Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Drought and Waterlogging Stress Responses in Crops

  • Chapter
  • First Online:
Plant-Microbe Interaction and Stress Management

Part of the book series: Rhizosphere Biology ((RHBIO))

  • 344 Accesses

  • 1 Citation

Abstract

Around 70% of the freshwater is used globally for agriculture. Due to worldwide agricultural expansion and climate change, water demand is rising day by day. Therefore, creating crop cultivars that require less water is necessary for achieving sustainable agricultural output. As the climate continues to change, extreme soil conditions and soil water availability, such as severe drought and waterlogging from high rains, are predicted to result. In the absence of novel resistance variations to these abiotic stressors, both waterlogging and drought are harmful to plant species and might pose a danger to global food security. Agricultural production is severely hampered by drought and waterlogging, both of which have become more frequent and severe over time as a result of climate change. Both waterlogging and drought stress may cause changes in a plant’s shape and photosynthetic activity, affecting leaf shape (such as crimping and wilting), antioxidant enzyme system, and hormone levels. In particular, microbes with the potential to promote plant development might be useful instruments to achieve the objective of sustainable agriculture. As a viable long-term solution, particular focus has been placed on the use of microorganisms in agriculture to boost production and tolerance to shocks. This chapter will concentrate on the effects of drought and waterlogging on physiology, plant responses to climatic changes, and molecular pathways. Further, the processes behind these alterations are described. Additionally, it will discuss the methods by which microorganisms that promote plant development might increase a plant’s ability to withstand drought and waterlogging stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 109.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akhtar N, Ilyas N, Hayat R, Yasmin H, Noureldeen A, Ahmad P (2021) Synergistic effects of plant growth promoting rhizobacteria and silicon dioxide nano-particles for amelioration of drought stress in wheat. Plant Physiol Biochem 166:160–176

    Article  PubMed  Google Scholar 

  • Ali S, Khan MA, Kim WC (2018) Pseudomonas veronii KJ mitigates flood stress-associated damage in Sesamum indicum L. Appl Biol Chem 61:575–585. https://doi.org/10.1007/s13765-018-0392-2

    Article  Google Scholar 

  • Artyszak A, Gozdowski D (2020) The effect of growth activators and plant growth-promoting rhizobacteria (PGPR) on the soil properties, root yield, and technological quality of sugar beet. Agronomy 10:1262. https://doi.org/10.3390/agronomy10091262

    Article  Google Scholar 

  • Ashraf M, Rehman H (1999) Mineral nutrient status of corn in relation to nitrate and long term waterlogging. J Plant Nutr 22:1253–1268. https://doi.org/10.1080/01904169909365710

    Article  Google Scholar 

  • Ashraf MA, Ahmad MSA, Ashraf M, Al-Qurainy F, Ashraf MY (2011) Alleviation of waterlogging stress in upland cotton (Gossypium hirsutum L.) by exogenous application of potassium in soil and as a foliar spray. Crop Pasture Sci 62:25–38. https://doi.org/10.1071/CP09225

    Article  Google Scholar 

  • Astorga-Eló M, Gonzalez S, Acuña JJ, Sadowsky MJ, Jorquera MA (2021) Rhizobacteria from ‘flowering desert’events contribute to the mitigation of water scarcity stress during tomato seedling germination and growth. Sci Rep 11(1):13745

    Article  PubMed  PubMed Central  Google Scholar 

  • Balakhnina TI, Bulak P, Matichenkov VV, Kosobryukhov AA, Włodarczyk TM (2015) The influence of Si-rich mineral zeolite on the growth processes and adaptive potential of barley plants under cadmium stress. J Plant Growth Regul 75:557–565. https://doi.org/10.1007/s10725-014-0021-y

    Article  Google Scholar 

  • Bano A, Gupta A, Rai S, Fatima T (2021) Mechanistic role of reactive oxygen species and its regulation via the antioxidant system under environmental stress. In: Plant stress physiology—perspectives in agriculture. IntechOpen, London, UK, pp 1–18

    Google Scholar 

  • Bansal R, Srivastava JP (2015) Effect of waterlogging on photosynthetic and biochemical parameters in pigeonpea. Russ J Plant Physiol 62:322–327. https://doi.org/10.1134/S1021443715030036

    Article  Google Scholar 

  • Baque MA, Karim MA, Hamid A, Tetsushi H (2006) Effects of fertilizer potassium on growth, yield and nutrient uptake of wheat (Triticum aestivum) under water stress conditions. South Pac Stud 27:25–35

    Google Scholar 

  • Barickman TC, Simpson CR, Sams CE (2019) Waterlogging causes early modification in the physiological performance, carotenoids, chlorophylls, proline, and soluble sugars of cucumber plants. Plan Theory 8:160. https://doi.org/10.3390/8060160

    Article  Google Scholar 

  • Basu S, Sarkar S, Prasad R, Kumar G (2022) Current approaches for alleviating abiotic stress tolerance in crops: role of beneficial microorganisms. Benef Microorg Agric:231–248. https://doi.org/10.1007/978-981-19-0733-3_9

  • Belimov AA, Dodd IC, Safronova VI, Shaposhnikov AI, Azarova TS, Makarova NM, Davies WJ, Tikhonovich IA (2015) Rhizobacteria that produce auxins and contain 1-amino-cyclopropane-1-carboxylic acid deaminase decrease amino acid concentrations in the rhizosphere and improve growth and yield of well-watered and water-limited potato (Solanum tuberosum). Ann Appl Biol 167:11–25. https://doi.org/10.1111/aab.12203

