Abstract
This chapter reviews key Molecular Solar Thermal (MOST) parameters using azobenzenes as a model. The ease of modifying azobenzene structures allows for tuning properties such as absorption wavelength, energy storage capacity, and release. Effective strategies include adding substituents, incorporating heterocycles, combining multiple MOST-active structures, or integrating into macrocycles. While many modifications influence multiple parameters, optimizing them simultaneously remains challenging. The ideal azobenzene MOST candidate is yet to be found, underscoring the need for further research and exploration of alternative structures.
Conrad Averdunk, Kai Hanke, Silke Müsse, Dominic Schatz: These authors contributed equally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Venkateswarlu, K., Ramakrishna, K.: Recent advances in phase change materials for thermal energy storage—a review. J. Braz. Soc. Mech. Sci. Eng. 44, 6 (2022). https://doi.org/10.1007/s40430-021-03308-7
Wang, Z., Erhart, P., Li, T., et al.: Storing energy with molecular photoisomers. Joule 5, 3116–3136 (2021). https://doi.org/10.1016/j.joule.2021.11.001
Luther, R., Weigert, F.: Über umkehrbare photochemische Reaktionen im homogenen system. Z. Phys. Chem. 51U, 297–328 (1905). https://doi.org/10.1515/zpch-1905-5119
Luther, R., Weigert, F.: Über umkehrbare photochemische Reaktionen im homogenen System. Anthracen und Dianthracen. II. Z. Phys. Chem. 53U, 385–427 (1905). https://doi.org/10.1515/zpch-1905-5324
Orrego-Hernández, J., Dreos, A., Moth-Poulsen, K.: Engineering of norbornadiene/quadricyclane photoswitches for molecular solar thermal energy storage applications. Acc. Chem. Res. 53, 1478–1487 (2020). https://doi.org/10.1021/acs.accounts.0c00235
Brøndsted Nielsen, M., Ree, N., Mikkelsen, K.V., et al.: Tuning the dihydroazulene—vinylheptafulvene couple for storage of solar energy. Russ. Chem. Rev. 89, 573–586 (2020). https://doi.org/10.1070/RCR4944
Zhang, B., Feng, Y., Feng, W.: Azobenzene-Based Solar Thermal Fuels: A Review. Nanomicro Lett 14, 138 (2022). https://doi.org/10.1007/s40820-022-00876-8
Jerca, F.A., Jerca, V.V., Hoogenboom, R.: Advances and opportunities in the exciting world of azobenzenes. Nat. Rev. Chem. 6, 51–69 (2022). https://doi.org/10.1038/s41570-021-00334-w
Fedele, C., Ruoko, T.-P., Kuntze, K., et al.: New tricks and emerging applications from contemporary azobenzene research. Photochem. Photobiol. Sci. 21, 1719–1734 (2022). https://doi.org/10.1007/s43630-022-00262-8
Griwatz, J.H., Campi, C.E., Kunz, A., et al.: In-situ oxidation and coupling of anilines towards unsymmetric azobenzenes using flow chemistry. Chemsuschem 17, e202301714 (2024). https://doi.org/10.1002/cssc.202301714
Richter, R.C., Biebl, S.M., Einholz, R., et al.: Facile energy release from substituted dewar isomers of 1,2-dihydro-1,2-azaborinines catalyzed by coinage metal Lewis acids. Angew. Chem. Int. Ed. Engl. 63, e202405818 (2024). https://doi.org/10.1002/anie.202405818
Goulet-Hanssens, A., Rietze, C., Titov, E., et al.: Hole Catalysis as a General Mechanism for Efficient and Wavelength-Independent Z → E Azobenzene Isomerization. Chem 4, 1740–1755 (2018). https://doi.org/10.1016/j.chempr.2018.06.002
Goulet-Hanssens, A., Utecht, M., Mutruc, D., et al.: Electrocatalytic Z → E isomerization of azobenzenes. J. Am. Chem. Soc. 139, 335–341 (2017). https://doi.org/10.1021/jacs.6b10822
Schulte-Frohlinde, D.: ÜBER die THERMISCHE und Katalytische cis → trans -Umlagerung Substituierter Azobenzole. Justus Liebigs Ann. Chem. 612, 138–152 (1958). https://doi.org/10.1002/jlac.19586120115
