Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Well log data ETL, 10x faster than industry standard

Notifications You must be signed in to change notification settings

davidfertube/las-parser

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

title colorFrom colorTo sdk app_file pinned license tags
LAS Parser
green
blue
gradio
app.py
true
mit
etl
las
well-log
energy
vectorization
data-engineering

Well Log Data Parser

Energy Data ETL Pipeline with Vectorization for RAG Applications

License: MIT Portfolio Demo Python 3.9+

Overview

Data Parser - Energy is an experimental well log data parser for energy ETL pipelines, achieving 10x faster parsing than industry standard tools. This experiment explores optimized parsing of legacy LAS/DLIS formats, making well log data faster to integrate with modern systems despite the challenge of slow, difficult-to-parse legacy formats.

System Architecture

graph LR
    A[LAS Well File] --> B(LASIO Parser)
    B --> C(Curve Metadata)
    B --> D(Statistical Summary)
    C & D --> E[Petrophysical LLM Agent]
    E --> F[Formation Assessment]
    E --> G[RAG-Ready Vectors]
Loading

Key Features

  • High-Fidelity Parsing: Uses lasio for robust extraction of curves and metadata from LAS 2.0 files
  • Automated Interpretation: ML-based lithology prediction and AI-driven petrophysical assessment
  • Interactive Visualization: Multi-track log display with interactive curves
  • Vector Ready: Standardizes output for downstream RAG and vector database pipelines

Technical Stack

Component Technology
Parsing LASIO
Modeling Mistral-7B (HF Inference)
Data Science Pandas, Scikit-learn, NumPy
Deployment Gradio

Quick Start

git clone https://github.com/davidfertube/las-parser.git
cd las-parser
pip install -r requirements.txt
python app.py

Project Structure

las-parser/
├── src/
│   └── parser_engine.py   # Core LAS parsing and AI analysis
├── app.py                 # Gradio interface
└── requirements.txt

Energy Industry Applications

  • Subsurface Analysis: Parse well logs for formation evaluation
  • OSDU Integration: Normalize data for Open Subsurface Data Universe
  • RAG Pipelines: Vectorize well data for enterprise knowledge retrieval

David Fernandez | Applied AI Engineer | LangGraph Core Contributor

MIT License © 2026 David Fernandez

About

Well log data ETL, 10x faster than industry standard

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages