Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Polysaccharases in Biofilms — Sources — Action — Consequences!

  • Chapter
Microbial Extracellular Polymeric Substances
  • 2630 Accesses

  • 14 Citations

Abstract

As such a large proportion of the structure of biofilms is composed of polysaccharides secreted by the constituent micro-organisms, the presence of enzymes (polysaccharases) acting on these polymers will inevitably have a very marked effect on the structure and on the integrity of the biofilm. It is also possible that glycosidases capable of cleaving exposed terminal monosaccharide residues may modify both polysaccharides and glycoproteins present in biofilms. Enzymes will derive from a variety of sources and may well differ considerably in their effects. It has also to be remembered that in multi-species biofilms, the collective action of several different enzymes may result in the degradation or alteration of polysaccharides which are resistant to discrete enzymes. Thus, the growth of different enzyme-secreting species in close proximity with intimate cell:cell contact may permit synergistic action of the enzyme mixture within the confines of the biofilm. The effects of polysaccharases may well be moderated if a mixture of polysaccharides is present and removal of one polymer leaves others with similar physical properties intact. The presence of other chemical compounds absorbed to the polysaccharides may also have a moderating influence on enzyme action. Thus simultaneous release of biosurfactants could well affect enzyme activity either positively (enhancing degradation) or negatively (inhibiting destruction of the substrate).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aereboe M, Parolis H, Parolis, LAS (1993) Klebsiella K43 capsular polysaccharide:primary structure and depolymerisation by a viral borne endoglycanase. Carbohydr Res 248: 213–223

    Article  CAS  Google Scholar 

  • Altmann F, Kwiatkowski B, Stirm S (1986) A bacteriophage associated glycanase cleaving β-pyranosidic linkages of 3-deoxy-D-amnno-2-octulosonic acid (KDO). Biochem Biophys Res Commun 136: 329–335

    Article  CAS  Google Scholar 

  • Altmann F, Maerz L, Stirm S, Unger FM (1987) Two additional phage-associated glycan hydrolases cleaving ketosidic bonds of 3-deoxy-D-manno-octulosonic acid in capsular polysaccharides of Escherichia coli. FEBS Lett 221: 145–149

    Article  CAS  Google Scholar 

  • Baxa U, Steinbacher S, Miller S, Weintraub A, Huber R, Seckler R (1996) Interactions of phage P22 tails with their cellular receptor, Salmonella O-antigen polysaccharide. Biophys J 71: 2040–2048

    Article  CAS  Google Scholar 

  • Bayer ME, Thurow H, Bayer MH (1979) Penetration of the polysaccharide capsule of Escherichia coli (Bi161/42) by bacteriophage K29. Virol 94: 95–118

    Article  CAS  Google Scholar 

  • Boyd A, Chakrabarty AM (1994) Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl Environ Microbiol 60: 2355–2359

    CAS  Google Scholar 

  • Burne RA, Schilling K, Bowen WH, Yasbin RE (1987) Expression, purification and characterization of an exo-(3-D-fructosidase of Streptococcus mutans. J Bacteriol 169: 4507–4517

    CAS  Google Scholar 

  • Cadmus MC, Jackson LK, Burton KA, Plattner RD, Slodki ME (1982) Biodegradation of xanthan gum by Bacillus sp. Appl Environ Microbiol 44: 5–11

    CAS  Google Scholar 

  • Cescutti P, Paoletti S (1994) On the specificity of a bacteriophage borne endoglycanase for the native capsular polysaccharide produced by Klebsiella pneumoniae SK1 and its derived polymers. Biochem Biophys Res Commun 198: 1128–1134

    Article  CAS  Google Scholar 

  • Chakraborty AK (1985) Depolymerization of capsular polysaccharide by glycanase activity of Klebsiella bacteriophage 51. Ind J Biochem 22: 22–26

    CAS  Google Scholar 

  • Conti E, Flaibani A, O’Regan M, Sutherland IW (1994) Alginate from Pseudomonas fluorescens and Pseudomonas putida: production and properties. Microbiology 140: 1128–1132

    Article  Google Scholar 

  • Davidson IW, Lawson CJ, Sutherland IW (1977) An alginate lyase from Azotobacter vinelandii phage. J Gen Microbiol 98: 223–229

    CAS  Google Scholar 

  • DiFabio JL, Dutton GGS, Parolis H (1984) Preparation of a branched heptasaccharide by bacteriophage depolymerization of Klebsiella K60 capsular polysaccharide. Carbohydr Res 126: 261–269

    Article  CAS  Google Scholar 

  • Dutton GGS, Merrifield EH (1982) Acylated oligosaccharides from Klebsiella K63 capsular polysaccharide: depolymerization by partial hydrolysis by bacteriophage-borne enzymes. Carbohydr Res 103: 107–128

    Article  CAS  Google Scholar 

  • Dutton GGS, Lam Z, Lim AVS (1988) N-acety1–13-D-galactosaminidase activity of E. coli phage 44 and the sequencing of E. coli K44 capsular polysaccharide by mass spectrometry. Carbohydr Res 183: 123–125

    Article  CAS  Google Scholar 

  • Eichholtz H, Freund-Mölbert E, Stirm S (1975) Escherichia coli capsule bacteriophages. J Virol 15: 985–993

    CAS  Google Scholar 

  • Elsässer-Beile U, Stirm S (1981) Substrate specificity of the glycanase activity associated with particles of Klebsiella bacteriophage no 6. Carbohydr Res 88: 315–322

    Article  Google Scholar 

  • Fehmel F, Feige U, Niemann H, Stirm S (1975) Escherichia coli capsule bacteriophages VII. Bacteriophage 29-host capsular polysaccharide interactions. J Virol 16: 591–601

    CAS  Google Scholar 

  • Frølund B, Griebe T, Nielsen PH (1995) Enzymatic activity in the activated sludge floc matrix. Appl Microbiol Biotechnol 43: 755–761

    Article  Google Scholar 

  • Gilbert HJ, Hazlewood GP (1993) Bacterial cellulases and xylanases. J Gen Microbiol 139: 187–194

    CAS  Google Scholar 

  • Gilkes NR, Claeyssens M, Aebersold R, Henrissat B, Meinke A (1991) Structural and functional relationships in two families of β-1,4-glycanases. Eur J Biochem 202: 367–377

    Article  CAS  Google Scholar 

  • Glucksman MA, Reuber TL, Walker GC (1993) Genes needed for the modification, polymerization, export and processing of succinoglycan by Rhizobium meliloti: a model for succinoglycan biosynthesis. J Bacteriol 175: 7045–7055

    Google Scholar 

  • Grimmeke H-D, Knirel YA, Kiesel B, Voges M, Rietschel ET (1994a) Structure of the Acetobacter methanolicus MB 129 capsular polysaccharide and of oligosaccharides resulting from degradation by bacteriophage Acm. Carbohydr Res 259: 45–58

    Article  Google Scholar 

  • Grimmeke H-D, Knirel YA, Shashkov AS, Kiesel B, Lauk W, Voges M (1994b) Structure of the capsular polysaccharide and the 0-side chain of the lipolysaccharide from Acetobacter methanolicus. Carbohydr Res 253: 277–282

    Article  Google Scholar 

  • Hallenbeck PC, Vimr ER, Yu F, Bassler B, Troy FA (1987) Purification and properties of a bacteriophage-induced endo-N-acetylneuraminidase. J Biol Chem 262: 3553–3561

    CAS  Google Scholar 

  • Hänfling P, Shashkov AS, Jann B, Jann K (1996) Analysis of the enzymatic cleavage (β-elimination) of the capsular K5 polysaccharide of E. coli by the K5-specific coliphage: a re-examination. J Bacteriol 178: 4747–4750

    Google Scholar 

  • Hou CT, Barnabe N, Greaney K (1986) Biodegradation of xanthan by salt-tolerant aerobic micro-organisms. J Ind Microbiol 1: 31–37

    Article  CAS  Google Scholar 

  • Hughes KA (1997) Bacterial biofilms and their exopolysaccharides. PhD thesis, Edinburgh University

    Google Scholar 

  • Iwashita S, Kanegasaki S (1976) Deacetylation reaction catalyzed by Salmonella phage. J Biol Chem 251: 5361–5365

    CAS  Google Scholar 

  • Jass J, Costerton JW, Lappin-Scott HM (1995) Assessment of a chemostat-coupled modified Robbins device to study biofilms. J Ind Microbiol 15: 283–289

    Article  CAS  Google Scholar 

  • Johansen C, Falholt P, Gram L (1997) Enzymatic removal and disinfection of bacterial bio-films. Appl Environ Microbiol 63: 3724–3728

    CAS  Google Scholar 

  • Kennedy L, McDowell K, Sutherland IW (1992) Alginases from Azotobacter species. J Gen Microbiol 138: 2465–2471

    CAS  Google Scholar 

  • Koval SF, Bayer ME (1997) Bacterial capsules–no barrier against Bdellovibrio. Microbiol 143: 749–753

    Article  CAS  Google Scholar 

  • Kwiatkowski B, Boschek B, Thiele H, Stirm S (1983) Substrate specificity of two bacteriophage associated endo-N-acetylneuraminidases. J Virol 45: 367–374

    CAS  Google Scholar 

  • Lawman P, Bleiweis AW (1991) Molecular cloning of the extracellular endodextranase of Streptococcus salivarius. J Bacteriol 173: 495–504

    Google Scholar 

  • Legoux R, Lelong P, Jourde C, Feuillerat C, Capdeville J, Sure V, Ferran E, Kaghad M, Delpech B, Shire D, Ferrara P, Loisin G, Salomé M (1996) N-acetyl-heparosan lyase of E. coli K5: gene:gene cloning and expression. J Bacteriol 178: 7260–7264

    CAS  Google Scholar 

  • Long GS, Bryant JM, Taylor PW, Luzio JP (1995) Complete nucleotide sequence of the gene encoding bacteriophage E endosialidase: implications for K1E endosialidase structure and function. Biochem J 309: 43–55

    Google Scholar 

  • Matthysse AG, White S, Lightfoot R (1995) Genes required for cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 177: 1069–1075

    CAS  Google Scholar 

  • McNeil M, Darvill J, Darvill AG, Albersheim P, van Veen R, Hooykas P, Schilepoort R, Dell A (1986) The discernible, structural features of the acidic polysaccharides secreted by different Rhizobium species are the same. Carbohydr Res 146: 307–326

    Article  CAS  Google Scholar 

  • Mishra C, Robbins PW (1995) Specific beta-glucanases as tools for polysaccharide structure determination. Glycobiology 5: 645–654

    Article  CAS  Google Scholar 

  • Niemann H, Birch-Andersen A, Kjems E, Mansa B, Stirm S (1976) Streptococcal bacteria-phage 12/12-borne hyaluronidase and its characterization as a lyase. Acta Pathol Microbiol Scand 84: 145–153

    CAS  Google Scholar 

  • Niemann H, Kwiatkowski B, Westphal, U, Stirm S (1977) Klebsiella serotype-13 capsular polysaccharide: primary structure and depolymerization by a bacteriophage-borne glycanase. J Bacteriol 130: 366–374

    CAS  Google Scholar 

  • Nimmich W (1997) Degradation studies on Escherichia coli capsular polysaccharides by bacteriophages. FEMS Microbiol Lett 153: 105–110

    Article  CAS  Google Scholar 

  • Osman SF, Fett WF, Irwin PL, Bailey DG, Parris N, O’Connor JV (1993) Isolation and characterization of an exopolysaccharide depolymerase from Pseudomonas marginalis HTO41B. Curr Microbiol 26: 299–304

    Article  CAS  Google Scholar 

  • Oyaizu H, Komagata K, Amemura A, Harada T (1982) A succinoglycan-decomposing bacterium, Cytophaga arvensicola sp. nov. J Gen Appl Microbiol 28: 369–388

    Article  CAS  Google Scholar 

  • Pecina A, Paneque A (1994) Detection of alginate lyase by activity staining after SDS PAGE and subsequent renaturation. Anal Biochem 217: 124–127

    Article  CAS  Google Scholar 

  • Prehm P, Jann K (1976) Enzymatic action of coliphage 8 and its possible role in infection. J Virol 19: 940–949

    CAS  Google Scholar 

  • Ravenscroft N, Jackson GE, Joao H, Stephen AM (1988) Spectroscopic analysis of oligosaccharides produced by bacteriophage-borne enzyme action on Klebsiella K36 polysaccharide. S Afr J Chem 41: 42

    CAS  Google Scholar 

  • Schiller NL, Monday SR, Boyd C, Keen NT, Ohman DE (1993) Characterization of the Pseudomonas alginate lyase gene (algL): cloning, sequencing and expression in E. coli. J Bacteriol 175: 780–789