Dang, T., Zhang, Z.-Y., Li, T.: Visible-light-activated heteroaryl azoswitches: toward a more colorful future. J. Am. Chem. Soc. 146, 19609–19620 (2024). https://doi.org/10.1021/jacs.4c03135
Gao, M., Kwaria, D., Norikane, Y., et al.: Visible-light-switchable azobenzenes: molecular design, supramolecular systems, and applications. Nat. Sci. 3, e220020 (2023). https://doi.org/10.1002/ntls.20220020
Ajibade Adejoro, I., Emmanuel Oyeneyin, O., Temitope Ogunyemi, B.: Computational investigation on substituent and solvent effects on the electronic, geometric and spectroscopic properties of azobenzene and some substituted derivatives. IJCTC 3, 50 (2015). https://doi.org/10.11648/j.ijctc.20150306.12
Hammerich, M., Schütt, C., Stähler, C., et al.: Heterodiazocines: synthesis and photochromic properties, trans to cis switching within the bio-optical window. J. Am. Chem. Soc. 138, 13111–13114 (2016). https://doi.org/10.1021/jacs.6b05846
Lentes, P., Stadler, E., Röhricht, F., et al.: Nitrogen bridged diazocines: photochromes switching within the near-infrared region with high quantum yields in organic solvents and in water. J. Am. Chem. Soc. 141, 13592–13600 (2019). https://doi.org/10.1021/jacs.9b06104
Beharry, A.A., Sadovski, O., Woolley, G.A.: Azobenzene photoswitching without ultraviolet light. J. Am. Chem. Soc. 133, 19684–19687 (2011). https://doi.org/10.1021/ja209239m
Bléger, D., Schwarz, J., Brouwer, A.M., et al.: O-fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light. J. Am. Chem. Soc. 134, 20597–20600 (2012). https://doi.org/10.1021/ja310323y
Crespi, S., Simeth, N.A., König, B.: Heteroaryl azo dyes as molecular photoswitches. Nat. Rev. Chem. 3, 133–146 (2019). https://doi.org/10.1038/s41570-019-0074-6
Slavov, C., Yang, C., Heindl, A.H., et al.: Thiophenylazobenzene: an alternative photoisomerization controlled by lone-pair⋯π interaction. Angew. Chem. Int. Ed. 59, 380–387 (2020). https://doi.org/10.1002/anie.201909739
Heindl, A.H., Wegner, H.A.: Rational design of azothiophenes-substitution effects on the switching properties. Chem. Eur. J. 26, 13730–13737 (2020). https://doi.org/10.1002/chem.202001148
Kennedy, A.D.W., Sandler, I., Andréasson, J., et al.: Visible-light photoswitching by azobenzazoles. Chem. Eur. J. 26, 1103–1110 (2020). https://doi.org/10.1002/chem.201904309
Steinmüller, S.A.M., Odaybat, M., Galli, G., et al.: Arylazobenzimidazoles: versatile visible-light photoswitches with tuneable Z-isomer stability. Chem. Sci. 15, 5360–5367 (2024). https://doi.org/10.1039/d3sc05246j
Zhang, Z.-Y., Dong, D., Bösking, T., Dang, T., Liu, C., Sun, W., Xie, M., Hecht, S., Li, T.: Solar azo-switches for effective E→Z photoisomerization by sunlight. Angew. Chem. Int. Ed. 63, e202404528 (2024). https://doi.org/10.1002/anie.202404528
Kunz, A., Heindl, A.H., Dreos, A., et al.: Intermolecular London dispersion interactions of azobenzene switches for tuning molecular solar thermal energy storage systems. ChemPlusChem 84, 1145–1148 (2019). https://doi.org/10.1002/cplu.201900330
Averdunk, C., Hanke, K., Schatz, D., et al.: Molecular wind-up meter for the quantification of London dispersion interactions. Acc. Chem. Res. 57, 257–266 (2024). https://doi.org/10.1021/acs.accounts.3c00616
Slavov, C., Yang, C., Schweighauser, L., et al.: Connectivity matters—ultrafast isomerization dynamics of bisazobenzene photoswitches. Phys. Chem. Chem. Phys. 18, 14795–14804 (2016). https://doi.org/10.1039/c6cp00603e
Lim, Y.-K., Lee, K.-S., Cho, C.-G.: Novel route to azobenzenes via Pd-catalyzed coupling reactions of aryl hydrazides with aryl halides, followed by direct oxidations. Org. Lett. 5, 979–982 (2003). https://doi.org/10.1021/ol027311u
Dong, D., Zhang, Z.-Y., Dang, T., et al.: Bis-azopyrazole photoswitches for efficient solar light harvesting. Angew. Chem. Int. Ed. 63, e202407186 (2024). https://doi.org/10.1002/anie.202407186
Heindl, A.H., Wegner, H.A.: Starazo triple switches—synthesis of unsymmetrical 1,3,5-tris(arylazo)benzenes. Beilstein J. Org. Chem. 16, 22–31 (2020). https://doi.org/10.3762/bjoc.16.4
Morikawa, M., Yamanaka, Y., Kimizuka, N.: Liquid bisazobenzenes as molecular solar thermal fuel with enhanced energy density. Chem. Lett. 51, 402–406 (2022). https://doi.org/10.1246/cl.210822
Morikawa, M., Yamanaka, Y., Ho Hui, J.K., et al.: Photoliquefaction and phase transition of m-bisazobenzenes give molecular solar thermal fuels with a high energy density. RSC Adv. 13, 24031–24037 (2023). https://doi.org/10.1039/D3RA04595A
Durgun, E., Grossman, J.C.: Photoswitchable molecular rings for solar-thermal energy storage. J. Phys. Chem. Lett. 4, 854–860 (2013). https://doi.org/10.1021/jz301877n
Heindl, A.H., Becker, J., Wegner, H.A.: Selective switching of multiple azobenzenes. Chem. Sci. 10, 7418–7425 (2019). https://doi.org/10.1039/c9sc02347j
Baby, A., John, A.M., Balakrishnan, S.P.: Photoresponsive carbon-azobenzene hybrids: a promising material for energy devices. ChemPhysChem 24, e202200676 (2023). https://doi.org/10.1002/cphc.202200676
Kolpak, A.M., Grossman, J.C.: Hybrid chromophore/template nanostructures: a customizable platform material for solar energy storage and conversion. J. Chem. Phys. 138, 34303 (2013). https://doi.org/10.1063/1.4773306
Kolpak, A.M., Grossman, J.C.: Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels. Nano Lett. 11, 3156–3162 (2011). https://doi.org/10.1021/nl201357n
Huang, J., Jiang, Y., Wang, J., et al.: A high energy, reusable and daily-utilization molecular solar thermal conversion and storage material based on azobenzene/multi-walled carbon nanotubes hybrid. Thermochim. Acta 657, 163–169 (2017). https://doi.org/10.1016/j.tca.2017.10.002
Luo, W., Feng, Y., Cao, C., et al.: A high energy density azobenzene/graphene hybrid: a nano-templated platform for solar thermal storage. J Mater Chem A 3, 11787–11795 (2015). https://doi.org/10.1039/C5TA01263E
Pang, W., Xue, J., Pang, H.: A high energy density azobenzene/graphene oxide hybrid with weak nonbonding interactions for solar thermal storage. Sci. Rep. 9, 5224 (2019). https://doi.org/10.1038/s41598-019-41563-w
Xu, X., Feng, J., Li, W.-Y., et al.: Azobenzene-containing polymer for solar thermal energy storage and release: advances, challenges, and opportunities. Prog Poly Sci 149, 101782 (2024). https://doi.org/10.1016/j.progpolymsci.2023.101782
Bandara, H.M.D., Burdette, S.C.: Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 41, 1809–1825 (2012). https://doi.org/10.1039/c1cs15179g
Knie, C., Utecht, M., Zhao, F., et al.: Ortho-fluoroazobenzenes: visible light switches with very long-Lived Z isomers. Chem. Eur. J. 20, 16492–16501 (2014). https://doi.org/10.1002/chem.201404649
Gerkman, M.A., Gibson, R.S.L., Calbo, J., et al.: Arylazopyrazoles for long-term thermal energy storage and optically triggered heat release below 0 °C. J. Am. Chem. Soc. 142, 8688–8695 (2020). https://doi.org/10.1021/jacs.0c00374
Weston, C.E., Richardson, R.D., Haycock, P.R., et al.: Arylazopyrazoles: azoheteroarene photoswitches offering quantitative isomerization and long thermal half-lives. J. Am. Chem. Soc. 136, 11878–11881 (2014). https://doi.org/10.1021/ja505444d
He, Y., Shangguan, Z., Zhang, Z.-Y., et al.: Azobispyrazole family as photoswitches combining (near-) quantitative bidirectional isomerization and widely tunable thermal half-lives from hours to years. Angew. Chem. Int. Ed. 60, 16539–16546 (2021). https://doi.org/10.1002/anie.202103705
Moormann, W., Tellkamp, T., Stadler, E., et al.: Efficient conversion of light to chemical energy: directional, chiral photoswitches with very high quantum yields. Angew. Chem. Int. Ed. Engl. 59, 15081–15086 (2020). https://doi.org/10.1002/anie.202005361
Eleya, N., Ghosh, S., Lork, E., et al.: A new photo switchable azobenzene macrocycle without thermal relaxation at ambient temperature. J Mater Chem C 9, 82–87 (2021). https://doi.org/10.1039/D0TC05211F
Franz, E., Kunz, A., Oberhof, N., et al.: Electrochemically triggered energy release from an azothiophene-based molecular solar thermal system. Chemsuschem 15, e202200958 (2022). https://doi.org/10.1002/cssc.202200958
Greenfield, J.L., Gerkman, M.A., Gibson, R.S.L., et al.: Efficient electrocatalytic switching of azoheteroarenes in the condensed phases. J. Am. Chem. Soc. 143, 15250–15257 (2021). https://doi.org/10.1021/jacs.1c06359
Ciccone, S., Halpern, J.: Catalysis of the cis–trans isomerization of azobenzene by acids and cupric salts. Can. J. Chem. 37, 1903–1910 (1959). https://doi.org/10.1139/v59-278
Gibson, R.S.L., Calbo, J., Fuchter, M.J.: Chemical Z−E isomer switching of arylazopyrazoles using acid. ChemPhotoChem 3, 372–377 (2019). https://doi.org/10.1002/cptc.201900065
Hall, C.D., Beer, P.D.: Trico-ordinate phosphorus compounds as catalysts for the isomerization of (Z)-to (E)-azobenzene. J. Chem. Soc., Perkin Trans. 2, 1947 (1991). https://doi.org/10.1039/p29910001947
Shin, D., Kang, J.H., Min, K.-A., et al.: Graphene oxide catalyzed cis-trans isomerization of azobenzene. APL Mater. 2, 092501 (2014). https://doi.org/10.1063/1.4886215
Hallett-Tapley, G.L., D’Alfonso, C., Pacioni, N.L., et al.: Gold nanoparticle catalysis of the cis-trans isomerization of azobenzene. Chem. Commun. 49, 10073–10075 (2013). https://doi.org/10.1039/c3cc41669k
Wang, Z., Hölzel, H., Moth-Poulsen, K.: Status and challenges for molecular solar thermal energy storage system based devices. Chem. Soc. Rev. 51, 7313–7326 (2022). https://doi.org/10.1039/d1cs00890k
Hessel, V., Mukherjee, S., Mitra, S., et al.: Sustainability of flow chemistry and microreaction technology. Green Chem. (2024). https://doi.org/10.1039/D4GC01882F
Wang, Z., Losantos, R., Sampedro, D., et al.: Demonstration of an azobenzene derivative based solar thermal energy storage system. J Mater Chem A 7, 15042–15047 (2019). https://doi.org/10.1039/C9TA04905C
Wang, Z., Moïse, H., Cacciarini, M., et al.: Liquid-based multijunction molecular solar thermal energy collection device. Adv. Sci. 8, e2103060 (2021). https://doi.org/10.1002/advs.202103060
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Averdunk, C., Hanke, K., Müsse, S., Schatz, D., Wegner, H.A. (2025). From Light to Heat with Azobenzenes—Tuning Energy Storage by Structural Design. In: Moth-Poulsen, K. (eds) Molecular Solar Thermal Energy Storage Systems. MOST 2024. Advances in Atom and Single Molecule Machines. Springer, Cham. https://doi.org/10.1007/978-3-032-01616-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-032-01616-4_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-032-01615-7
Online ISBN: 978-3-032-01616-4
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)