytic trafficking, J. Biol. Chem., 2012, vol. 287, no. 39, pp. 32354–32366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Matsuoka, H., Harada, K., Mashima, K., and Inoue, M., Muscarinic receptor stimulation induces TASK1 channel endocytosis through a PKC-Pyk2-Src pathway in PC12 cells, Cell. Signal., 2020, vol. 65, art. ID 109434.

    Article  CAS  PubMed  Google Scholar 

  71. Seyler, C., Duthil-Straub, E., Zitron, E., Gierten, J., Scholz, E.P., Fink, R.H.A., Karle, C.A., Becker, R., Katus, H.A., and Thomas, D., TASK1 (K2P3.1) K+ channel inhibition by endothelin-1 is mediated through Rho kinase-dependent phosphorylation, Br. J. Pharmacol., 2012, vol. 165, no. 5, pp. 1467–1475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lincoln, T.M., Dey, N.B., Boerth, N.J., Cornwell, T.L., and Soff, G.A., Nitric oxide – cyclic GMP pathway regulates vascular smooth muscle cell phenotypic modulation: Implications in vascular diseases, Acta Physiol. Scand., 1998, vol. 164, no. 4, pp. 507–515.

    Article  CAS  PubMed  Google Scholar 

  73. Zhou, F., Rao, F., Deng, Y.Q., Yang, H., Kuang, S.J., Wu, F.L., Wu, S.L., Xue, Y.M., Wu, X.M., and Deng, C.Y., Atorvastatin ameliorates the contractile dysfunction of the aorta induced by organ culture, Naunyn-Schmiedeberg’s Arch. Pharmacol., 2019, vol. 392, no. 1, pp. 19–28.

    Article  CAS  Google Scholar 

  74. Puzdrova, V.A., Kudryashova, T.V., Gaynullina, D.K., Mochalov, S.V., Aalkjaer, C., Nilsson, H., Vorotnikov, A.V., Schubert, R., and Tarasova, O.S., Trophic action of sympathetic nerves reduces arterial smooth muscle Ca2+ sensitivity during early post-natal development in rats, Acta Physiol., 2014, vol. 212, no. 2, pp. 128–141.

    Article  CAS  Google Scholar 

  75. Mochalov, S.V., Tarasova, N.V., Kudryashova, T.V., Gaynullina, D.K., Kalenchuk, V.U., Borovik, A.S., Vorotnikov, A.V., Tarasova, O.S., and Schubert, R., Higher Ca2+-sensitivity of arterial contraction in 1‑week-old rats is due to a greater Rho-kinase activity, Acta Physiol., 2018, vol. 12, no. 10, art. ID e13044.

    Article  CAS  Google Scholar 

  76. Hayoz, S., Bychkov, R., Serir, K., Docquier, M., and Bény, J.L., Purinergic activation of a leak potassium current in freshly dissociated myocytes from mouse thoracic aorta, Acta Physiol., 2009, vol. 195, no. 2, pp. 247–258.

    Article  CAS  Google Scholar 

  77. Borkowski, K.R., Gros, R., and Schneider, H., Vascular β-adrenoceptor-mediated responses in hypertension and ageing in rats, J. Auton. Pharmacol., 1992, vol. 12, no. 6, pp. 389–455.

    Article  CAS  PubMed  Google Scholar 

  78. Bieger, D., Parai, K., Ford, C.A., and Tabrizchi, R., β‑Adrenoceptor mediated responses in rat pulmonary artery: Putative role of TASK-1 related K channels, Naunyn-Schmiedeberg’s Arch. Pharmacol., 2006, vol. 373, no. 3, pp. 186–196.

    Article  CAS  Google Scholar 

  79. Gainullina, D.K., Kiryukhina, O.O., and Tarasova, O.S., Nitric oxide in vascular endothelium: control of production and mechanisms of action, Usp. Fiziol. Nauk, 2013, vol. 44, no. 4, pp. 88–102.

    Google Scholar 

  80. Cunningham, K.P., Holden, R.G., Escribano-Su-bias, P.M., Cogolludo, A., Veale, E.L., and Mathie, A., Characterization and regulation of wild-type and mutant TASK-1 two pore domain potassium channels indicated in pulmonary arterial hypertension, J. Physiol., 2019, vol. 597, no. 4, pp. 1087–1101.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The review was written with the support of the Russian Science Foundation (grant no. 20-75-00027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Shvetsova.

Ethics declarations

The authors declare that they have no conflicts of interest. The work was done without the use of animals and without involving people as test subjects.

Additional information

Translated by A. Deryabina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shvetsova, A.A., Gaynullina, D.K. & Tarasova, O.S. TASK-1 Channels: Functional Role in Arterial Smooth Muscle Cells. Moscow Univ. Biol.Sci. Bull. 77, 64–75 (2022). https://doi.org/10.3103/S0096392522020109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.3103/S0096392522020109

Keywords: