Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Kinetic and regulatory aspects of the function of the alternative oxidase in plant respiration

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The kinetic modelling of the respiratory network in plant mitochondria is discussed, with emphasis on the importance of the choice of boundary conditions, and of modelling of both quinol-oxidising and quinone-reducing pathways. This allows quantitative understanding of the interplay between the different pathways, and of the functioning of the plant respiratory network in terms of the kinetic properties of its component parts. The effects of activation of especially succinate dehydrogenase and the cyanide-insensitive alternative oxidase are discussed. Phenomena, such as respiratory control ratios depending on the substrate, shortcomings of the Bahr and Bonner model for electron distribution between the oxidases and reversed respiratory control, are explained. The relation to metabolic control analysis of the respiratory network is discussed in terms of top-down analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahr, J. T., and Bonner, W. D. (1973a).J. Biol. Chem. 248, 3441–3445.

    PubMed  Google Scholar 

  • Bahr, J. T., and Bonner, W. D. (1973b).J. Biol. Chem. 248, 3446–3450.

    PubMed  Google Scholar 

  • Brown, G. C., Hafner, R. P. and Brand, M. D. (1990).Eur. J. Biochem. 188, 321–325.

    Article  PubMed  Google Scholar 

  • Cottingham, I. R., and Moore, A. L. (1983).Biochim. Biophys. Acta 724, 191–200.

    Google Scholar 

  • Day, D. A., Dry, I. B., Soole, K. L., Wiskich, J. T., and Moore, A. L. (1991).Plant Physiol. 95, 948–953.

    Google Scholar 

  • De Troostembergh, J.-C., and Nijns, E.-J. (1978).Eur. J. Biochem. 85, 423–432.

    Article  PubMed  Google Scholar 

  • Dry, I. B., Moore, A. L., Day, D. A., and Wiskich, J. T. (1989).Arch. Biochem. Biophys. 273, 148–157.

    Article  PubMed  Google Scholar 

  • Groen, A. K., Wanders, R. J. A., Westerhoff, H. V., Van der Meer, R., and Tager, J. M. (1982).J. Biol. Chem. 257, 2754–2757.

    PubMed  Google Scholar 

  • Gutman, M. (1978).Mol. Cell. Biochem. 20, 41–60.

    Article  PubMed  Google Scholar 

  • Gutman, M., Kearney, E. B. and Singer, T. P. (1971a).Biochemistry 10, 2726–2733.

    Article  PubMed  Google Scholar 

  • Gutman, M., Kearney, E. B., and Singer, T. P. (1971b).Biochemistry 10, 4763–4770.

    Article  PubMed  Google Scholar 

  • Gutman, M., Bonomi, F., Pagani, S., Cerletti, P., and Kroneck, P. (1980).Biochim. Biophys. Acta 591, 400–408.

    PubMed  Google Scholar 

  • Hafner, R. P., Brown, G. C., and Brand, M. D. (1990).Eur. J. Biochem. 188, 313–319.

    Article  PubMed  Google Scholar 

  • Hill, S. A., Bryce, J. H. and Leaver, C. J. (1993).Planta 190, 51–57.

    Article  Google Scholar 

  • Hiser, C., and McIntosh, L. (1990).Plant Physiol. 93, 312–318.

    Google Scholar 

  • James, A. T., Venables, W. N., Dry, I. B., and Wiskich, J. T. (1994).Biometrika 81, 219–235.

    Google Scholar 

  • Kesseler, A., and Brand, M. D. (1994a).Eur. J. Biochem. 225, 897–906.

    Article  PubMed  Google Scholar 

  • Kesseler, A., and Brand, M. D. (1994b).Eur. J. Biochem. 225, 907–922.

    Article  PubMed  Google Scholar 

  • Kesseler, A., and Brand, M. D. (1994c)Eur. J. Biochem. 225, 923–935.

    Article  PubMed  Google Scholar 

  • Kesseler, A., Diolez, P., Brinkmann, K., and Brand, M. D. (1992).Eur. J. Biochem. 210, 775–784.

    Article  PubMed  Google Scholar 

  • Krab, K., Van den Bergen, C. W. M., and Moore, A. L. (1995).Biochem. Soc. Trans. 23, 289S.

    Google Scholar 

  • Kröger, A., and Klingenberg, M. (1973a).Eur. J. Biochem. 34, 358–368.

    Article  PubMed  Google Scholar 

  • Kröger, A., and Klingenberg, M. (1973b).Eur. J. Biochem. 39, 313–323.

    Article  PubMed  Google Scholar 

  • Lidén, A. C., and Åkerlund, H.-E. (1993).Physiol. Plant. 59, 369–374.

    Google Scholar 

  • Mandolino, G., De Santis, A., and Melandri, B. A. (1983).Biochim. Biophys. Acta 723, 428–439.

    Google Scholar 

  • McIntosh, L. (1994).Plant Physiol. 105, 781–786.

    Article  PubMed  Google Scholar 

  • Millar, A. H., Wiskich, J. T., Whelan, J., and Day, D. A. (1993).FEBS Lett. 329, 259–262.

    Article  PubMed  Google Scholar 

  • Møller, I. M. Rasmusson, A. G., and Fredlund, K. M. (1993).J. Bioenerg. Biomembr. 25, 377–384.

    Article  PubMed  Google Scholar 

  • Moore, A. L., and Siedow, J. N. (1991).Biochim. Biophys. Acta 1059, 121–140.

    PubMed  Google Scholar 

  • Moore, A. L., Dry, I. B., and Wiskich, J. T. (1988).FEBS Lett. 235, 76–80.

    Article  Google Scholar 

  • Moore, A. L., Leach, G., and Whitehouse, D. G. (1993).Biochem. Soc. Trans. 21, 765–769.

    PubMed  Google Scholar 

  • Moore, A. L., Leach, G., Whitehouse, D. G., Van den Bergen, C. W. M., Wagner, A. M., and Krab, K. (1994).Biochim. Biophys. Acta 1187, 145–151.

    Google Scholar 

  • Moreau, F., and Romani, R. (1982).Plant Physiol. 70, 1385–1390.

    Google Scholar 

  • Oestreicher, G., Hogue, P., and Singer, T. P. (1973).Plant Physiol. 52, 622–626.

    Google Scholar 

  • Padovan, A. C., Dry, I. B., and Wiskich, J. T. (1989).Plant Physiol. 90, 928–933.

    Google Scholar 

  • Ragan, C. I., and Cottingham, I. R. (1985).Biochim. Biophys. Acta 811, 13–31.

    PubMed  Google Scholar 

  • Ragan, C. I., and Reed, J. S. (1986).J. Bioenerg. Biomembr. 18, 403–418.

    Article  PubMed  Google Scholar 

  • Reed, J. S., and Ragan, C. I. (1987).Biochem. J. 247, 657–662.

    PubMed  Google Scholar 

  • Ribas-Carbo, M., Berry, J. A., Azcon-Bieto, J., and Siedow, J. N. (1994).Biochim. Biophys. Acta 1188, 205–212.

    Google Scholar 

  • Siedow, J. N., and Moore, A. L. (1993).Biochim. Biophys. Acta 1142, 165–174.

    Google Scholar 

  • Siedow, J. N., Moore, A. L., Umbach, A. L., Van Rotterdam, B., and Ribas-Carbo, M. (1993). InPlant Mitochondria (Brennicke, A., and Kuck, U., eds.), VCA, Weinheim, pp. 275–282.

    Google Scholar 

  • Umbach, A. L., and Siedow, J. N. (1993).Plant Physiol. 103, 845–854.

    PubMed  Google Scholar 

  • Umbach, A. L., Wiskich, J. T., and Siedow, J. N. (1994).FEBS Lett. 348, 181–184.

    Article  PubMed  Google Scholar 

  • Van den Bergen, C. W. M., Wagner, A. M., Krab, K., and Moore, A. L. (1994).Eur. J. Biochem. 226, 1071–1078.

    Article  PubMed  Google Scholar 

  • Wagner, A. M., Kraak, M. H. S., Van Emmerik, W. A. M., and Van der Plas, L. H. W. (1989).Plant Physiol. Biochem. 27, 837–845.

    Google Scholar 

  • Wagner, A. M., Van den Bergen, C. W. M., and Wincencjusz, H. (1995).Plant Physiol.,108, 1035–1042.

    PubMed  Google Scholar 

  • Whitehouse, D. G., Fricaud, A.-C., and Moore, A. L. (1989).Plant Physiol. 91, 487–492.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krab, K. Kinetic and regulatory aspects of the function of the alternative oxidase in plant respiration. J Bioenerg Biomembr 27, 387–396 (1995). https://doi.org/10.1007/BF02110001

Download citation

  • Received:

  • Issue date:

  • DOI: https://doi.org/10.1007/BF02110001

Key words