Thanks to visit codestin.com
Credit goes to github.com

Skip to content
View davidfertube's full-sized avatar

Block or report davidfertube

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Maximum 250 characters. Please don't include any personal information such as legal names or email addresses. Markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
davidfertube/README.md
Typing SVG
01001000 01100101 01101100 01101100 01101111 00101100 00100000 01010111 01101111 01110010 01101100 01100100

Portfolio LinkedIn X HuggingFace


> Building Production AI Systems for Energy & Industrial Operations_

Founding Engineer scaling AI from prototype to production. I architect agentic RAG systems, predictive ML pipelines, and compliance automation that run in enterprise environments.

class AIEngineer:
    def __init__(self):
        self.focus = [
            "Agentic RAG & Multi-Agent Orchestration",
            "Predictive Maintenance & Anomaly Detection",
            "Regulatory Compliance Automation (NERC CIP)",
            "Cloud-Native ML (Azure AI Foundry, GCP Vertex AI)"
        ]

    def deploy(self, agent) -> Production:
        return agent.scale_to_enterprise()

Ventures

Business Description Action
Spec Agents AI-powered RAG for engineering teams—instant access to ASTM standards and steel specifications with cited answers in <2s Sign Up

Production Projects

Predictive Agent Compliance Agent Anomaly Agent
LSTM-Based RUL Prediction NERC CIP Automation Real-Time Monitoring
Extending turbine life 15-20% using neural networks trained on NASA C-MAPSS and GE 7FA turbine patterns Reducing audit prep 60% through automated procedure validation against CIP-006-6 requirements Auto root cause analysis using Isolation Forest for vibration, temperature, and pressure data
Try It Try It Try It

Experiments

experiments/
├── enterprise-rag/      # Agentic RAG for industrial documents
├── vision-ai-safety/    # VLM for HSE compliance (Qwen2-VL)
├── data-parser-energy/  # Well log ETL (10x faster)
└── rl-supply-chain/     # PPO inventory optimization (-25% stockouts)
Experiment Stack Code
Enterprise RAG LangGraph • Pinecone • FastAPI Code
Vision AI Safety Qwen2-VL • Transformers • Gradio Code
Data Parser Energy LASIO • Pandas • NumPy Code
RL Supply Chain Stable-Baselines3 • PPO • Gymnasium Code

Open Source Contributions

+ LangGraph    → Refactored FunctionMessage patterns, Enhanced fine-tuning docs
+ AutoGen      → Fixed Azure AI Client streaming stability
+ CrewAI       → URL validation for Azure Gateways
+ Transformers → Documentation improvements

LangGraph AutoGen CrewAI


Technical Stack

┌────────────────────────────────────────────────────────────────────────────────────────────────────┐
│  AI/ML                                                                                             │
│  ├── LLMs: OpenAI, Claude, Gemini, Mistral                                                        │
│  ├── Agents: LangGraph, AutoGen, CrewAI, PydanticAI                                               │
│  ├── Vector DBs: Pinecone, ChromaDB, FAISS, Azure AI Search                                       │
│  └── MLOps: MLflow, W&B, Model Monitoring                                                         │
├────────────────────────────────────────────────────────────────────────────────────────────────────┤
│  Infrastructure                                                                                    │
│  ├── Cloud: Azure AI Foundry, GCP Vertex AI, AWS SageMaker                                        │
│  ├── Containers: Docker, Kubernetes (AKS/GKE)                                                     │
│  └── IaC: Terraform, GitHub Actions                                                               │
├────────────────────────────────────────────────────────────────────────────────────────────────────┤
│  Domain                                                                                            │
│  ├── Power: CCGT, Gas Turbines, SCADA/Historian                                                   │
│  ├── Grid: ERCOT, ISO Markets, Dispatch Optimization                                              │
│  └── Regulatory: NERC CIP, EPA Emissions, Safety Compliance                                       │
└────────────────────────────────────────────────────────────────────────────────────────────────────┘

Background

M.S. Artificial Intelligence Experience
University of Colorado Boulder (2027) 5+ years production software • 4+ years AI systems

Started as a founding engineer scaling a startup from zero to production. Now I build AI that operators trust with million-dollar equipment decisions.

Pinned Loading

  1. portfolio portfolio Public

    AI Engineer Portfolio | davidfernandez.dev

    TypeScript