    Article  Google Scholar 

  • Benlloch-González M, Arquero O, Fournier JM, Barranco D, Benlloch M (2008) K+ starvation inhibits water-stress-induced stomatal closure. J Plant Physiol 165:623–630. https://doi.org/10.1016/j.jplph.2007.05.010

    Article  PubMed  Google Scholar 

  • Bhusal N, Kim HS, Han SG, Yoon TM (2020) Photosynthetic traits and plant–water relations of two apple cultivars grown as bi-leader trees under long-term waterlogging conditions. Environ Exp Bot 176:104111. https://doi.org/10.1016/j.envexpbot.2020.104111

    Article  Google Scholar 

  • Binks O, Meir P, Rowland L, da Costa AC, Vasconcelos SS, de Oliveira AA, Ferreira L, Mencuccini M (2016) Limited acclimation in leaf anatomy to experimental drought in tropical rainforest trees. Tree Physiol 36:1550–1561. https://doi.org/10.1093/treephys/tpw078

    Article  PubMed  PubMed Central  Google Scholar 

  • Blum A (2011) Plant breeding for water-limited environments. Springer Science and Business Media, LLC, New York, pp 217–234

    Book  Google Scholar 

  • Boru G, Van Ginkel M, Kronstad WE, Boersma L (2001) Expression and inheritance of tolerance to waterlogging stress in wheat. Euphytica 117:91–98. https://doi.org/10.1023/A:1003929803920

    Article  Google Scholar 

  • Brodersen KE, Hammer KJ, Schrameyer V, Floytrup A, Rasheed MA, Ralph PJ, Kühl M, Pedersen O (2017) Sediment resuspension and deposition on seagrass leaves impedes internal plant aeration and promotes phytotoxic H2S intrusion. Front Plant Sci 8:657. https://doi.org/10.3389/fpls.2017.00657

    Article  PubMed  PubMed Central  Google Scholar 

  • Cal AJ, Sanciangco M, Rebolledo MC, Luquet D, Torres RO, McNally KL, Henry A (2019) Leaf morphology, rather than plant water status, underlies genetic variation of rice leaf rolling under drought. Plant Cell Environ 42:1532–1544. https://doi.org/10.1111/pce.13514

    Article  PubMed  PubMed Central  Google Scholar 

  • Canales FJ, Rispail N, García-Tejera O, Arbona V, Pérez-de-Luque A, Prats E (2021) Drought resistance in oat involves ABA-mediated modulation of transpiration and root hydraulic conductivity. Environ Exp Bot 182:104333. https://doi.org/10.1016/j.envexpbot.2020.104333

    Article  Google Scholar 

  • Carlson R, Tugizimana F, Steenkamp PA, Dubery IA, Hassen AI, Labuschagne N (2020) Rhizobacteria- induced systemic tolerance against drought stress in Sorghum bicolor (L.) Moench. Microbiol Res 232:126388

    Article  PubMed  Google Scholar 

  • Cassan F, Maiale S, Masciarelli O, Vidal A, Luna V, Ruiz O (2009) Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur J Soil Biol 45:12–19. https://doi.org/10.1016/j.ejsobi.2008.08.003

    Article  Google Scholar 

  • Ceccarelli S, Grando S, Baum M (2007) Participatory plant breeding in water-limited environments. Exp Agric 43:411–435. https://doi.org/10.1017/S0014479707005327

    Article  Google Scholar 

  • Celedonio SRP, Abeledo LG, Mantese AI, Miralles DJ (2017) Differential root and shoot biomass recovery in wheat and barley with transient waterlogging during preflowering. Plant Soil 417:481–498. https://doi.org/10.1007/s11104-017-3274-1

    Article  Google Scholar 

  • Challabathula D, Zhang Q, Bartels D (2018) Protection of photosynthesis in desiccation-tolerant resurrection plants. J Plant Physiol 227:84–92. https://doi.org/10.1016/j.jplph.2018.05.002

    Article  PubMed  Google Scholar 

  • Chandra D, Sharma AK (2021) Field evaluation of consortium of bacterial inoculants producing ACC deaminase on growth, nutrients and yield components of rice and wheat. J Crop Sci Biotechnol 24(3):293–305

    Article  Google Scholar 

  • Chen J, Li N, Wang X, Meng X, Cui X, Chen Z, Ren H, Ma J, Liu H (2021a) Late embryogenesis abundant (LEA) gene family in salvia miltiorrhiza: identification, expression analysis, and response to drought stress. Plant Signal Behav 16:1891769. https://doi.org/10.1080/15592324.2021.1891769

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen M, Zhu X, Zhang Y, Du Z, Chen X, Kong X, Sun W, Chen C (2021b) Drought stress modify cuticle of tender tea leaf and mature leaf for transpiration barrier enhancement through common and distinct modes. Sci Rep 10:6696. https://doi.org/10.1038/s41598-020-63683-4

    Article  Google Scholar 

  • Chen S, Ten Tusscher KH, Sasidharan R, Dekker SC, de Boer HJ (2023) Parallels between drought and flooding: an integrated framework for plant eco-physiological responses to water stress. Plant Environ Interact 4:175–187. https://doi.org/10.1002/pei3.10117

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiappero J, del Rosario CL, Alderete LGS, Palermo TB, Banchio E (2019) Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content. Ind Crop Prod 139:111553

    Article  Google Scholar 

  • Cohen AC, Bottini R, Piccoli PN (2008) Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in arabidopsis plants. Plant Growth Regul 54:97–103. https://doi.org/10.1007/s10725-007-9232-9

