Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

From Light to Heat with Azobenzenes—Tuning Energy Storage by Structural Design

  • Conference paper
  • First Online:
Molecular Solar Thermal Energy Storage Systems (MOST 2024)

Abstract

This chapter reviews key Molecular Solar Thermal (MOST) parameters using azobenzenes as a model. The ease of modifying azobenzene structures allows for tuning properties such as absorption wavelength, energy storage capacity, and release. Effective strategies include adding substituents, incorporating heterocycles, combining multiple MOST-active structures, or integrating into macrocycles. While many modifications influence multiple parameters, optimizing them simultaneously remains challenging. The ideal azobenzene MOST candidate is yet to be found, underscoring the need for further research and exploration of alternative structures.

Conrad Averdunk, Kai Hanke, Silke Müsse, Dominic Schatz: These authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Venkateswarlu, K., Ramakrishna, K.: Recent advances in phase change materials for thermal energy storage—a review. J. Braz. Soc. Mech. Sci. Eng. 44, 6 (2022). https://doi.org/10.1007/s40430-021-03308-7

    Article  CAS  Google Scholar 

  2. Wang, Z., Erhart, P., Li, T., et al.: Storing energy with molecular photoisomers. Joule 5, 3116–3136 (2021). https://doi.org/10.1016/j.joule.2021.11.001

    Article  CAS  Google Scholar 

  3. Luther, R., Weigert, F.: Über umkehrbare photochemische Reaktionen im homogenen system. Z. Phys. Chem. 51U, 297–328 (1905). https://doi.org/10.1515/zpch-1905-5119

    Article  Google Scholar 

  4. Luther, R., Weigert, F.: Über umkehrbare photochemische Reaktionen im homogenen System. Anthracen und Dianthracen. II. Z. Phys. Chem. 53U, 385–427 (1905). https://doi.org/10.1515/zpch-1905-5324

    Article  Google Scholar 

  5. Orrego-Hernández, J., Dreos, A., Moth-Poulsen, K.: Engineering of norbornadiene/quadricyclane photoswitches for molecular solar thermal energy storage applications. Acc. Chem. Res. 53, 1478–1487 (2020). https://doi.org/10.1021/acs.accounts.0c00235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brøndsted Nielsen, M., Ree, N., Mikkelsen, K.V., et al.: Tuning the dihydroazulene—vinylheptafulvene couple for storage of solar energy. Russ. Chem. Rev. 89, 573–586 (2020). https://doi.org/10.1070/RCR4944

    Article  Google Scholar 

  7. Zhang, B., Feng, Y., Feng, W.: Azobenzene-Based Solar Thermal Fuels: A Review. Nanomicro Lett 14, 138 (2022). https://doi.org/10.1007/s40820-022-00876-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jerca, F.A., Jerca, V.V., Hoogenboom, R.: Advances and opportunities in the exciting world of azobenzenes. Nat. Rev. Chem. 6, 51–69 (2022). https://doi.org/10.1038/s41570-021-00334-w

    Article  PubMed  Google Scholar 

  9. Fedele, C., Ruoko, T.-P., Kuntze, K., et al.: New tricks and emerging applications from contemporary azobenzene research. Photochem. Photobiol. Sci. 21, 1719–1734 (2022). https://doi.org/10.1007/s43630-022-00262-8

    Article  CAS  PubMed  Google Scholar 

  10. Griwatz, J.H., Campi, C.E., Kunz, A., et al.: In-situ oxidation and coupling of anilines towards unsymmetric azobenzenes using flow chemistry. Chemsuschem 17, e202301714 (2024). https://doi.org/10.1002/cssc.202301714

    Article  CAS  PubMed  Google Scholar 

  11. Richter, R.C., Biebl, S.M., Einholz, R., et al.: Facile energy release from substituted dewar isomers of 1,2-dihydro-1,2-azaborinines catalyzed by coinage metal Lewis acids. Angew. Chem. Int. Ed. Engl. 63, e202405818 (2024). https://doi.org/10.1002/anie.202405818

    Article  CAS  PubMed  Google Scholar 

  12. Goulet-Hanssens, A., Rietze, C., Titov, E., et al.: Hole Catalysis as a General Mechanism for Efficient and Wavelength-Independent Z → E Azobenzene Isomerization. Chem 4, 1740–1755 (2018). https://doi.org/10.1016/j.chempr.2018.06.002

    Article  CAS  Google Scholar 

  13. Goulet-Hanssens, A., Utecht, M., Mutruc, D., et al.: Electrocatalytic Z → E isomerization of azobenzenes. J. Am. Chem. Soc. 139, 335–341 (2017). https://doi.org/10.1021/jacs.6b10822

    Article  CAS  PubMed  Google Scholar 

  14. Schulte-Frohlinde, D.: ÜBER die THERMISCHE und Katalytische cis → trans -Umlagerung Substituierter Azobenzole. Justus Liebigs Ann. Chem. 612, 138–152 (1958). https://doi.org/10.1002/jlac.19586120115

    Article  Google Scholar 

  15. Dang, T., Zhang, Z.-Y., Li, T.: Visible-light-activated heteroaryl azoswitches: toward a more colorful future. J. Am. Chem. Soc. 146, 19609–19620 (2024). https://doi.org/10.1021/jacs.4c03135

    Article  CAS  PubMed  Google Scholar 

  16. Gao, M., Kwaria, D., Norikane, Y., et al.: Visible-light-switchable azobenzenes: molecular design, supramolecular systems, and applications. Nat. Sci. 3, e220020 (2023). https://doi.org/10.1002/ntls.20220020

    Article  CAS  Google Scholar 

  17. Ajibade Adejoro, I., Emmanuel Oyeneyin, O., Temitope Ogunyemi, B.: Computational investigation on substituent and solvent effects on the electronic, geometric and spectroscopic properties of azobenzene and some substituted derivatives. IJCTC 3, 50 (2015). https://doi.org/10.11648/j.ijctc.20150306.12

  18. Hammerich, M., Schütt, C., Stähler, C., et al.: Heterodiazocines: synthesis and photochromic properties, trans to cis switching within the bio-optical window. J. Am. Chem. Soc. 138, 13111–13114 (2016). https://doi.org/10.1021/jacs.6b05846

    Article  CAS  PubMed  Google Scholar 

  19. Lentes, P., Stadler, E., Röhricht, F., et al.: Nitrogen bridged diazocines: photochromes switching within the near-infrared region with high quantum yields in organic solvents and in water. J. Am. Chem. Soc. 141, 13592–13600 (2019). https://doi.org/10.1021/jacs.9b06104

    Article  CAS  PubMed  Google Scholar 

  20. Beharry, A.A., Sadovski, O., Woolley, G.A.: Azobenzene photoswitching without ultraviolet light. J. Am. Chem. Soc. 133, 19684–19687 (2011). https://doi.org/10.1021/ja209239m

    Article  CAS  PubMed  Google Scholar 

  21. Bléger, D., Schwarz, J., Brouwer, A.M., et al.: O-fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light. J. Am. Chem. Soc. 134, 20597–20600 (2012). https://doi.org/10.1021/ja310323y

    Article  CAS  PubMed  Google Scholar 

  22. Crespi, S., Simeth, N.A., König, B.: Heteroaryl azo dyes as molecular photoswitches. Nat. Rev. Chem. 3, 133–146 (2019). https://doi.org/10.1038/s41570-019-0074-6

    Article  CAS  Google Scholar 

  23. Slavov, C., Yang, C., Heindl, A.H., et al.: Thiophenylazobenzene: an alternative photoisomerization controlled by lone-pair⋯π interaction. Angew. Chem. Int. Ed. 59, 380–387 (2020). https://doi.org/10.1002/anie.201909739

    Article  CAS  Google Scholar 

  24. Heindl, A.H., Wegner, H.A.: Rational design of azothiophenes-substitution effects on the switching properties. Chem. Eur. J. 26, 13730–13737 (2020). https://doi.org/10.1002/chem.202001148

    Article  CAS  PubMed  Google Scholar 

  25. Kennedy, A.D.W., Sandler, I., Andréasson, J., et al.: Visible-light photoswitching by azobenzazoles. Chem. Eur. J. 26, 1103–1110 (2020). https://doi.org/10.1002/chem.201904309

    Article  CAS  PubMed  Google Scholar 

  26. Steinmüller, S.A.M., Odaybat, M., Galli, G., et al.: Arylazobenzimidazoles: versatile visible-light photoswitches with tuneable Z-isomer stability. Chem. Sci. 15, 5360–5367 (2024). https://doi.org/10.1039/d3sc05246j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, Z.-Y., Dong, D., Bösking, T., Dang, T., Liu, C., Sun, W., Xie, M., Hecht, S., Li, T.: Solar azo-switches for effective E→Z photoisomerization by sunlight. Angew. Chem. Int. Ed. 63, e202404528 (2024). https://doi.org/10.1002/anie.202404528

    Article  CAS  Google Scholar 

  28. Kunz, A., Heindl, A.H., Dreos, A., et al.: Intermolecular London dispersion interactions of azobenzene switches for tuning molecular solar thermal energy storage systems. ChemPlusChem 84, 1145–1148 (2019). https://doi.org/10.1002/cplu.201900330

    Article  CAS  PubMed  Google Scholar 

  29. Averdunk, C., Hanke, K., Schatz, D., et al.: Molecular wind-up meter for the quantification of London dispersion interactions. Acc. Chem. Res. 57, 257–266 (2024). https://doi.org/10.1021/acs.accounts.3c00616

    Article  CAS  PubMed  Google Scholar 

  30. Slavov, C., Yang, C., Schweighauser, L., et al.: Connectivity matters—ultrafast isomerization dynamics of bisazobenzene photoswitches. Phys. Chem. Chem. Phys. 18, 14795–14804 (2016). https://doi.org/10.1039/c6cp00603e

    Article  CAS  PubMed  Google Scholar 

  31. Lim, Y.-K., Lee, K.-S., Cho, C.-G.: Novel route to azobenzenes via Pd-catalyzed coupling reactions of aryl hydrazides with aryl halides, followed by direct oxidations. Org. Lett. 5, 979–982 (2003). https://doi.org/10.1021/ol027311u

    Article  CAS  PubMed  Google Scholar 

  32. Dong, D., Zhang, Z.-Y., Dang, T., et al.: Bis-azopyrazole photoswitches for efficient solar light harvesting. Angew. Chem. Int. Ed. 63, e202407186 (2024). https://doi.org/10.1002/anie.202407186

    Article  CAS  Google Scholar 

  33. Heindl, A.H., Wegner, H.A.: Starazo triple switches—synthesis of unsymmetrical 1,3,5-tris(arylazo)benzenes. Beilstein J. Org. Chem. 16, 22–31 (2020). https://doi.org/10.3762/bjoc.16.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Morikawa, M., Yamanaka, Y., Kimizuka, N.: Liquid bisazobenzenes as molecular solar thermal fuel with enhanced energy density. Chem. Lett. 51, 402–406 (2022). https://doi.org/10.1246/cl.210822

    Article  CAS  Google Scholar 

  35. Morikawa, M., Yamanaka, Y., Ho Hui, J.K., et al.: Photoliquefaction and phase transition of m-bisazobenzenes give molecular solar thermal fuels with a high energy density. RSC Adv. 13, 24031–24037 (2023). https://doi.org/10.1039/D3RA04595A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Durgun, E., Grossman, J.C.: Photoswitchable molecular rings for solar-thermal energy storage. J. Phys. Chem. Lett. 4, 854–860 (2013). https://doi.org/10.1021/jz301877n

    Article  CAS  PubMed  Google Scholar 

  37. Heindl, A.H., Becker, J., Wegner, H.A.: Selective switching of multiple azobenzenes. Chem. Sci. 10, 7418–7425 (2019). https://doi.org/10.1039/c9sc02347j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Baby, A., John, A.M., Balakrishnan, S.P.: Photoresponsive carbon-azobenzene hybrids: a promising material for energy devices. ChemPhysChem 24, e202200676 (2023). https://doi.org/10.1002/cphc.202200676

    Article  CAS  PubMed  Google Scholar 

  39. Kolpak, A.M., Grossman, J.C.: Hybrid chromophore/template nanostructures: a customizable platform material for solar energy storage and conversion. J. Chem. Phys. 138, 34303 (2013). https://doi.org/10.1063/1.4773306

    Article  CAS  Google Scholar 

  40. Kolpak, A.M., Grossman, J.C.: Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels. Nano Lett. 11, 3156–3162 (2011). https://doi.org/10.1021/nl201357n

    Article  CAS  PubMed  Google Scholar 

  41. Huang, J., Jiang, Y., Wang, J., et al.: A high energy, reusable and daily-utilization molecular solar thermal conversion and storage material based on azobenzene/multi-walled carbon nanotubes hybrid. Thermochim. Acta 657, 163–169 (2017). https://doi.org/10.1016/j.tca.2017.10.002

    Article  CAS  Google Scholar 

  42. Luo, W., Feng, Y., Cao, C., et al.: A high energy density azobenzene/graphene hybrid: a nano-templated platform for solar thermal storage. J Mater Chem A 3, 11787–11795 (2015). https://doi.org/10.1039/C5TA01263E

    Article  CAS  Google Scholar 

  43. Pang, W., Xue, J., Pang, H.: A high energy density azobenzene/graphene oxide hybrid with weak nonbonding interactions for solar thermal storage. Sci. Rep. 9, 5224 (2019). https://doi.org/10.1038/s41598-019-41563-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu, X., Feng, J., Li, W.-Y., et al.: Azobenzene-containing polymer for solar thermal energy storage and release: advances, challenges, and opportunities. Prog Poly Sci 149, 101782 (2024). https://doi.org/10.1016/j.progpolymsci.2023.101782

    Article  CAS  Google Scholar 

  45. Bandara, H.M.D., Burdette, S.C.: Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 41, 1809–1825 (2012). https://doi.org/10.1039/c1cs15179g

    Article  CAS  PubMed  Google Scholar 

  46. Knie, C., Utecht, M., Zhao, F., et al.: Ortho-fluoroazobenzenes: visible light switches with very long-Lived Z isomers. Chem. Eur. J. 20, 16492–16501 (2014). https://doi.org/10.1002/chem.201404649

    Article  CAS  PubMed  Google Scholar 

  47. Gerkman, M.A., Gibson, R.S.L., Calbo, J., et al.: Arylazopyrazoles for long-term thermal energy storage and optically triggered heat release below 0 °C. J. Am. Chem. Soc. 142, 8688–8695 (2020). https://doi.org/10.1021/jacs.0c00374

    Article  CAS  PubMed  Google Scholar 

  48. Weston, C.E., Richardson, R.D., Haycock, P.R., et al.: Arylazopyrazoles: azoheteroarene photoswitches offering quantitative isomerization and long thermal half-lives. J. Am. Chem. Soc. 136, 11878–11881 (2014). https://doi.org/10.1021/ja505444d

    Article  CAS  PubMed  Google Scholar 

  49. He, Y., Shangguan, Z., Zhang, Z.-Y., et al.: Azobispyrazole family as photoswitches combining (near-) quantitative bidirectional isomerization and widely tunable thermal half-lives from hours to years. Angew. Chem. Int. Ed. 60, 16539–16546 (2021). https://doi.org/10.1002/anie.202103705