    Google Scholar 

  • Sengha SS, Anderson, AJ, Hacking AJ, Dawes E. (1989) The production of alginate by Pseudomonas mendocina in batch and continuous culture. J Gen Microbiol 135: 795–804

    CAS  Google Scholar 

  • Shabtai Y, Gutnick DL (1985) Exocellular esterase and emulsan release from the cell surface of Acinetobacter calcoaceticus. J Bacteriol 161: 1176–1181

    CAS  Google Scholar 

  • Shaldee PN, Glaser, JH, Conrad HE (1985) A sulfatase specific for glucuronic acid 2-sulfate residues in glycosaminoglycans. J Biol Chem 260: 9146–9149

    Google Scholar 

  • Shevchik VE, Hugouvieux-Cotte-Pattat N (1997) Identification of a bacterial pectin acetyl esterase in Erwinia chrysanthemi 3937. Mol Microbiol 24: 1285–1301

    Article  CAS  Google Scholar 

  • Smith ARW, Zamze SE, Hignett RC (1994) Morphology and hydrolytic activity of A7, a typing phage of Pseudomonas syringae pv. morsprunorum. Microbiol 140: 905–913

    Article  CAS  Google Scholar 

  • Standal R, Iversen T, Coucheron DH, Fjaervik E, Blatny JM, Valla S (1994) A new gene required for cellulose production and a gene encoding cellulolytic activity in Acetobacter xylinum are colocalised with the bcs operon. J Bacteriol 176: 665–672

    CAS  Google Scholar 

  • Steinbacher S, Mille S, Baxa U, Budisa N, Weintraub A, Seckler R, Huber R (1997) Phage P22 tailspike protein–crystal structure of the head-binding domain at 2.3 angstrom, fully refined structure of the endorhamnosidase at 1.56 angstrom resolution, and the molecular basis of O-antigen recognition and cleavage. J Mol Biol 267: 865–880

    Article  CAS  Google Scholar 

  • Stirm S, Freund-Moelbert E (1971) Escherichia coli capsule bacteriophages II. Morphology. J Virol 8: 330–342

    CAS  Google Scholar 

  • Sutherland IW (1995) Polysaccharide lyases. FEMS Microbiol Rev 16: 323–347

    Article  CAS  Google Scholar 

  • Sutherland IW (1997) Microbial exopolysaccharides-structural subtleties and their consequences. Pure Appl Chem 69: 1911–1917

    Article  CAS  Google Scholar 

  • Sutherland IW, Kennedy L (1996) Polysaccharide lyases from gellan-producing Sphingomonas spp. Microbiol 142: 867–872

    Article  CAS  Google Scholar 

  • Tait MI, Sutherland IW (1989) Synthesis and properties of a mutant type of xanthan. J Appl Bacteriol 66: 457–460

    Article  CAS  Google Scholar 

  • van Dam JEG, Halbeek H, Kamerling JP, Vliegenhart JFG, Snippe H, Jansze M, Willers JMN (1985) A bacteriophage-associated lyase acting on Klebsiella serotype K5 capsular polysaccharide. Carbohydr Res 142: 338–343

    Article  Google Scholar 

  • Voepel KC, Buller CS (1990) Formation of an extracellular energy reserve by Cellulomonas flavigena strain KU. J Ind Microbiol 5: 131–138

    Article  Google Scholar 

  • Xun L, Mah RA, Boone DR (1990) Appl Environ Microbiol 56: 3693–3698

    CAS  Google Scholar 

  • Yamazaki M, Thorne L, Mikolajczak MJ, Armentrout RW, Pollock TJ (1996) Linkage of genes essential for synthesis of a polysaccharide capsule in Sphingomonas Strain S88. J Bacteriol 178: 2676 - X2687

    CAS  Google Scholar 

  • Yurewicz EC, Ghalambor MA, Duckworth DH, Heath EC (1971) Catalytic and molecular properties of a phage induced capsular polysaccharide depolymerase. J Biol Chem 246: 5607–5616

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sutherland, I.W. (1999). Polysaccharases in Biofilms — Sources — Action — Consequences!. In: Wingender, J., Neu, T.R., Flemming, HC. (eds) Microbial Extracellular Polymeric Substances. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60147-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60147-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64277-7

  • Online ISBN: 978-3-642-60147-7

  • eBook Packages: Springer Book Archive

Keywords

Publish with us

Policies and ethics