    Article  Google Scholar 

  • Colmer TD, Pedersen O (2008) Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO2 and O2 exchange. New Phytol 177:918–926. https://doi.org/10.1111/j.1469-8137.2007.02318.x

    Article  PubMed  Google Scholar 

  • Dadrwal BK, Singh UP, Chauhan J, Bhudev RY, Vijai P (2020) Management of abiotic stress in crop plants. Innovative Publication Chapter 9. pp.145–162

    Google Scholar 

  • Danish S, Zafar-Ul-Hye M, Hussain S, Riaz M, Qayyum MF (2020) Mitigation of drought stress in maize through inoculation with drought tolerant ACC deaminase containing PGPR under axenic conditions. Pak J Bot 52(1):49–60

    Article  Google Scholar 

  • Das A, Basu PS, Kumar M, Ansari J, Shukla A, Thakur S, Singh P, Datta S, Chaturvedi SK, Sheshshayee MS, Bansal KC (2021) Transgenic chickpea (Cicer arietinum L.) harbouring AtDREB1a are physiologically better adapted to water deficit. Plant Biol 21:1–7. https://doi.org/10.1186/s12870-020-02815-4

    Article  Google Scholar 

  • De Bauw P, Vandamme E, Lupembe A, Mwakasege L, Senthilkumar K, Dramé KN, Merckx R (2019) Anatomical root responses of rice to combined phosphorus and water stress–relations to tolerance and breeding opportunities. Funct Plant Biol 46:1009–1022. https://doi.org/10.1071/FP19002

    Article  PubMed  Google Scholar 

  • Djanaguiraman M, Prasad PV, Kumari J, Rengel Z (2019) Root length and root lipid composition contribute to drought tolerance of winter and spring wheat. Plant Soil 439:57–73. https://doi.org/10.1007/s11104-018-3794-3

    Article  Google Scholar 

  • Domisch T, Qian J, Sondej I, Martz F, Lehto T, Piirainen S, Finér L, Silvennoinen R, Repo T (2020) Here comes the flood! Stress effects of continuous and interval waterlogging periods during the growing season on scots pine saplings. Tree Physiol 40:869–885. https://doi.org/10.1093/treephys/tpaa036

    Article  PubMed  Google Scholar 

  • Dresbøll DB, Thorup-Kristensen K (2012) Spatial variation in root system activity of tomato (Solanum lycopersicum L.) in response to short and long-term waterlogging as determined by 15 N uptake. Plant Soil 357:161–172. https://doi.org/10.1007/s11104-012-1135-5

    Article  Google Scholar 

  • Dubey A, Saiyam D, Kumar A, Hashem A, Abd_Allah EF, Khan ML (2021) Bacterial root endophytes: characterization of their competence and plant growth promotion in soybean (Glycine max (L.) Merr.) under drought stress. Int J Environ Res Public Health 18(3):931

    Google Scholar 

  • Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72:673–689. https://doi.org/10.1007/s00018-014-1767-0

    Article  PubMed  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212153-88. https://doi.org/10.1007/978-90-481-2666-8_12

    Article  Google Scholar 

  • Farwell AJ, Vesely S, Nero V, Rodriguez H, McCormack K, Shah S (2007) Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ Pollut 147:540–545. https://doi.org/10.1016/j.envpol.2006.10.014

    Article  PubMed  Google Scholar 

  • Ferchichi N, Toukabri W, Boularess M, Smaoui A, Mhamdi R, Trabelsi D (2019) Isolation, identification and plant growth promotion ability of endophytic bacteria associated with lupine root nodule grown in Tunisian soil. Arch Microbiol 201:1333–1349. https://doi.org/10.1007/s00203-019-01702-3

    Article  PubMed  Google Scholar 

  • Fibach-Paldi S, Burdman S, Okon Y (2012) Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiol Lett 326:99–108. https://doi.org/10.1111/j.1574-6968.2011.02407.x

    Article  PubMed  Google Scholar 

  • Forghani AH, Almodares A, Ehsanpour AA (2018) Potential objectives for gibberellic acid and paclobutrazol under salt stress in sweet sorghum (Sorghum bicolor [L.] Moench cv. Sofra). Appl Biol Chem 61:113–124. https://doi.org/10.1007/s13765-017-0329-1

    Article  Google Scholar 

  • Fukao T, Xu K, Ronald PC, Bailey-Serres J (2006) A variable cluster of ethylene response factor–like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18:2021–2034. https://doi.org/10.1105/tpc.106.043000

    Article  PubMed  PubMed Central  Google Scholar 

  • Galindo FS, Buzetti S, Rodrigues WL, Boleta EH, Silva VM, Tavanti RF, Fernandes GC, Biagini AL, Rosa PA, Teixeira Filho MC (2020) Inoculation of Azospirillum brasilense associated with silicon as a liming source to improve nitrogen fertilization in wheat crops. Sci Rep 10:6160. https://doi.org/10.1038/s41598-020-63095-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Galindo FS, Rodrigues WL, Fernandes GC, Boleta EH, Jalal A, Rosa PA, Buzetti S, Lavres J, Teixeira Filho MC (2022) Enhancing agronomic efficiency and maize grain yield with Azospirillum brasilense inoculation under Brazilian savannah conditions. Eur J Agron 134:126471. https://doi.org/10.1016/j.eja.2022.126471

    Article  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica. https://doi.org/10.6064/2012/963401