    Article  CAS  Google Scholar 

  50. Moormann, W., Tellkamp, T., Stadler, E., et al.: Efficient conversion of light to chemical energy: directional, chiral photoswitches with very high quantum yields. Angew. Chem. Int. Ed. Engl. 59, 15081–15086 (2020). https://doi.org/10.1002/anie.202005361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Eleya, N., Ghosh, S., Lork, E., et al.: A new photo switchable azobenzene macrocycle without thermal relaxation at ambient temperature. J Mater Chem C 9, 82–87 (2021). https://doi.org/10.1039/D0TC05211F

    Article  CAS  Google Scholar 

  52. Franz, E., Kunz, A., Oberhof, N., et al.: Electrochemically triggered energy release from an azothiophene-based molecular solar thermal system. Chemsuschem 15, e202200958 (2022). https://doi.org/10.1002/cssc.202200958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Greenfield, J.L., Gerkman, M.A., Gibson, R.S.L., et al.: Efficient electrocatalytic switching of azoheteroarenes in the condensed phases. J. Am. Chem. Soc. 143, 15250–15257 (2021). https://doi.org/10.1021/jacs.1c06359

    Article  CAS  PubMed  Google Scholar 

  54. Ciccone, S., Halpern, J.: Catalysis of the cis–trans isomerization of azobenzene by acids and cupric salts. Can. J. Chem. 37, 1903–1910 (1959). https://doi.org/10.1139/v59-278

    Article  CAS  Google Scholar 

  55. Gibson, R.S.L., Calbo, J., Fuchter, M.J.: Chemical Z−E isomer switching of arylazopyrazoles using acid. ChemPhotoChem 3, 372–377 (2019). https://doi.org/10.1002/cptc.201900065

    Article  CAS  Google Scholar 

  56. Hall, C.D., Beer, P.D.: Trico-ordinate phosphorus compounds as catalysts for the isomerization of (Z)-to (E)-azobenzene. J. Chem. Soc., Perkin Trans. 2, 1947 (1991). https://doi.org/10.1039/p29910001947

  57. Shin, D., Kang, J.H., Min, K.-A., et al.: Graphene oxide catalyzed cis-trans isomerization of azobenzene. APL Mater. 2, 092501 (2014). https://doi.org/10.1063/1.4886215

    Article  CAS  Google Scholar 

  58. Hallett-Tapley, G.L., D’Alfonso, C., Pacioni, N.L., et al.: Gold nanoparticle catalysis of the cis-trans isomerization of azobenzene. Chem. Commun. 49, 10073–10075 (2013). https://doi.org/10.1039/c3cc41669k

    Article  CAS  Google Scholar 

  59. Wang, Z., Hölzel, H., Moth-Poulsen, K.: Status and challenges for molecular solar thermal energy storage system based devices. Chem. Soc. Rev. 51, 7313–7326 (2022). https://doi.org/10.1039/d1cs00890k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hessel, V., Mukherjee, S., Mitra, S., et al.: Sustainability of flow chemistry and microreaction technology. Green Chem. (2024). https://doi.org/10.1039/D4GC01882F

    Article  Google Scholar 

  61. Wang, Z., Losantos, R., Sampedro, D., et al.: Demonstration of an azobenzene derivative based solar thermal energy storage system. J Mater Chem A 7, 15042–15047 (2019). https://doi.org/10.1039/C9TA04905C

    Article  CAS  Google Scholar 

  62. Wang, Z., Moïse, H., Cacciarini, M., et al.: Liquid-based multijunction molecular solar thermal energy collection device. Adv. Sci. 8, e2103060 (2021). https://doi.org/10.1002/advs.202103060

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann A. Wegner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Averdunk, C., Hanke, K., Müsse, S., Schatz, D., Wegner, H.A. (2025). From Light to Heat with Azobenzenes—Tuning Energy Storage by Structural Design. In: Moth-Poulsen, K. (eds) Molecular Solar Thermal Energy Storage Systems. MOST 2024. Advances in Atom and Single Molecule Machines. Springer, Cham. https://doi.org/10.1007/978-3-032-01616-4_6

Download citation

Publish with us

Policies and ethics