Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Universal bounds on operator dimensions from the average null energy condition

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 21 February 2018
  • Volume 2018, article number 131, (2018)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Universal bounds on operator dimensions from the average null energy condition
Download PDF
  • Clay Córdova1 &
  • Kenan Diab  ORCID: orcid.org/0000-0003-2242-58622 
  • 491 Accesses

  • 28 Citations

  • 4 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We show that the average null energy condition implies novel lower bounds on the scaling dimensions of highly-chiral primary operators in four-dimensional conformal field theories. Denoting the spin of an operator by a pair of integers \( \left(k,\overline{k}\right) \) specifying the transformations under chiral \( \mathfrak{s}\mathfrak{u}(2) \) rotations, we explicitly demonstrate these new bounds for operators transforming in (k, 0) and (k, 1) representations for sufficiently large k. Based on these calculations, along with intuition from free field theory, we conjecture that in any unitary conformal field theory, primary local operators of spin \( \left(k,\overline{k}\right) \) and scaling dimension Δ satisfy \( \varDelta \ge \max \left\{k,\overline{k}\right\} \). If \( \left|k-\overline{k}\right|>4 \), this is stronger than the unitarity bound.

Article PDF

Download to read the full article text

Similar content being viewed by others

Free □ k scalar conformal field theory

Article Open access 13 February 2017

Averaged null energy condition from causality

Article Open access 14 July 2017

A New Bound for the Existence of Differential Field Extensions

Chapter © 2016

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Field Theory and Polynomials
  • Mathematical Physics
  • Operator Theory
  • Scale Invariance
  • Scaling Laws
  • Integral Transforms and Operational Calculus
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. D.M. Hofman and J. Maldacena, Conformal collider physics: energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].

    Article  ADS  Google Scholar 

  2. G. Mack, All unitary ray representations of the conformal group SU(2, 2) with positive energy, Commun. Math. Phys. 55 (1977) 1 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. J.C. Jantzen, Kontravariante formen auf induzierten darstellungen halbeinfacher Lie-algebren, Math. Ann. 226 (1977) 53.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Weinberg and E. Witten, Limits on massless particles, Phys. Lett. 96B (1980) 59.

    Article  ADS  MathSciNet  Google Scholar 

  5. J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a higher spin symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  6. V. Alba and K. Diab, Constraining conformal field theories with a higher spin symmetry in d>3 dimensions, JHEP 03 (2016) 044 [arXiv:1510.02535] [INSPIRE].

    Article  ADS  Google Scholar 

  7. J.L. Friedman, K. Schleich and D.M. Witt, Topological censorship, Phys. Rev. Lett. 71 (1993) 1486 [Erratum ibid. 75 (1995) 1872] [gr-qc/9305017] [INSPIRE].

  8. H. Epstein, V. Glaser and A. Jaffe, Nonpositivity of energy density in Quantized field theories, Nuovo Cim. 36 (1965) 1016 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. D.M. Hofman, D. Li, D. Meltzer, D. Poland and F. Rejon-Barrera, A proof of the conformal collider bounds, JHEP 06 (2016) 111 [arXiv:1603.03771] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. T. Faulkner, R.G. Leigh, O. Parrikar and H. Wang, Modular hamiltonians for deformed half-spaces and the averaged null energy condition, JHEP 09 (2016) 038 [arXiv:1605.08072] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. T. Hartman, S. Kundu and A. Tajdini, Averaged null energy condition from causality, JHEP 07 (2017) 066 [arXiv:1610.05308] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. R. Bousso, Z. Fisher, J. Koeller, S. Leichenauer and A.C. Wall, Proof of the quantum null energy condition, Phys. Rev. D 93 (2016) 024017 [arXiv:1509.02542] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  13. S. Balakrishnan, T. Faulkner, Z.U. Khandker and H. Wang, A general proof of the quantum null energy condition, arXiv:1706.09432 [INSPIRE].

  14. H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning conformal correlators, JHEP 11 (2011) 071 [arXiv:1107.3554] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. P. Kravchuk and D. Simmons-Duffin, Counting conformal correlators, JHEP 02 (2018) 096 [arXiv:1612.08987] [INSPIRE].

