| title | colorFrom | colorTo | sdk | app_file | pinned | license | tags | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LAS Parser |
green |
blue |
gradio |
app.py |
true |
mit |
|
Energy Data ETL Pipeline with Vectorization for RAG Applications
Data Parser - Energy is an experimental well log data parser for energy ETL pipelines, achieving 10x faster parsing than industry standard tools. This experiment explores optimized parsing of legacy LAS/DLIS formats, making well log data faster to integrate with modern systems despite the challenge of slow, difficult-to-parse legacy formats.
graph LR
A[LAS Well File] --> B(LASIO Parser)
B --> C(Curve Metadata)
B --> D(Statistical Summary)
C & D --> E[Petrophysical LLM Agent]
E --> F[Formation Assessment]
E --> G[RAG-Ready Vectors]
- High-Fidelity Parsing: Uses
lasiofor robust extraction of curves and metadata from LAS 2.0 files - Automated Interpretation: ML-based lithology prediction and AI-driven petrophysical assessment
- Interactive Visualization: Multi-track log display with interactive curves
- Vector Ready: Standardizes output for downstream RAG and vector database pipelines
| Component | Technology |
|---|---|
| Parsing | LASIO |
| Modeling | Mistral-7B (HF Inference) |
| Data Science | Pandas, Scikit-learn, NumPy |
| Deployment | Gradio |
git clone https://github.com/davidfertube/las-parser.git
cd las-parser
pip install -r requirements.txt
python app.pylas-parser/
├── src/
│ └── parser_engine.py # Core LAS parsing and AI analysis
├── app.py # Gradio interface
└── requirements.txt
- Subsurface Analysis: Parse well logs for formation evaluation
- OSDU Integration: Normalize data for Open Subsurface Data Universe
- RAG Pipelines: Vectorize well data for enterprise knowledge retrieval
David Fernandez | Applied AI Engineer | LangGraph Core Contributor
MIT License © 2026 David Fernandez