
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
NumPy - Binary Operators
Binary Operators in NumPy
Binary operators in NumPy are operations that take two operands (usually arrays) and perform element-wise operations between corresponding elements of the arrays. These operations include addition, subtraction, multiplication, division, logical operations, and more.
For example, if you have two arrays, you can add them together, subtract one from the other, multiply their elements, and so on. Each of these operations is performed element-wise, meaning that the operation is applied to each corresponding pair of elements in the two arrays.
Following are the functions for bitwise operations available in NumPy package.
Sr.No. | Operation & Description |
---|---|
1 |
bitwise_and
Computes bitwise AND operation of array elements |
2 |
bitwise_or
Computes bitwise OR operation of array elements |
3 |
bitwise_xor
Computes bitwise XOR of array elements. Each bit of the result is 1 if the corresponding bits in the input are different. |
4 |
left_shift
Shifts bits of a binary representation to the left |
5 |
right_shift
Shifts bits of binary representation to the right |
6 |
bitwise_right_shift
Shifts the bits of an integer to the right. |
7 |
invert
Computes bitwise NOT |
8 |
bitwise_invert
Computes bitwise inversion of the elements. |
9 |
packbits
Packs the elements of a binary array into packed bitfield representation. |
10 |
unpackbits
Unpacks elements of a binary array into a list of bits. |
11 |
binary_repr
Converts an integer to its binary representation as a string. |
The Bitwise AND (&) Operation
The bitwise AND operation compares each bit of two numbers. If both bits are "1", the result is "1"; otherwise, it is "0" −
# (0101 in binary) a = 5 # (0011 in binary) b = 3 # (0001 in binary, which is 1 in decimal) result = a & b print("The result obtained is:",result)
Following is the output obtained −
The result obtained is: 1
The Bitwise OR (|) Operation
The bitwise OR operation compares each bit of two numbers. If either bit is "1", the result is "1"; if both are "0", the result is "0". −
# (0101 in binary) a = 5 # (0011 in binary) b = 3 # (0111 in binary, which is 7 in decimal) result = a | b print("The result obtained is:",result)
This will produce the following result −
The result obtained is: 7
The Bitwise NOT (~) Operation
The bitwise NOT operation inverts each bit of the number, turning "0" into "1" and "1" into "0". This is also known as the bitwise complement −
# (0101 in binary) a = 5 # (1010 in binary, which is -6 in decimal with two's complement) result = ~a print("The result obtained is:",result)
Following is the output of the above code −
The result obtained is: -6
The Left Shift (<<) Operation
The left shift operation shifts the bits of the number to the left by a specified number of positions. Bits shifted out on the left are discarded, and 0s are shifted in on the right −
# (0101 in binary) a = 5 # (1010 in binary, which is 10 in decimal) result = a << 1 print("The result obtained is:",result)
The output obtained is as shown below −
The result obtained is: 10
The Right Shift (>>) Opeartion
The right shift operation shifts the bits of the number to the right by a specified number of positions. Bits shifted out on the right are discarded, and the leftmost bits are filled based on the sign of the number (arithmetic shift for signed integers) −
# (0101 in binary) a = 5 # (0010 in binary, which is 2 in decimal) result = a >> 1 print("The result obtained is:",result)
After executing the above code, we get the following output −
The result obtained is: 2