  • Grichko VP, Glick B (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17. https://doi.org/10.1016/S0981-9428(00)01212-2

    Article  Google Scholar 

  • Gupta A, Vandana P (2019) Effect of PGPR isolates on plant growth promotion in relation to salinity stress. Bull Environ Pharmacol Life Sci 8:18–26

    Google Scholar 

  • Gupta A, Rico-Medina A, Caño-Delgado AI (2020) The physiology of plant responses to drought. Science 368:266–269. https://doi.org/10.1126/science.aaz7614

    Article  PubMed  Google Scholar 

  • Gupta A, Rai S, Bano A, Sharma S, Kumar M, Binsuwaidan R, Suhail Khan M, Upadhyay TK, Alshammari N, Saeed M, Pathak N (2022a) ACC deaminase produced by PGPR mitigates the adverse effect of osmotic and salinity stresses in Pisum sativum through modulating the antioxidants activities. Plan Theory 11:3419

    Google Scholar 

  • Gupta A, Bano A, Rai S, Mishra R, Singh M, Sharma S, Pathak N (2022b) Mechanistic insights of plant-microbe interaction towards drought and salinity stress in plants for enhancing the agriculture productivity. Plant Stress 4:100073

    Article  Google Scholar 

  • Gupta A, Dubey P, Kumar M, Roy A, Sharma D, Khan MM, Hasanuzzaman M (2022c) Consequences of arsenic contamination on plants and mycoremediation-mediated arsenic stress tolerance for sustainable agriculture. Plan Theory 11:3220

    Google Scholar 

  • Han L, Zhang M, Du L, Zhang L, Li B (2022) Effects of Bacillus amyloliquefaciens QST713 on photosynthesis and antioxidant characteristics of Alfalfa (Medicago sativa L.) under drought stress. Agronomy 12(9):2177

    Google Scholar 

  • Hazman M, Brown KM (2018) Progressive drought alters architectural and anatomical traits of rice roots. Rice 11:1–16

    Article  Google Scholar 

  • He P, Zhao P, Wang L, Zhang Y, Wang X, Xiao H, Xiao G (2017) The PIN gene family in cotton (Gossypium hirsutum): genome-wide identification and gene expression analyses during root development and abiotic stress responses. BMC Genomics 18:1–10

    Article  Google Scholar 

  • Hu Y, Schmidhalter U (2003) Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci 168:541–549

    Article  Google Scholar 

  • Jalal A, Galindo FS, Boleta EHM, Oliveira CES, Reis AR, Nogueira TAR, Moretti Neto MJ, Mortinho ES, Fernandes GC, Teixeira Filho MCM (2021) Common bean yield and zinc use efficiency in association with diazotrophic bacteria co-inoculations. Agronomy 11:959

    Article  Google Scholar 

  • Jalal A, da Silva Oliveira CE, Freitas LA, Galindo FS, Lima BH, Boleta EHM, Da Silva EC, do Nascimento V, Nogueira TAR, Buzetti S (2022) Agronomic biofortification and productivity of wheat with soil zinc and diazotrophic bacteria in tropical savannah. Crop Pasture Sci 73:817–830

    Article  Google Scholar 

  • Jalal A, da Silva Oliveira CE, Galindo FS, Rosa PAL, Gato IMB, de Lima BH, Teixeira Filho MCM (2023a) Regulatory mechanisms of plant growth-promoting rhizobacteria and plant nutrition against abiotic stresses in Brassicaceae family. Life 13:211

    Article  PubMed  PubMed Central  Google Scholar 

  • Jalal A, Oliveira CEDS, Bastos ADC, Fernandes GC, de Lima BH, Furlani Junior E, De Carvalho PHG, Galindo FS, Gato IMB, Teixeira Filho MCM (2023b) Nano-zinc and plant growth-promoting bacteria improve biochemical and metabolic attributes of maize in tropical Cerrado. Front Plant Sci 13:5293

    Article  Google Scholar 

  • Joshi B, Chaudhary A, Singh H, Kumar PA (2020) Prospective evaluation of individual and consortia plant growth promoting rhizobacteria for drought stress amelioration in rice (Oryza sativa L.). Plant Soil 457:225–240

    Article  Google Scholar 

  • Khan N, Bano A, Curá JA (2020) Role of beneficial microorganisms and salicylic acid in improving rainfed agriculture and future food safety. Microorganisms 8(7):1018

    Article  PubMed  PubMed Central  Google Scholar 

  • Khandelwal A, Sindhu SS (2013) ACC deaminase containing rhizobacteria enhance nodulation and plant growth in Clusterbean (Cyamopsis tetragonoloba L.). J Microbiol Res 3:117–123

    Google Scholar 

  • Kloepper JW (1996) Host specificity in microbe-microbe interactions. Bioscience 46:406–409

    Article  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2019) RhizosphericMicrobiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. In: Plant growth promoting Rhizobacteria for agricultural sustainability. Springer, Singapore, pp 19–65

    Chapter  Google Scholar 

  • Kumar M, Giri VP, Pandey S, Gupta A, Patel MK, Bajpai AB, Siddique KH (2021) Plant-growth-promoting Rhizobacteria emerging as an effective bioinoculant to improve the growth, production, and stress tolerance of vegetable crops. Int J Mol Sci 22:12245

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Gupta A, Vandana P, Tiwari LD, Patel MK, Siddique KH (2024) Recent advances of plant growth-promoting rhizobacteria (PGPR)-mediated drought and waterlogging stress tolerance in plants for sustainable agriculture. Microbial biostimulants for plant growth and abiotic stress amelioration. Elsevier, In, pp 315–344