    Article  ADS  Google Scholar 

  17. G.F. Cuomo, D. Karateev and P. Kravchuk, General bootstrap equations in 4D CFTs, JHEP 01 (2018) 130 [arXiv:1705.05401] [INSPIRE].

    Article  Google Scholar 

  18. E. Elkhidir, D. Karateev and M. Serone, General three-point functions in 4D CFT, JHEP 01 (2015) 133 [arXiv:1412.1796] [INSPIRE].

    Article  ADS  Google Scholar 

  19. Z. Komargodski, M. Kulaxizi, A. Parnachev and A. Zhiboedov, Conformal field theories and deep inelastic scattering, Phys. Rev. D 95 (2017) 065011 [arXiv:1601.05453] [INSPIRE].

    ADS  Google Scholar 

  20. D.M. Hofman, Higher derivative gravity, causality and positivity of energy in a UV complete QFT, Nucl. Phys. B 823 (2009) 174 [arXiv:0907.1625] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. A. Buchel et al., Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  22. J. de Boer, M. Kulaxizi and A. Parnachev, AdS 7 /CF T 6 , Gauss-Bonnet gravity and viscosity bound, JHEP 03 (2010) 087 [arXiv:0910.5347] [INSPIRE].

    Article  MATH  Google Scholar 

  23. S.D. Chowdhury, J.R. David and S. Prakash, Spectral sum rules for conformal field theories in arbitrary dimensions, JHEP 07 (2017) 119 [arXiv:1612.00609] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. S.D. Chowdhury, J.R. David and S. Prakash, Constraints on parity violating conformal field theories in d = 3, JHEP 11 (2017) 171 [arXiv:1707.03007] [INSPIRE].

    Article  ADS  Google Scholar 

  25. C. Cordova, J. Maldacena and G.J. Turiaci, Bounds on OPE coefficients from interference effects in the conformal collider, JHEP 11 (2017) 032 [arXiv:1710.03199] [INSPIRE].

    Article  ADS  Google Scholar 

  26. S. Minwalla, Restrictions imposed by superconformal invariance on quantum field theories, Adv. Theor. Math. Phys. 2 (1998) 783 [hep-th/9712074] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  27. F.A. Dolan and H. Osborn, On short and semi-short representations for four-dimensional superconformal symmetry, Annals Phys. 307 (2003) 41 [hep-th/0209056] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. F.A. Dolan, On superconformal characters and partition functions in three dimensions, J. Math. Phys. 51 (2010) 022301 [arXiv:0811.2740] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. M. Buican, J. Hayling and C. Papageorgakis, Aspects of superconformal multiplets in D > 4, JHEP 11 (2016) 091 [arXiv:1606.00810] [INSPIRE].

    Article  ADS  Google Scholar 

  30. C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of superconformal symmetry in diverse dimensions, arXiv:1612.00809 [INSPIRE].

  31. J. Wess and J. Bagger, Supersymmetry and supergravity, Princetron University Press, Princeton, U.S.A. (1992).

    MATH  Google Scholar 

  32. A. Zhiboedov, On conformal field theories with extremal a/c values, JHEP 04 (2014) 038 [arXiv:1304.6075] [INSPIRE].

    Article  ADS  Google Scholar 

  33. C. Córdova and K. Diab, Higher spin symmetry and the average null energy condition, in preparation.

  34. D. Li and A. Stergiou, Two-point functions of conformal primary operators in \( \mathcal{N} \) = 1 superconformal theories, JHEP 10 (2014) 037 [arXiv:1407.6354] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. School of Natural Sciences, Institute for Advanced Study, Princeton, NJ, U.S.A.

    Clay Córdova

  2. Department of Physics, Princeton University, Princeton, NJ, U.S.A.

    Kenan Diab

Authors
  1. Clay Córdova
    View author publications

    Search author on:PubMed Google Scholar

  2. Kenan Diab
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Kenan Diab.

Additional information

ArXiv ePrint: 1712.01089

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Córdova, C., Diab, K. Universal bounds on operator dimensions from the average null energy condition. J. High Energ. Phys. 2018, 131 (2018). https://doi.org/10.1007/JHEP02(2018)131

Download citation

  • Received: 29 January 2018

  • Accepted: 16 February 2018

  • Published: 21 February 2018

  • DOI: https://doi.org/10.1007/JHEP02(2018)131

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Conformal Field Theory
  • Higher Spin Symmetry
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature