Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Changes on digestive enzymes during initial ontogeny in the three-spot cichlid Cichlasoma trimaculatum

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

A study was performed in order to understand the development of digestive enzymes during initial ontogeny of Cichlasoma trimaculatum, for which the activity of acidic and alkaline proteases, lipases, amylases and phosphatases was determined by means of biochemical and electrophoretic analysis. Our results showed that the activity of alkaline proteases, trypsin and chymotrypsin is present from day 6 after hatching (dah) during exogenous feeding with Artemia nauplii. The activities of carboxypeptidase A and leucine aminopeptidase are present from the first days, increasing at 6 dah and reaching their maximum activity at 9 dah while acid protease activity started at 9 dah. Furthermore, the lipase activity is detected on 6 dah and keeps increasing and decreasing on 17 dah. Amylase activity is detected on 3 dah, presenting fluctuations until 45 dah, where it reaches its maximum activity. Acid and alkaline phosphatases are detected from 3 dah and reach a maximum activity between 13 and 19 dah. The SDS-PAGE electrophoresis revealed six types of bands in the alkaline proteases, with molecular weight between 113.4 and 20.4 kDa. First three bands appear on 6 dah, but it is until 11 dah when all isoforms appear. Based on these results, it is considered that this species completes its digestive enzymatic machinery from day 9 after hatching, therefore is recommended to perform the transition from live feed to inert feed at 15 dah.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alarcón FJ, Martínez MI (1998) Fisiología de la digestión en larvas de peces marinos y sus aplicaciones al cultivo larvario en masa. Aquatic 5:1–12

    Google Scholar 

  • Álvarez-González CA, Cervantes-Trujano M, Tovar-Ramírez D, Conklin DE, Nolasco H, Gisbert E, Piedrahita R (2006) Development of digestive enzymes in California halibut Paralichthys californicus larvae. Fish Physiol Biochem 31:83–93

    Google Scholar 

  • Álvarez-González CA, Moyano-López FJ, Civera-Cercedo R, Carrasco-Chávez V, Ortiz-Galindo J, Dumas S (2008) Development of digestive enzyme activity in larvae of spotted sand bass Palabrax maculatofasciatus. I Biochemistry analysis. Fish Physiol Biochem 34:373–384

    Article  PubMed  Google Scholar 

  • Álvarez-González CA, Moyano-López FJ, Civera-Cerecedo E, Carrasco-Chávez JL, Ortíz-Galindo H, Nolasco-Soria H, Tovar-Ramírez D, Dumas S (2010) Development of digestive enzyme activity in larvae of spotted sand bass Paralabrax maculatofasciatus II: electrophoretic analysis. Fish Physiol Biochem 36:29–37

    Article  PubMed  Google Scholar 

  • Anson ML (1938) The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J Gen Physiol 22:79–89

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ben KH, Jellouli K, Souissi N, Ghorbel S, Barkia A, Nasri M (2011) Purification and characterization of three trypsin isoforms from viscera of sardinelle (Sardinella aurita). Fish Physiol Biochem 37:123–133

    Article  Google Scholar 

  • Bergmeyer HV (1974) Phosphatases methods of enzymatic analysis, vol 2. Academic Press, New York

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cahu CL, Ronnestad I, Grangier V, Zambonino-Infante JL (2004) Expression and activities of pancreatic enzymes in developing sea bass larvae (Dicentrarchus labrax) in relation to intact and hydrolyzed dietary protein; involvement of cholecystokinin. Aquaculture 238:295–308

  • Cara JB, Moyano FJ, Cardenas S, Fernandez-Diaz C, Yufera M (2003) Assessment of digestive enzyme activities during larval development of white bream. J Fish Biol 63:48–58

    Article  CAS  Google Scholar 

  • Castillo-Yáñez FJ, Pacheco-Aguilar R, García-Carreño FL, Navarrete-Del Toro MA (2005) Isolation and characterization of trypsin from pyloric caeca of Monterey sardine (S. sagax caerulea). Comp Biochem Physiol 140B:91–98

    Article  Google Scholar 

  • Castillo-Yáñez FJ, Pacheco-Aguilar R, García-Carreño FL, Navarrete-Del Toro MA, Félix-López M (2006) Purification and biochemical characterization of chymotrypsin from the viscera of Monterey sardine (S. sagax caerulea). Food Chem 99(2):252–259

    Article  Google Scholar 

  • Castillo-Yáñez FJ, Pacheco-Aguilar R, Lugo-Sánchez ME, García-Sánchez G, Quintero-Reyes IE (2009) Biochemical characterization of an isoform of chymotrypsin from the viscera of monterey sardine (Sardinops sagax caerulea), and comparison with bovine chymotrypsin. Food Chem 112:634–639

    Article  Google Scholar 

  • Chakrabarti R, Rathore RM, Mittal P, Kumar S (2006) Functional changes in digestive enzymes and characterization of proteases of silver carp (♂) and bighead carp (♀) hybrid, during early ontogeny. Aquaculture 253:694–702

  • Chen BN, Jian GQ, Martin SK, Wayne GH, Steven MC (2006) Ontogenetic development of digestive enzymes in yellowtail kingfish Seriola lalandi larvae. Aquaculture 256:489–501

    Article  Google Scholar 

  • Comabella Y, Mendoza R, Aguilera C, Carrillo O, Hurtado A, García-Galano T (2006) Digestive enzyme activity during early larval development of the Cuban gar Atractosteus tristoechus. Fish Physiol Biochem 32:147–157

  • Conceição LEC, Aragão C, Richard N, Engrola S, Gavaia P, Mira S, Dias J (2010) Novel methodologies in marine fish larval nutrition. Fish Physiol Biochem 36:1–16

    Article  PubMed  Google Scholar 

  • DelMar EG, Largman C, Broderick JW, Geokas MC (1979) A sensitive new substrate for chymotrypsin. Anal Biochem 99:316–320

    Article  CAS  PubMed  Google Scholar 

  • Diaz JP, Mani-Ponset L, Blasco C, Connes R (2002) Cytological detection of the main phases of lipid metabolism during early post-embryonic development in three teleost species Dicentrarchus labrax, Sparus aurata and Stizostedion lucioperca. Aquat Living Resour 15:169–178

    Article  Google Scholar 

  • Díaz M, Moyano FJ, García-Carreño LF, Alarcón FJ, Sarasquete MC (1997) Substrate-SDS-PAGE determination of protease activity through larval development in sea bream. Aquacult Int 5:461–471

    Article  Google Scholar 

  • Erlanger B, Kokowsky N, Cohen W (1961) The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 95:271–278

    Article  CAS  PubMed  Google Scholar 

  • Essed Z, Fernández I, Alarcón FJ, Moyano FJ (2002) Caracterización de la actividad proteasa digestiva de atún rojo Thunnus thynnus (Linnaeus, 1758). Bol Inst Esp Oceanogr 18(1–4):99–107

    Google Scholar 

  • Fabillo MD, Herrera AA, Abucay JS (2004) Effects of delayed first feeding on the development of the digestive tract y skeletal muscles of Nile Tilapia, Oreochromis niloticus L. In: proceedings 6th international symposium on Tilapia in aquaculture Philippine international convention center roxas boulevard, Manila, Philippines, pp 301–315

  • Fernández I, Moyano FJ, Dìaz M, Martìnez T (2001) Characterization of a-amylase activity in five species of Mediterranean sparid fishes (Sparidae, Teleostei). J Exp Mar Biol Ecol 262:1–12

    Article  Google Scholar 

  • Folk JE, Schirmer EW (1963) The porcine pancreatic carboxypeptidase a system. J Biol Chem 238:3884–3894

    CAS  PubMed  Google Scholar 

  • Frías-Quintana CA (2009) Diseño de alimentos microparticulados para larvas del pejelagarto Atractosteus tropicus, Gill 1863. Master’s thesis. Universidad Juárez Autónoma de Tabasco, México