    Google Scholar 

  • Kushwah A, Bhatia D, Rani U, Yadav IS, Singh I, Bharadwaj C, Singh S (2021) Molecular mapping of quantitative trait loci for ascochyta blight and botrytis grey mould resistance in an inter-specific cross in chickpea (Cicer arietinum L.) using genotyping by sequencing. Breed Sci 71:229–239. https://doi.org/10.1270/jsbbs.20085

    Article  PubMed  PubMed Central  Google Scholar 

  • Laishram R, Dutta M, Nagesh CR, Sushmitha J, Meena NL (2024) Effect on morphology, physiology, and biochemistry of plants under different stresses. In: Molecular dynamics of plant stress and its management. Springer Nature Singapore, Singapore, pp 159–192

    Chapter  Google Scholar 

  • Lal M, Kumari A, Sheokand S (2019) Reactive oxygen species, reactive nitrogen species and oxidative metabolism under water logging stress. In: Hasanuzzaman M, Fotopoulos V, Nahar K, Fujita M (eds) Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms. John Wiley & Sons Ltd., pp 777–812

    Chapter  Google Scholar 

  • Lawson JR, Fryirs KA, Leishman MR (2017) Interactive effects of waterlogging and atmospheric CO2 concentration on gas exchange, growth and functional traits of Australian riparian tree seedlings. Ecohydrology 10:e1803

    Article  Google Scholar 

  • Laxa M, Liebthal M, Telman W, Chibani K, Dietz KJ (2019) The role of the plant antioxidant system in drought tolerance. Antioxidants 8:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee DK, Jung H, Jang G, Jeong JS, Kim YS, Ha SH, Do Choi Y, Kim JK (2016) Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance. Plant Physiol 172:575–588

    Article  PubMed  PubMed Central  Google Scholar 

  • Lemsons e Silva CF, de Mattos LAT, de Oliveria AC, de Carvalho FIF, de Freitas FA, Anjos e Silva SD (2003) Flooding tolerance in oats. Crop Breed Appl Biotechnol 5:29–42

    Google Scholar 

  • Li H, Rasheed A, Hickey LT, He Z (2018) Fast-forwarding genetic gain. Trends Plant Sci 23:184–186

    Article  PubMed  Google Scholar 

  • Liu WS, Zheng L, Qi DH (2020) Variation in leaf traits at different altitudes reflects the adaptive strategy of plants to environmental changes. Ecol Evol 10:8166–8175

    Article  PubMed  PubMed Central  Google Scholar 

  • Loreti E, VanVeen H, Perata P (2016) Plant responses to flooding stress. Curr Opin Plant Biol 33:64–71

    Article  PubMed  Google Scholar 

  • Lozano YM, Aguilar-Trigueros CA, Flaig IC, Rillig MC (2020) Root trait responses to drought are more heterogeneous than leaf trait responses. Funct Ecol 34:2224–2235

    Article  Google Scholar 

  • Luan H, Guo B, Shen H, Pan Y, Hong Y, Lv C, Xu R (2020) Overexpression of barley transcription factor HvERF2. 11 in Arabidopsis enhances plant waterlogging tolerance. Int J Mol Sci 21:1982

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo H, Guo J, Yu B, Chen W, Zhang H, Zhou X, Chen Y, Huang L, Liu N, Ren X, Yan L (2021) Construction of ddRADseq-based high-density genetic map and identification of quantitative trait loci for trans-resveratrol content in Peanut seeds. Front Plant Sci 12:438. https://doi.org/10.3389/fpls.2021.644402

    Article  Google Scholar 

  • Mahmood Aulakh A, Qadir G, Hassan FU, Hayat R, Sultan T, Billah M, Hussain M, Khan N (2020) Desert soil microbes as a mineral nutrient acquisition tool for chickpea (Cicer arietinum L.) productivity at different moisture regimes. Plan Theory 9:1629. https://doi.org/10.3390/plants9121629

    Article  Google Scholar 

  • Manna M, Thakur T, Chirom O, Mandlik R, Deshmukh R, Salvi P (2021) Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiol Plant 172:847–868

    Article  PubMed  Google Scholar 

  • Manzanilla DO, Paris TR, Vergara GV (2011) Submergence risks and farmers’ preferences: implications for breeding Sub1 rice in Southeast Asia. Agric Syst 104:335–347

    Article  Google Scholar 

  • Meng D, Dong B, Niu L, Song Z, Wang L, Amin R, Cao H, Li H, Yang Q, Fu Y (2021) The pigeon pea CcCIPK14-CcCBL1 pair positively modulates drought tolerance by enhancing flavonoid biosynthesis. Plant J 106:1278–1297

    Article  PubMed  Google Scholar 

  • Meza B, Bashan LE, Bashan Y (2015) Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris. Res Microbiol 166:72–83

    Article  PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  PubMed  Google Scholar 

  • Minhas D, Grover A (1999) Towards developing transgenic rice plants tolerant to flooding stress. Proc Indian Natl Sci Acad-Part B 65:33–50

    Google Scholar 

  • Mommer L, Visser E (2005) Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity. Ann Bot 96:581–589

    Article  PubMed  PubMed Central  Google Scholar 

  • Mommer L, Pons TL, Wolters-Arts M, Venema JH, Visser EJ (2005) Submergence-induced morphological, anatomical, and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance. Plant Physiol 139:497–508

    Article  PubMed  PubMed Central  Google Scholar 

  • Murali M, Gowtham HG, Singh SB, Shilpa N, Aiyaz M, Niranjana SR, Amruthesh KN (2021) Bio-prospecting of ACC deaminase producing Rhizobacteria towards sustainable agriculture: a special emphasis on abiotic stress in plants. Appl Soil Ecol 168:104142. https://doi.org/10.1016/j.apsoil.2021.104142

    Article  Google Scholar 

  • Nadal M, Roig-Oliver M, Bota J, Flexas J (2020) Leaf age-dependent elastic adjustment and photosynthetic performance under drought stress in Arbutus unedo seedlings. Flora 271:151662

    Article  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The molecular responses to drought stress transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:170

    Article  PubMed  PubMed Central  Google Scholar 

  • Nascimento F, Brigido C, Alho L, Glick BR, Oliveira S (2012) Enhanced chickpea growth-promotion ability of a Mesorhizobium strain expressing an exogenous ACC deaminase gene. Plant Soil 353:221–230

    Article  Google Scholar 

  • Nelissen H, Sun XH, Rymen B, Jikumaru Y, Kojima M, Takebayashi Y, Abbeloos R, Demuynck K, Storme V, Vuylsteke M (2018) The reduction in maize leaf growth under mild drought affects the transition between cell division and cell expansion and cannot be restored by elevated gibberellic acid levels. Plant Biotechnol J 16:615–627

    Article  PubMed  Google Scholar 

  • Ouyang WJ, Struik PC, Yin XY, Yang JC (2017) Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought. J Exp Bot 68:5191–5205

    Article  PubMed  PubMed Central  Google Scholar 

  • Palta JA, Ganjeali A, Turner NC, Siddique KHM (2010) Effects of transient subsurface waterlogging on root growth, plant biomass and yield of chickpea. Agric Water Manag 97:1469–1476

    Article  Google Scholar 

  • Pan DL, Wang G, Wang T, Jia ZH, Guo ZR, Zhang JY (2019) AdRAP2.3, a novel ethylene response factor vii from Actinidiadeliciosa, enhances waterlogging resistance in transgenic tobacco through improving expression levels of PDC and ADH genes. Int J Mol Sci 20:1189

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan J, Sharif R, Xu X, Chen X (2021) Mechanisms of waterlogging tolerance in plants: research progress and prospects. Front Plant Sci 11:627–331

    Article  Google Scholar 

  • Patharkar O, Walker JC (2019) Connections between abscission, dehiscence, pathogen defense, drought tolerance, and senescence. Plant Sci 284:25–29

    Article  PubMed  Google Scholar 

  • Pedersen O, Sauter M, Colmer TD, Nakazono M (2021) Regulation of root adaptive anatomical and morphological traits during low soil oxygen. New Phytol 229:42–49

    Article  PubMed  Google Scholar 

  • Petrillo C, Vitale E, Ambrosino P, Arena C, Isticato R (2022) Plant growth-promoting bacterial consortia as a strategy to alleviate drought stress in Spinacia oleracea. Microorganisms 10(9):1798

    Article  PubMed  PubMed Central  Google Scholar 

  • Pierret A, Maeght JL, Clement C, Montoroi JP, Hartmann C, Gonkhamdee S (2016) Understanding deep roots and their functions in ecosystems: an advocacy for more unconventional research. Ann Bot 118:621–635

    Article  PubMed  PubMed Central  Google Scholar 

  • Ploschuk RA, Miralles DJ, Colmer TD, Ploschuk EL, Striker GG (2018) Waterlogging of winter crops at early and late stages: impacts on leaf physiology, growth and yield. Front Plant Sci 9:1863

    Article  PubMed  PubMed Central  Google Scholar 

  • Polle A (2001) Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol 126:445–462

    Article  PubMed  PubMed Central  Google Scholar 

  • Pucciariello C, Perata P (2017) New insights into reactive oxygen species and nitric oxide signalling under low oxygen in plants. Plant Cell Environ 40:473–482

    Article  PubMed  Google Scholar 

  • Puthiyottil P, Akkara Y (2021) Pre treatment with Bacillus subtilis mitigates drought induced photo-oxidative damages in okra by modulating antioxidant system and photochemical activity. Physiol Mol Biol Plants 27(5):945–957

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahman KU, Ali K, Rauf M, Arif M (2023) Aspergillus nomiae and fumigatus ameliorating the hypoxic stress induced by waterlogging through ethylene metabolism in Zea mays L. Microorganisms 11(8):2025

    Article  PubMed  PubMed Central  Google Scholar 

  • Raina A, Laskar RA, Wani MR, Khan S (2022) Plant breeding strategies for abiotic stress tolerance in cereals. In: Omics approach to manage abiotic stress in cereals. Springer Nature Singapore, Singapore, pp 151–177

    Chapter  Google Scholar 

  • Ren B, Zhu Y, Zhang J, Dong S, Liu P, Zhao B (2016) Effects of spraying exogenous hormone 6-benzyladenine (6-BA) after waterlogging on grain yield and growth of summer maize. Field Crop Res 188:96–104

    Article  Google Scholar 

  • Rosa PAL, Mortinho ES, Jalal A, Galindo FS, Buzetti S, Fernandes GC, Barco Neto M, Pavinato PS, Teixeira Filho MCM (2020) Inoculation with growth-promoting bacteria associated with the reduction of phosphate fertilization in sugarcane. Front Environ Sci 8:32

    Article  Google Scholar 

  • Rueda M, Godoy O, Hawkins BA (2017) Spatial and evolutionary parallelism between shade and drought tolerance explains the distributions of conifers in the conterminous United States. Glob Ecol Biogeogr 26:31–42

    Article  Google Scholar 

  • Saikia J, Sarma RK, Dhandia R, Yadav A, Bharali R, Gupta VK, Saikia R (2018) Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci Rep 8(1):3560

    Article  PubMed  PubMed Central  Google Scholar 

  • Salvi S, Tuberosa R (2015) The crop QTLome comes of age. Curr Opin Biotechnol 32:179–185. https://doi.org/10.1016/j.copbio.2015.01.001

    Article  PubMed  Google Scholar 

  • Sasidharan R, Bailey-Serres J, Ashikari M, Atwell BJ, Colmer TD, Fagerstedt K (2017) Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytol 214:1403–1407

    Article  PubMed  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA, Khalid A (2006) Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem 38:2971–2975

    Article  Google Scholar 

  • Shanmugam S, Boyett VA, Khodakovskaya M (2021) Enhancement of drought tolerance in rice by silencing of the OsSYT-5 gene. PLoS One 16:e0258171

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva SD, de Melo Sereno MJ, e Silva CF, de Oliveira AC, Neto JF (2005) Genetic parameters and QTL fortolerance to flooded soils in maize. Crop Breed Appl Biotechnol 5:287–293. https://doi.org/10.1626/pps.9.176

    Article  Google Scholar 

  • Singh AK, Cabral C, Kumar R, Ganguly R, Kumar Rana H, Gupta A, Pandey AK (2019) Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency. Nutrients 11:2216

    Article  Google Scholar 

  • Sivasakthi S, Usharani G, Saranraj P (2014) Biocontrol potentiality of plant growth promoting bacteria (PGPR)—Pseudomonas fluorescens and Bacillus subtilis: a review. Afr J Agric Res 16:1265–1277

    Google Scholar 

  • Smethurst CF, Shabala S (2003) Screening methods for waterlogging tolerance in lucerne: comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content. Funct Plant Biol 30:335–343

    Article  PubMed  Google Scholar 

  • Song H, Li YB, Zhou L, Xu ZZ, Zhou GS (2018) Maize leaf functional responses to drought episode and rewatering. Agric For Meteorol 249:57–70

    Article  Google Scholar 

  • Sundgren TK, Uhlen AK, Lillemo M, Briese C, Wojciechowski T (2018) Rapid seedling establishment and a narrow root stele promotes waterlogging tolerance in spring wheat. J Plant Physiol 227:45–55

    Article  PubMed  Google Scholar 

  • Tahira MH, Muhammad A, Muhammad SAA, Riffat B, Sana F (2014) Anatomical and physiological adaptations in aquatic ecotypes of Cyperus alopecuroides Rottb. under saline and waterlogged conditions. Aquat Bot 116:60–68

    Article  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  • Teixeira Filho MM, Galindo FS (2019) Inoculation of bacteria with a focus on biological nitrogen fixation and promotion of plant growth. In: Severiano EC, Moraes MF, Paula AM (eds) Topics in soil science—volume X. Brazilian Society of Soil Science, Brasilia, Brazil, pp 577–648

    Google Scholar 

  • Thangthong N, Jogloy S, Punjansing T, Kvien CK, Kesmala T, Vorasoot N (2019) Changes in root anatomy of peanut (Arachis hypogaea L.) under different durations of early season drought. Agronomy 9:215

    Article  Google Scholar 

  • Ullah U, Ashraf M, Shahzad SM, Siddiqui AR, Piracha MA, Suleman M (2016) Growth behavior of tomato (Solanum lycopersicum L.) under drought stress in the presence of silicon and plant growth promoting rhizobacteria. Soil Environ 35:65–75

    Google Scholar 

  • Ullah A, Ul Qamar MT, Nisar M, Hazrat A, Rahim G, Khan AH, Hayat K, Ahmed S, Ali W, Khan A, Yang X (2020) Characterization of a novel cotton MYB gene, GhMYB108-like responsive to abiotic stresses. Mol Biol Rep 47:1573–1581

    Article  PubMed  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting Rhizobacteria in agricultural sustainability—a review. Molecules 21:573

    Article  PubMed  PubMed Central  Google Scholar 

  • Waszczak C, Carmody M, Kangasjarvi J (2018) Reactive oxygen species in plant signaling. Annu Rev Plant Biol 69:209–236

    Article  PubMed  Google Scholar 

  • Webb J, Fletcher R (1996) Paclobutrazol protects wheat seedlings from injury due to waterlogging. Plant Growth Regul 18:201–206

    Article  Google Scholar 

  • Wei WL, Li DH, Wang LH, Ding X, Zhang YX, Gao Y, Zhang XR (2013) Morpho-anatomical and physiological responses to waterlogging of sesame (Sesamum indicum L.). Plant Sci 208:102–111

    Article  PubMed  Google Scholar 

  • Wei X, Xu H, Rong W, Ye X, Zhang Z (2019) Constitutive expression of a stabilized transcription factor group VII ethylene response factor enhances waterlogging tolerance in wheat without penalizing grain yield. Plant Cell Environ 42:1471–1485

    Article  PubMed  Google Scholar 

  • Xiao B, Jespersen D (2019) Morphological and physiological responses of seashore paspalum and bermudagrass to waterlogging stress. J Am Soc Hortic Sci 144:305–313

    Article  Google Scholar 

  • Xiao S, Liu LT, Zhang YJ, Sun HC, Zhang K, Bai ZY, Dong HZ, Li CD (2020) Fine root and root hair morphology of cotton under drought stress revealed with RhizoPot. J Agron Crop Sci 206:679–693

    Article  Google Scholar 

  • Yang Z, Chi X, Guo F, Jin X, Luo H, Hawar A, Sun B (2020) SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress-responsive gene, SbRD19, in sorghum. J Plant Physiol 246:153142

    Article  PubMed  Google Scholar 

  • Yasmin H, Bano A, Wilson NL, Nosheen A, Naz R, Hassan MN et al (2022) Drought-tolerant Pseudomonas sp. showed differential expression of stress-responsive genes and induced drought tolerance in Arabidopsis thaliana. Physiol Plant 174(1):e13497

    Article  PubMed  Google Scholar 

  • Ye H, Song L, Chen H, Valliyodan B, Cheng P, Ali L, Nguyen HT (2018) A major natural genetic variation associated with root system architecture and plasticity improves waterlogging tolerance and yield in soybean. Plant Cell Environ 41:2169–2182

    PubMed  Google Scholar 

  • Yeboah MA, Xuehao C, Feng CR, Alfandi M, Liang G, Gu M (2008) Mapping quantitative trait loci for waterlogging tolerance in cucumber using SRAP and ISSR markers. Biotechnology 7:157–167

    Article  Google Scholar 

  • Yin DM, Luo HL (2012) Anatomical responses to waterlogging in Chrysanthemum zawadskii. Sci Hortic 146:86–91

    Article  Google Scholar 

  • Yin DM, Chen SM, Chen FD, Guan ZY, Fang WM (2010) Morpho-anatomical and physiological responses of two Dendranthema species to waterlogging. Environ Exp Bot 68:122–130

    Article  Google Scholar 

  • Yiu JC, Liu CW, Fang DYT, Lai YS (2009) Waterlogging tolerance of Welsh onion (Allium fistulosum L.) enhanced by exogenous spermidine and spermine. Plant Physiol Biochem 47:710–716

    Article  PubMed  Google Scholar 

  • Yu F, Han X, Geng C, Zhao Y, Zhang Z, Qiu F (2015) Comparative proteomic analysis revealing the complex network associated with waterlogging stress in maize (Zea mays L.) seed-ling root cells. Proteomics 15:135–147

    Article  PubMed  Google Scholar 

  • Zaheer MS, Raza MAS, Saleem MF, Khan IH, Ahmad S, Iqbal R, Manevski K (2019) Investigating the effect of Azospirillum brasilense and Rhizobium pisi on agronomic traits of wheat (Triticum aestivum L.). Arch Agron Soil Sci 65:1554–1564

    Article  Google Scholar 

  • Zate ZZ (2021) Quantitative trait loci mapping of agronomic traits in a cowpea (Vigna unguiculata L.) bi-parental cross. J Sustain Dev 9:39–58. https://doi.org/10.20372/au.jssd.9.1.2021.0258

    Article  Google Scholar 

  • Zeffa DM, Fatin LH, Santos OJAP, Oliveira ALM, Canteri MG, Scapim CA, Gonçalves LSA (2018) The influence of topdressing nitrogen on Azospirillum spp. inoculation in maize crops through meta-analysis. Bragantia 77:493–500

    Article  Google Scholar 

  • Zhang XC, Shabala S, Koutoulis A, Shabala L, Johnson P, Hayes D, Nichols DS, Zhou MX (2015) Waterlogging tolerance in barley is associated with faster aerenchyma formation in adventitious roots. Plant Soil 394:355–372

    Article  Google Scholar 

  • Zhang JS, Zhang H, Srivastava AK, Pan YJ, Bai JJ, Fang JJ, Shi HZ, Zhu JK (2018) Knockdown of rice MicroRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development. Plant Physiol 176:2082–2094

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Zhu K, Wang YQ, Zhang ZP, Lu F, Yu HQ, Zou JQ (2019) Changes in photosynthetic and chlorophyll fluorescence characteristics of sorghum under drought and water-logging stress. Photosynthetica 57:1156–1164

    Article  Google Scholar 

  • Zheng GQ, Zhang L, Zheng GB, Zhang YP, Wang J, Hu ZH (2010) Effects of irrigation amount on leaf structure, photosynthetic physiology, and fruit yield of Lycium barbarum in arid area. Ying Yong sheng tai xue bao= the. J Appl Ecol 21:2806–2813

    Google Scholar 

  • Zhou WJ, Zhao DS, Lin XQ (1997) Effects of waterlogging on nitrogen accumulation and alleviation of waterlogging damage by application of nitrogen fertilizer and mixtalol in winter rape (Brassica napus L.). J Plant Growth Regul 16:47–53

    Article  Google Scholar 

  • Zhu M, Li FH, Shi ZS (2016) Morphological and photosynthetic response of waxy corn inbred line to waterlogging. Photosynthetica 54:636–640

    Article  Google Scholar 

  • Zuniga FA, Bustos SA, Alves F, Martinez V, Smith RC (2017) Physiological and morphological responses to permanent and intermittent waterlogging in seedlings of four evergreen trees of temperate swamp forests. Tree Physiol 37:779–789

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vandana, P., Gupta, A., Kumar, M. (2024). Drought and Waterlogging Stress Responses in Crops. In: Singh Chauhan, P., Tewari, S.K., Misra, S. (eds) Plant-Microbe Interaction and Stress Management. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-97-4239-4_4

Download citation

Keywords

Publish with us

Policies and ethics