Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Label docstrings with versionadded / versionchanged #15426

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
jnothman opened this issue Nov 1, 2019 · 38 comments
Closed

Label docstrings with versionadded / versionchanged #15426

jnothman opened this issue Nov 1, 2019 · 38 comments
Labels
Documentation good first issue Easy with clear instructions to resolve help wanted Sprint

Comments

@jnothman
Copy link
Member

jnothman commented Nov 1, 2019

We should be using Sphinx's versionadded and versionchanged directives to indicate when classes, functions, methods and parameters are added or modified in their semantics. We are not very good at ensuring this labelling is done.

Towards the upcoming release of v0.22, it would be useful if some contributors (or sprinters) scoured the change log and identified whether any added/changed parameters/classes needed a versionadded or versionchanged label, and to produce pull requests adding them when otherwise omitted.

I also note past omissions, for example KBinsDiscretizer and IterativeImputer do not mention their versionadded, while ColumnTransformer does. Recording for each estimator when it was first released would be helpful for users when looking at the documentation.

Suggested procedure

Check the changelog in doc/whats_new/ one what's a new file at a time.
**Make a single PR for an estimator and a specific version. Do not include multiple estimators and multiple versions at once (it makes it difficult to review).

Focus on Public API: if a method has been made private, check the tickbox and move to another.

.. versionadded:: 0.xx

should be included only for new estimators/parameters

.. versionchanged:: 0.xx
   `param_xxx` change from 'xx' to 'yy'

should be included when the default value of a parameter change.

Classes lacking label

The list may be incomplete.

  • ARDRegression PRs put in version_added label for ARDRegression (and many others): Issue #15426 #15482 put in version_added label #15973 adding versionadded to a few modules #16015
  • AdaBoostClassifier
  • AdaBoostRegressor
  • AdamOptimizer
  • AdditiveChi2Sampler
  • AffinityPropagation
  • AgglomerationTransform
  • BaggingRegressor
  • BaseBagging
  • BaseCrossValidator
  • BaseDecisionTree
  • BaseDiscreteNB
  • BaseEnsemble
  • BaseForest
  • BaseGradientBoosting
  • BaseHistGradientBoosting
  • BaseLabelPropagation
  • BaseLibSVM
  • BaseLoss
  • BaseMixture
  • BaseNB
  • BaseRandomProjection
  • BaseSGD
  • BaseSVC
  • BaseSearchCV
  • BaseShuffleSplit
  • BaseSpectral
  • BaseWeightBoosting
  • BernoulliNB
  • BernoulliRBM
  • Binarizer
  • BinaryCrossEntropy
  • BinomialDeviance
  • BinomialDeviance
  • Birch
  • Bunch
  • CCA
  • CalibratedClassifierCV
  • CategoricalCrossEntropy
  • CategoricalNB
  • ChangedBehaviorWarning
  • CheckingClassifier
  • ClassificationLossFunction
  • ClassifierChain
  • ComplementNB
  • ConvergenceWarning
  • CountVectorizer
  • DataConversionWarning
  • DataDimensionalityWarning
  • DictVectorizer
  • DummyRegressor
  • ElasticNet
  • ElasticNetCV
  • EllipticEnvelope
  • EmpiricalCovariance
  • ExponentialLoss
  • ExponentialLoss
  • FactorAnalysis
  • FastICA
  • FeatureHasher
  • FeatureUnion
  • FitFailedWarning
  • ForestClassifier
  • ForestRegressor
  • GaussianNB
  • GaussianRandomProjection
  • GenericUnivariateSelect
  • GraphicalLasso
  • GraphicalLassoCV
  • GridSearchCV
  • GroupKFold
  • HistGradientBoostingClassifier
  • HistGradientBoostingRegressor
  • HuberLossFunction
  • IncrementalPCA
  • IsotonicRegression
  • IterativeImputer Open PR
  • KBinsDiscretizer
  • KFold
  • KMeans
  • KNeighborsClassifier
  • KNeighborsRegressor
  • KernelCenterer
  • KernelDensity
  • KernelRidge
  • KeyValTuple
  • KeyValTupleParam
  • LabelBinarizer
  • LabelEncoder
  • LabelPropagation
  • LabelSpreading
  • Lars
  • LarsCV
  • Lasso
  • LassoCV
  • LassoLars
  • LassoLarsCV
  • LassoLarsIC
  • LeastAbsoluteDeviation
  • LeastAbsoluteError
  • LeastSquares
  • LeastSquaresError
  • LeaveOneGroupOut
  • LeaveOneOut
  • LeavePGroupsOut
  • LeavePOut
  • LedoitWolf
  • LinearClassifierMixin
  • LinearModel
  • LinearModelCV
  • LinearRegression
  • LinearSVC
  • LinearSVR
  • LocalOutlierFactor
  • LocallyLinearEmbedding
  • LossFunction
  • MDS
  • MinCovDet
  • MiniBatchKMeans
  • MissingIndicator Open PR
  • Module_six_moves_urllib
  • Module_six_moves_urllib_error
  • Module_six_moves_urllib_parse
  • Module_six_moves_urllib_request
  • Module_six_moves_urllib_response
  • Module_six_moves_urllib_robotparser
  • MultiLabelBinarizer
  • MultiOutputClassifier
  • MultiOutputRegressor
  • MultiTaskElasticNet
  • MultiTaskElasticNetCV
  • MultiTaskLasso
  • MultiTaskLassoCV
  • MultinomialDeviance
  • MultinomialNB
  • NearestCentroid
  • NearestNeighbors
  • NeighborhoodComponentsAnalysis
  • NeighborsBase
  • NoSampleWeightWrapper
  • NonBLASDotWarning
  • Normalizer
  • NotFittedError
  • NuSVR
  • Nystroem
  • OAS
  • OPTICS
  • OneClassSVM
  • OneHotEncoder
  • OneVsOneClassifier
  • OneVsRestClassifier
  • OrdinalEncoder
  • OrthogonalMatchingPursuit
  • OrthogonalMatchingPursuitCV
  • OutputCodeClassifier
  • PLSCanonical
  • PLSRegression
  • PLSSVD
  • PatchExtractor
  • Pipeline
  • PowerTransformer
  • PredefinedSplit
  • QuantileLossFunction
  • QuantileTransformer
  • RBFSampler
  • RFE
  • RFECV
  • RadiusNeighborsClassifier
  • RadiusNeighborsRegressor
  • RandomizedSearchCV
  • RegressionLossFunction
  • RegressorChain
  • RepeatedKFold
  • RepeatedStratifiedKFold
  • RidgeCV
  • RidgeClassifierCV
  • SGDOptimizer
  • SVR
  • ScaledLogOddsEstimator
  • SelectFdr
  • SelectFpr
  • SelectFwe
  • SelectKBest
  • SelectPercentile
  • SelectorMixin
  • ShrunkCovariance
  • ShuffleSplit
  • SkewedChi2Sampler
  • SkipTestWarning
  • SimpleImputer Open PR
  • SparseCodingMixin
  • SparseRandomProjection
  • SpectralBiclustering
  • SpectralClustering
  • SpectralCoclustering
  • SpectralEmbedding
  • StratifiedKFold
  • StratifiedShuffleSplit
  • TfidfTransformer PRs put in version_added label for ARDRegression (and many others): Issue #15426 #15482 put in version_added label #15973 adding versionadded to a few modules #16015
  • TfidfVectorizer PRs put in version_added label for ARDRegression (and many others): Issue #15426 #15482 put in version_added label #15973 adding versionadded to a few modules #16015
  • TheilSenRegressor
  • TimeSeriesSplit
  • TransformedTargetRegressor
  • TruncatedSVD
  • UndefinedMetricWarning
  • VarianceThreshold
@jnothman jnothman added Documentation good first issue Easy with clear instructions to resolve help wanted labels Nov 1, 2019
@jnothman
Copy link
Member Author

jnothman commented Nov 1, 2019

@rth, please feel free to add a Sprint tag if you think this is suitable...

Btw, these classes appear to lack a versionadded... not sure though that we want to add to all of them (and I've not filtered private classes out): ARDRegression, AdaBoostClassifier, AdaBoostRegressor, AdamOptimizer, AdditiveChi2Sampler, AffinityPropagation, AgglomerationTransform, BaggingRegressor, BaseBagging, BaseCrossValidator, BaseDecisionTree, BaseDiscreteNB, BaseEnsemble, BaseForest, BaseGradientBoosting, BaseHistGradientBoosting, BaseLabelPropagation, BaseLibSVM, BaseLoss, BaseMixture, BaseNB, BaseRandomProjection, BaseSGD, BaseSVC, BaseSearchCV, BaseShuffleSplit, BaseSpectral, BaseWeightBoosting, BernoulliNB, BernoulliRBM, Binarizer, BinaryCrossEntropy, BinomialDeviance, BinomialDeviance, Birch, Bunch, CCA, CalibratedClassifierCV, CategoricalCrossEntropy, CategoricalNB, ChangedBehaviorWarning, CheckingClassifier, ClassificationLossFunction, ClassificationLossFunction, ClassifierChain, ComplementNB, ConvergenceWarning, CountVectorizer, DataConversionWarning, DataDimensionalityWarning, DictVectorizer, DummyRegressor, ElasticNet, ElasticNetCV, EllipticEnvelope, EmpiricalCovariance, ExponentialLoss, ExponentialLoss, FactorAnalysis, FastICA, FeatureHasher, FeatureUnion, FitFailedWarning, ForestClassifier, ForestRegressor, GaussianNB, GaussianRandomProjection, GenericUnivariateSelect, GraphicalLasso, GraphicalLassoCV, GridSearchCV, GroupKFold, HistGradientBoostingClassifier, HistGradientBoostingRegressor, HuberLossFunction, HuberLossFunction, IncrementalPCA, IsotonicRegression, IterativeImputer, KBinsDiscretizer, KFold, KMeans, KNeighborsClassifier, KNeighborsRegressor, KernelCenterer, KernelDensity, KernelRidge, KeyValTuple, KeyValTupleParam, LabelBinarizer, LabelEncoder, LabelPropagation, LabelSpreading, Lars, LarsCV, Lasso, LassoCV, LassoLars, LassoLarsCV, LassoLarsIC, LeastAbsoluteDeviation, LeastAbsoluteError, LeastAbsoluteError, LeastSquares, LeastSquaresError, LeastSquaresError, LeaveOneGroupOut, LeaveOneOut, LeavePGroupsOut, LeavePOut, LedoitWolf, LinearClassifierMixin, LinearModel, LinearModelCV, LinearRegression, LinearSVC, LinearSVR, LocalOutlierFactor, LocallyLinearEmbedding, LossFunction, LossFunction, MDS, MinCovDet, MiniBatchKMeans, MissingIndicator, Module_six_moves_urllib, Module_six_moves_urllib_error, Module_six_moves_urllib_parse, Module_six_moves_urllib_request, Module_six_moves_urllib_response, Module_six_moves_urllib_robotparser, MultiLabelBinarizer, MultiOutputClassifier, MultiOutputRegressor, MultiTaskElasticNet, MultiTaskElasticNetCV, MultiTaskLasso, MultiTaskLassoCV, MultinomialDeviance, MultinomialDeviance, MultinomialNB, NearestCentroid, NearestNeighbors, NeighborhoodComponentsAnalysis, NeighborsBase, NoSampleWeightWrapper, NonBLASDotWarning, Normalizer, NotFittedError, NuSVR, Nystroem, OAS, OPTICS, OneClassSVM, OneHotEncoder, OneVsOneClassifier, OneVsRestClassifier, OrdinalEncoder, OrthogonalMatchingPursuit, OrthogonalMatchingPursuitCV, OutputCodeClassifier, PLSCanonical, PLSRegression, PLSSVD, PatchExtractor, Pipeline, PowerTransformer, PredefinedSplit, QuantileLossFunction, QuantileLossFunction, QuantileTransformer, RBFSampler, RFE, RFECV, RadiusNeighborsClassifier, RadiusNeighborsRegressor, RandomizedSearchCV, RegressionLossFunction, RegressionLossFunction, RegressorChain, RepeatedKFold, RepeatedStratifiedKFold, RidgeCV, RidgeClassifierCV, SGDOptimizer, SVR, ScaledLogOddsEstimator, SelectFdr, SelectFpr, SelectFwe, SelectKBest, SelectPercentile, SelectorMixin, ShrunkCovariance, ShuffleSplit, SkewedChi2Sampler, SkipTestWarning, SparseCodingMixin, SparseRandomProjection, SpectralBiclustering, SpectralClustering, SpectralCoclustering, SpectralEmbedding, StratifiedKFold, StratifiedShuffleSplit, TfidfTransformer, TfidfVectorizer, TheilSenRegressor, TimeSeriesSplit, TransformedTargetRegressor, TruncatedSVD, UndefinedMetricWarning, VarianceThreshold

@rth
Copy link
Member

rth commented Nov 1, 2019

Thanks @jnothman !

@rth rth added the Sprint label Nov 1, 2019
@natashaborders-zz
Copy link
Contributor

natashaborders-zz commented Nov 2, 2019

I'll work on AdaBoostClassifier, AdaBoostRegressor.
Put in a pull request.

@alekslovesdata
Copy link

alekslovesdata commented Nov 2, 2019

LIST OF STUFF I SUBMITTED PULL REQUESTS FOR:
ARDRegression
AffinityPropogation
KNeighborsClassifier
RadiusNeighborsClassifier
BernoulliRBM
CCA
CalibratedClassifierCV
CategoricalNB
GroupKFold
StratifiedKFold
LeaveOneGroupOut
LeavePGroupsOut
VarianceThreshold
SpectralBiclustering
SpectralCoclustering
SpectralEmbedding
BaseBagging
BaseSGD


Ongoing Progress:

@lotusea
Copy link

lotusea commented Nov 2, 2019

@lotusea worked on KernelRidge, AgglomerativeClustering

@EricaXia
Copy link

EricaXia commented Nov 2, 2019

@EricaXia @Mzeej are working on TfidfTransformer, TfidfVectorizer, TheilSenRegressor, TimeSeriesSplit, TransformedTargetRegressor, TruncatedSVD

@geoninja
Copy link
Contributor

geoninja commented Nov 2, 2019

@geoninja is working on 'OrdinalEncoder' and 'OneHotEncoder' and LabelEncoder'

@harini-sridhar
Copy link

@Drajan and I are working on PLSCanonical, PLSRegression, PLSSVD, PatchExtractor, Pipeline, PowerTransformer, PredefinedSplit.

alekslovesdata added a commit to alekslovesdata/scikit-learn that referenced this issue Nov 2, 2019
@natashaborders-zz
Copy link
Contributor

Going to work on BaggingRegressor, BaseBagging, BaseCrossValidator, BaseDecisionTree, BaseDiscreteNB, BaseEnsemble, BaseForest, BaseGradientBoosting, BaseHistGradientBoosting, BaseLabelPropagation, BaseLibSVM, BaseLoss, BaseMixture, BaseNB, BaseRandomProjection, BaseSGD, BaseSVC, BaseSearchCV, BaseShuffleSplit, BaseSpectral, BaseWeightBoosting.

@ghost
Copy link

ghost commented Nov 2, 2019

@Mzeej @EricaXia Going to work on:

CheckingClassifier, ClassificationLossFunction, ClassificationLossFunction, ClassifierChain, ComplementNB, ConvergenceWarning, CountVectorizer

alekslovesdata added a commit to alekslovesdata/scikit-learn that referenced this issue Nov 2, 2019
harini-sridhar added a commit to harini-sridhar/scikit-learn that referenced this issue Nov 2, 2019
harini-sridhar added a commit to harini-sridhar/scikit-learn that referenced this issue Nov 2, 2019
…n, PLSSVD, PatchExtractor, Pipeline, PowerTransformer, PredefinedSplit (Issue scikit-learn#15426)
@ghost
Copy link

ghost commented Nov 2, 2019

Please see ongoing list of items which versioning is being added during the WiMLDS sprint:

https://tinyurl.com/y57jsvbg

I think we should merge all our changes into one branch and submit a single PR to the reviewers from the account of someone who can commit to addressing any comments the reviewers have.

@ghost
Copy link

ghost commented Nov 2, 2019

Claiming MultinomialNB

alekslovesdata added a commit to alekslovesdata/scikit-learn that referenced this issue Nov 2, 2019
@EricaXia
Copy link

EricaXia commented Nov 2, 2019

Working on DataConversionWarning, DataDimensionalityWarning, DictVectorizer , DummyRegressor

alekslovesdata added a commit to alekslovesdata/scikit-learn that referenced this issue Nov 2, 2019
alekslovesdata added a commit to alekslovesdata/scikit-learn that referenced this issue Nov 2, 2019
@natashaborders-zz
Copy link
Contributor

LocalOutlierFactor

@jnothman
Copy link
Member Author

jnothman commented Nov 30, 2019 via email

@glemaitre
Copy link
Member

@cmarmo I updated the list on the top.

@cmarmo
Copy link
Contributor

cmarmo commented Jan 9, 2020

@cmarmo I updated the list on the top.

Thanks!

@alhewpl
Copy link

alhewpl commented Jan 21, 2020

Could @Schindst and I work on the LinearClassifierMixin, LinearModel, LinearRegression?

@jnothman
Copy link
Member Author

jnothman commented Jan 21, 2020 via email

@alhewpl
Copy link

alhewpl commented Jan 25, 2020

ok, we'll take v0.21 - with @Schindst

@borovikova
Copy link
Contributor

borovikova commented Jan 25, 2020

We will work on v0.20.0 with @ellenkoenig

@brigitteunger
Copy link
Contributor

brigitteunger commented Jan 25, 2020

We (@shravaniCD and @hhnnhh and @brigitteunger ) are going to take care of those:
#WiMLDS @noatamir
HistGradientBoostingClassifier
HistGradientBoostingRegressor

Was already fixed here: natashaborders/scikit-learn@3ca653a

@adrinjalali
Copy link
Member

As a reminder, people who take on this issue, please take on a version (the changelog for v0.18 for instance), and tackle everything mentioned there, instead of working on classes or files or modules. This makes the review process much easier.

@brigitteunger
Copy link
Contributor

brigitteunger commented Jan 25, 2020

We (@shravaniCD and @hhnnhh and @brigitteunger) are going to pick v0.18

@noatamir
Copy link
Contributor

I'm starting to work on v0.19

@noatamir
Copy link
Contributor

noatamir commented Apr 8, 2020

@jnothman or @adrinjalali do you know which versions still need documentation or are all the major ones done/in progress?

I can start another one or pick one up but I’m not sure how far back it makes sense to go and the original list isn’t up-to-date (or relevant?!) anymore..

@adrinjalali
Copy link
Member

I think we've covered most of the relevant ones. I personally wouldn't worry about anything older than 0.18

adrinjalali pushed a commit that referenced this issue Apr 15, 2020
* added v0.19.1 and wip v0.19

* finished adding vchanged strings for v0.19

Towards #15426

@adrinjalali #wimlds #scikitlearnsprint

* fixing linter issues

* caught line issues with flake8

* caught the last line issue

* added lines and cleaned gtiignore

* Update sklearn/multiclass.py

Co-Authored-By: Thomas J Fan <[email protected]>

* Update sklearn/multiclass.py

Co-Authored-By: Thomas J Fan <[email protected]>

Co-authored-by: Thomas J Fan <[email protected]>
@cmarmo
Copy link
Contributor

cmarmo commented May 11, 2020

The issue has been addressed until version 0.18. I'm closing it. Feel free to open a new one for specific sklearn features.

@cmarmo cmarmo closed this as completed May 11, 2020
gio8tisu pushed a commit to gio8tisu/scikit-learn that referenced this issue May 15, 2020
* added v0.19.1 and wip v0.19

* finished adding vchanged strings for v0.19

Towards scikit-learn#15426

@adrinjalali #wimlds #scikitlearnsprint

* fixing linter issues

* caught line issues with flake8

* caught the last line issue

* added lines and cleaned gtiignore

* Update sklearn/multiclass.py

Co-Authored-By: Thomas J Fan <[email protected]>

* Update sklearn/multiclass.py

Co-Authored-By: Thomas J Fan <[email protected]>

Co-authored-by: Thomas J Fan <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Documentation good first issue Easy with clear instructions to resolve help wanted Sprint
Projects
None yet
Development

No branches or pull requests