  • Galaviz MA, García-Gasca A, Drawbridge M, Álvarez-González CA, López ML (2011) Ontogeny of the digestive tract and enzymatic activity in white seabass, Atractoscion nobilis, larvae. Aquaculture 318:162–168

    Article  CAS  Google Scholar 

  • Galaviz MA, García-Ortega A, Gisbert E, López LM, García GA (2012) Expression and activity of trypsin and pepsin during larval development of the spotted rose snapper Lutjanus guttatus. Comp Biochem Physiol 161B:9–16

    Article  Google Scholar 

  • García-Carreño FL, Dimes LE, Haard NF (1993) Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Anal Biochem 214:65–69

    Article  PubMed  Google Scholar 

  • Gawlicka A, Leggiadro CT, Gallart JW, Douglas SE (2001) Cellular expression of the pepsinogen and gastric proton pump genes in the stomach of winter flounder as determined by in situ hybridization. J Fish Biol 58:529–536

    CAS  Google Scholar 

  • Gildberg A (1988) Aspartic proteinases in fishes and aquatic invertebrates. Comp Biochem Physiol 91B:425–435

    CAS  Google Scholar 

  • Gisbert E, Gimenez G, Fernandez I, Kotzamanis Y, Estevez A (2009) Development of digestive enzymes in common dentex Dentex dentex during early ontogeny. Aquaculture 287(3):381–387

    Article  CAS  Google Scholar 

  • Govoni JJ, Boenhlert GW, Watanabe Y (1986) The physiology of digestion in fish larvae. Environ Biol Fish 16:59–77

    Article  Google Scholar 

  • He T, Xiao Z, Liu Q, Ma D, Xu S, Xiao Y, Li J (2012) Ontogeny of the digestive tract and enzymes in rock bream Oplegnathus fasciatus (Temminck et Schlegel 1844) larvae. Fish Physiol Biochem 38:297–308

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo MC, Urea E, Sanz A (1999) Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture 170:267–283

    Article  CAS  Google Scholar 

  • Igbokwe EC, Downe AER (1978) Electrophoretic and histochemical comparison of three strains of Aedes aegypti. Comp Biochem Physiol 60B:131–136

  • Jiménez-Martínez LD, Álvarez-González CA, Contreras-Sánchez WM, Márquez-Couturier G, Arias-Rodríguez L, Almeida-Madrigal JA (2009) Evaluation of larval growth and survival in Mexican mojarra, Cichlasoma urophthalmus, and bay snook, Petenia splendida, under different initial stocking densities. J World Aquac Soc 40:753–761

    Article  Google Scholar 

  • Jiménez-Martínez LD, Álvarez-González CA, Tovar-Ramírez D, Gaxiola G, Sanchez-Zamora A, Moyano FJ, Alarcón FJ, Márquez-Couturier G, Gisbert E, Contreras-Sánchez WM, Perales-García N, Arias-Rodríguez L, Indy JR, Páramo-Delgadillo S, Palomino-Albarrán IG (2012) Digestive enzyme activities during early ontogeny in common snook (Centropomus undecimalis). Fish Physiol Biochem 38:441–454

    Article  PubMed  Google Scholar 

  • Jonas E, Ragyanssszki M, Olah J, Boross L (1983) Proteolytic digestive enzymes of carnivorous (Silurus glanis L.), herbivorous (Hypophtlamichthys molitrix Val.) and omnivorous (Cyprinus carpio) fishes. Aquaculture 30:145–154

    Article  CAS  Google Scholar 

  • Kageyama T (2002) Pepsinogens, progastricsins, and prochymosins: structure, function, evolution, and development. Cell Mol Life Sci 59:288–306

    Article  CAS  PubMed  Google Scholar 

  • Kolkovski S (2001) Digestive enzymes in fish larvae and juveniles-implications and applications to formulated diets. Aquaculture 200:181–201

    Article  CAS  Google Scholar 

  • Kunitz M (1947) Crystalline soybean trypsin inhibitor II. General properties. J Gen Physiol 30:291–310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kvåle A, Mangor-Jensen A, Moren M, Espe M, Hamre K (2007) Development and characterization of some intestinal enzymes in Atlantic cod (Gadus morhua L.) and Atlantic halibut (Hippoglossus hippoglossus L.) larvae. Aquaculture 264:457–468

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lazo J, Mendoza R, Holt GJ, Aguilera C, Arnold CR (2007) Characterization of digestive enzymes during larval development of red drum (Sciaenops ocellatus). Aquaculture 265:194–205

    Article  CAS  Google Scholar 

  • Li-Gen Z, Bing-Xin L, Le-Chang S, Kenji H, Wen-Jin S, Min-Jie C (2010) Identification of an aminopeptidase from the skeletal muscle of grass carp (Ctenopharyngodon idellus). Fish Physiol Biochem 36:953–962

    Article  Google Scholar 

  • Liu BX, Du XL, Zhou LG, Hara K, Su WJ, Cao MJ (2008) Purification and characterization of a leucine aminopeptidase from the skeletal muscle of common carp (Cyprinus carpio). Food Chem 108:140–147

    Article  CAS  Google Scholar 

  • López-Ramírez G, Cuenca-Soria CA, Álvarez-González CA, Tovar-Ramírez D, Ortiz-Galindo JL, Perales-García N, Márquez-Couturier G, Arias-Rodríguez L, Indy JR, Contreras-Sánchez WM, Gisbert E, Moyano FJ (2011) Development of digestive enzymes in larvae of mayan cichlid Cichlasoma urophthalmus. Fish Physiol Biochem 37:197–208

    Article  PubMed  Google Scholar 

  • Ma H, Cahu C, Zambonino J, Yu H, Duan Q, Le Gall M, Mai K (2005) Activities of selected digestive enzymes during larval development of large yellow croaker (Pseudosciaena crocea). Aquaculture 245:239–248

    Article  CAS  Google Scholar 

  • Maraux S, Louvard D, Baratti J (1973) The aminopeptidase from hog-intestinal brush border. Biochim Biophys Acta 321:282–295

    Article  Google Scholar 

  • Miller RR, Minckley WL, Norris SM (2009) Peces Dulceacuícolas de México. Comisión Nacional para el conocimiento y Uso de la Biodiversidad/El Colegio de la Frontera Sur/Sociedad Ictiológica Mexicana, A.C./Desert Fishes Council. México. p 559

  • Ming-Ji L, Chin-Feng W (2006) Developmental regulation of gastric pepsin and pancreatic serine protease in larvae of the euryhaline teleost Oreochromis mossambicus. Aquaculture 261:1403–1412

    Article  Google Scholar 

  • Moyano FJ (2006) Bioquímica Digestiva en Especies Acuicultivadas: Aplicaciones en Nutrición. En editores: Cruz, S.E., Ricque, M.R., Tapia, S.M., Nieto, L.M.G., Villareal, C.D.A., Puello, C.A.C., y García, O.A. Avances en Nutrición Acuícola VIII. VIII Simposium Internacional de Nutrición Acuícola. 15–17 Noviembre. Universidad Autónoma de Nuevo León, México. ISBN 970-694-333-5

  • Moyano FJ, Diaz M, Alarcon FJ, Sarasquete MC (1996) Characterization of digestive enzyme activity during larval development of gilthead sea bream (Sparus aurata). Fish Physiol Biochem 15:121–130

    Article  CAS  PubMed  Google Scholar 

  • Orellana-Amador JJ (1992) Inventario preliminar de los peces de agua dulce y marinos de El Salvador. Secretaría Ejecutiva del Medio Ambiente, América Central

    Google Scholar 

  • Ribeiro L, Zambonino-Infante JL, Cahu C, Dinis MT (1999) Development of digestive enzymes in larvae of Solea senegalensis, Kaup 1858. Aquaculture 170:465–473

    Article  Google Scholar 

  • Robyt JF, Whelan WJ (1968) The a-amylase. In: Radley JA (ed) Starch and its derivates. Chapman and Hall, London, pp 430–497

    Google Scholar 

  • Sáenz de Rodrigáñez M, Alarcón FJ, Martínez MI, Ruiz F, Díaz M, Moyano FJ (2005) Caracterización de las proteasas digestivas del lenguado senegalés Solea senegalensis Kaup, 1858. Bol Inst Esp Oceanogr 21(1–4):95–104

    Google Scholar 

  • Simpson BK (2000) Digestive proteases from marine animals. In: Haard NF, Simpson BK (eds) Seafood enzymes. Marcel Dekker, New York, pp 191–213

    Google Scholar 

  • Srivastava SA, Kurokawa T, Suzuki T (2002) mRNA expression of pancreatic enzyme precursors and estimation of protein digestibility in first feeding larvae of the Japanese flounder, Paralichthys olivaceus. Comp Biochem Physiol A 132:629–635

    Article  Google Scholar 

  • Su-Hua C, Min-Jie C, Jian-Zhen H, Guo-Ping W (2011) Identification of a puromycin-sensitive aminopeptidase from zebrafish (Danio rerio). Comp Biochem Physiol B 159:10–17

    Article  Google Scholar 

  • Tengjaroenkul B, Smith BJ, Smith SA, Chatreewongsin U (2002) Ontogenic development of the intestinal enzymes of cultured Nile tilapia, Oreochromis niloticus L. Aquaculture 211:241–251

    Article  CAS  Google Scholar 

  • Ueberschäer B (1993) Measurement of proteolytic enzyme activity: significance and application in larval fish research. In: Walther BT, Fyhn HJ (eds) Physiological and biochemical aspects of fish development, part III. Univ Of Bergen, Norway, pp 233–239

    Google Scholar 

  • Uscanga-Martínez A, Perales-García N, Álvarez-González CA, Moyano FJ, Tovar-Ramírez D, Gisbert GE, Márquez-Couturier G, Contreras-Sánchez WM, Arias-Rodríguez L, Indy JR (2011) Changes in digestive enzyme activity during initial ontogeny of bay snook Petenia splendid. Fish Physiol Biochem 37:667–680

    Article  PubMed  Google Scholar 

  • Uscanga-Martínez A., Velázquez-Velázquez E, Rodríguez-Valencia W, Gómez-Gómez M.A (2012) “Estudio reproductivo para el cultivo de mojarra nativa Cichlasoma trimaculatum” Libro de resúmenes del XIII congreso nacional de ictiología y 1er simposio latinoamericano de ictiología. Universidad de Ciencias y Artes de Chiapas, México, 28 de octubre al 02 de noviembre 2012

  • Vendrell J, Querol E, Avilés FX (2000) Metallocarboxypeptidases and their protein inhibitors. Structure, function and biomedical properties. Biochim Biophys Acta 1477:284–298

    Article  CAS  PubMed  Google Scholar 

  • Versaw W, Cuppett SL, Winters DD, Williams LE (1989) An improved colorimetric assay for bacterial lipase in nonfat dry milk. J Food Sci 54:232–254

    Article  Google Scholar 

  • Versichelle D, Léger P, Lavens P, Sorgeloos P (1989) L’utilisation d’artémia. In: Barnabé G (ed) Aquaculture. Technique et Documentation, Lavoisier, pp 241–259

    Google Scholar 

  • Vidal-López JM, Álvarez-González CA, Contreras-Sánchez WM, Hernández-Vidal U (2009) Mazculinization of the native cichlid Tenhuayaca, Petenia splendida (Günther, 1862), using Artemia nauplii as vehicle of the steroid 17-α methyltestosterone. Hidrobiologica 19(3):211–216

    Google Scholar 

  • Violante GJ (1995) Contribución al conocimiento de la biología de la mojarra nativa Cichlasoma trimaculatum (Gunter, 1868), en la laguna de Tres Palos Guerrero, México, y determinación del desarrollo larvario y requerimientos proteicos en condiciones de laboratorio. Master’s thesis. Facultad de Ciencias Marinas. Universidad de Colima, México

  • Vonk HJ, Western JRH (1984) Comparative biochemistry and physiology of enzymatic digestion. Academic Press, London

    Google Scholar 

  • Walter HE (1984) Proteinases: Methods with hemoglobin, casein and azocoll as substrates. In: Bergmeyern HJ (ed) Methods of enzymatic analysis, vol V. Verlag Chemie, Weinham, pp 270–277

    Google Scholar 

  • Williams DE, Reisfeld RA (1964) Disc electrophoresis in polyacrylamide gels: extension to new conditions of pH and buffers. Ann N Y Acad Sci 121:373–381

    Article  CAS  PubMed  Google Scholar 

  • Xiu-Juan S, Huang W, Cao L, Zhi-Zhong X, Shuo-Zeng D (2009) Ontogenetic development of digestive enzymes and effect of starvation in miiuy croaker Miichthys miiuy larvae. Fish Physiol Biochem 35:385–398

    Article  Google Scholar 

  • Yáñez-Arancibia A (1978) Taxonomía, ecología y estructura de las comunidades de peces en lagunas costeras con bocas efímeras del Pacifico de México. Centro de Ciencias del Mar y Limnología, Universidad Autónoma de México, México, D.F. Publ Espec 2:1–306

    Google Scholar 

  • Yúfera M, Darias MJ (2007) Changes in the gastrointestinal pH from larvae to adult in Senegal sole (Solea senegalensis). Aquaculture 267:94–99

    Article  Google Scholar 

  • Yúfera M, Fernández-Díaz C, Vidaurreta A, Cara JB, Moyano FJ (2004) Gastrointestinal pH and development of the acid digestion in larvae and early juveniles of Sparus aurata L. (Pisces: Teleostei). Mar Biol 144:863–869

    Article  Google Scholar 

  • Zaiss MM, Papadakis IE, Maingot E, Divanach P, Mylonas CC (2006) Ontogeny of the digestive tract in shi drum (Umbrina cirrosa L.) reared using the mesocosm larval rearing system. Aquaculture 260:357–368

    Article  Google Scholar 

  • Zamani A, Hajimoradloo A, Madani R, Farhangi M (2009) Assessment of digestive enzymes activity during the fry development of the endangered Caspian brown trout Salmo caspius. J Fish Biol 75:932–937

    Article  CAS  PubMed  Google Scholar 

  • Zambonino-Infante JL, Cahu C (1994) Development and response to a diet change of some digestive enzymes in sea bass (Dicentrarchus labrax) larvae. Fish Physiol Biochem 12(5):399–408

    Article  Google Scholar 

  • Zambonino-Infante JL, Cahu CL (2001) Ontogeny of the gastrointestinal tract of marine fish larvae. Comp Biochem Physiol C 130:477–487

    CAS  Google Scholar 

  • Zambonino-Infante JL, Cahu CL (2007) Dietary modulation of some digestive enzymes and metabolic processes in developing marine fish: applications to diet formulation. Aquaculture 268:98–105

    Article  CAS  Google Scholar 

  • Zambonino-Infante J, Gisbert E, Sarasquete C, Navarro I, Gutiérrez J, Cahu CL (2008) Ontogeny and physiology of the digestive system of marine fish larvae. In: Cyrino JEO, Bureau D, Kapoor BG (eds) Feeding and Digestive Functions of Fish. Science Publishers Inc, Enfield, pp 277–344

    Google Scholar 

  • Zouiten D, Ben KI, Besbes R, Cahu C (2008) Ontogeny of the digestive tract of thick-lipped grey mullet (Chelon labrosus) larvae reared in “mesocosms”. Aquaculture 279:166–172

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Author thanks to National Council of Science and Technology of Mexico for the postgraduate grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Álvarez-González.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toledo-Solís, F.J., Uscanga-Martínez, A., Guerrero-Zárate, R. et al. Changes on digestive enzymes during initial ontogeny in the three-spot cichlid Cichlasoma trimaculatum . Fish Physiol Biochem 41, 267–279 (2015). https://doi.org/10.1007/s10695-014-0023-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10695-014-0023-8

Keywords

Profiles

  1. C. A. Álvarez-González