
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
NumPy - Creating Datetime Arrays
Datetime Arrays in NumPy
Datetime arrays are arrays that hold date and time values. NumPy provides the datetime64 and timedelta64 data types for handling dates and times with a wide range of precision.
The "datetime64" type represents dates and times, while "timedelta64" represents differences between dates or times.
Creating Datetime Arrays
In NumPy, we can create datetime arrrays using the array() function and the datetime64() function −
Using the np.array() Function
You can create a datetime array by specifying date strings or timestamps with the numpy.array() function. You need to specify the dtype as datetime64 to ensure that the array elements are treated as datetime objects.
Following is the syntax −
numpy.array(object, dtype=None, copy=True, order='K', subok=False, ndmin=0)
Where,
- object: This is the input data (e.g., list, tuple, or other array-like objects) that you want to convert into a NumPy array.
- dtype: Specifies the desired data type of the array elements. If not provided, NumPy will infer the data type from the input data.
- copy: If True, the function will create a copy of the input data. If False, a copy is made only if necessary.
- order: Specifies the memory layout order. 'C' is for row-major (C-style) order, 'F' is for column-major (Fortran-style) order, and 'A' or 'K' can be used for automatic order selection.
- subok: If True, subclasses of ndarray are passed-through; if False, the returned array will be forced to be a base-class ndarray.
- ndmin: Specifies the minimum number of dimensions that the resulting array should have. If necessary, new axes are added to the left of the shape.
Example
In the following example, we are converting a list of date strings into a NumPy array by passing the "dtype" parameter to the array() function −
import numpy as np # Creating a datetime array using date strings dates = np.array(['2024-08-01', '2024-08-15', '2024-09-01'], dtype='datetime64') print("Datetime Array:\n", dates)
Following is the output obtained −
Datetime Array: ['2024-08-01' '2024-08-15' '2024-09-01']
Using the np.datetime64() Function
The datetime64() function in NumPy is used to create arrays of dates and times. This function provides a way to work with date and time data, enabling operations on time series data. The "datetime64" data type allows for date and time precision down to the "nanosecond" level.
Following is the syntax −
numpy.datetime64(datetime_string, unit)
Where,
- datetime_string: It is a string representing the date and/or time. The format of this string must match the unit specified.
- unit (optional): It specifies the time unit (e.g., Y, M, D, h, m, s, ms, us, ns). The unit defines the precision of the date and time representation.
Example
Here, we create individual datetime objects and retrieve an array of "datetime64" objects created from specified dates −
import numpy as np # Creating individual datetime objects date1 = np.datetime64('2024-08-01') date2 = np.datetime64('2024-08-15') # Creating an array of datetime objects dates = np.array([date1, date2, np.datetime64('2024-09-01')]) print("Datetime Array:\n", dates)
This will produce the following result −
Datetime Array: ['2024-08-01' '2024-08-15' '2024-09-01']
Creating Datetime Arrays with Specific Frequencies
Creating datetime arrays with specific frequencies in NumPy allows you to generate sequences of dates or times that follow a regular interval, such as daily, monthly, hourly, etc.
In NumPy, you can create datetime arrays with specific frequencies using the np.arange() or np.linspace() functions in combination with datetime64 data types. These functions allow you to generate evenly spaced datetime values between a start and end date or time.
Using the np.arange() Function
The np.arange() function is used to create datetime arrays with a specified frequency. The key parameters include the start date or time, the end date or time, and the step (frequency) between consecutive datetime values. Following is the syntax −
numpy.arange(start, stop, step, dtype='datetime64')
Where,
- start: It is the starting date or time in datetime64 format.
- stop: It is the ending date or time (exclusive) in datetime64 format.
- step: It is the frequency or interval between consecutive dates/times, specified using timedelta64.
- dtype: It is the data type, which should be 'datetime64'.
Example
In the example below, we are creating an array of dates from "August 1, 2024" to "August 10, 2024", with a daily frequency −
import numpy as np # Creating a daily datetime array dates = np.arange('2024-08-01', '2024-08-11', dtype='datetime64[D]') print("Daily Datetime Array:", dates)
Following is the output of the above code −
Daily Datetime Array: ['2024-08-01' '2024-08-02' '2024-08-03' '2024-08-04' '2024-08-05' '2024-08-06' '2024-08-07' '2024-08-08' '2024-08-09' '2024-08-10']
Using the np.linspace() Function
While np.arange() function is commonly used for creating datetime arrays with specific frequencies, np.linspace()function can also be used when you want to specify the number of points between two datetime values rather than the interval. Following is the syntax −
numpy.linspace(start, stop, num, dtype='datetime64')
Where,
- start: It is the starting datetime value "datetime64" format.
- stop: It is the ending datetime value "datetime64" format.
- num: It is the number of datetime values to generate between start and stop.
- dtype: It is the data type, which should be 'datetime64'.
Example
In this example, we are creating a datetime array with 5 evenly spaced datetime values between the start and end dates −
import numpy as np # Convert start and end dates to datetime64 start_date = np.datetime64('2024-08-01') end_date = np.datetime64('2024-08-10') # Calculate the difference in days between start and end date_range = np.arange(start_date, end_date + np.timedelta64(1, 'D')) # Use linspace on the integer values of dates datetimes = np.linspace(0, len(date_range)-1, num=5, dtype=int) # Map back to the original date range datetime_array = start_date + datetimes.astype('timedelta64[D]') print("Datetime Array with 5 Points:", datetime_array)
The output obtained is as shown below −
Datetime Array with 5 Points: ['2024-08-01' '2024-08-03' '2024-08-05' '2024-08-07' '2024-08-10']
Creating Time Arrays
Creating time arrays in NumPy involves generating sequences of time-related values, such as hours, minutes, or seconds, similar to how you would create arrays of dates.
In NumPy, you can create time arrays using the datetime64 and timedelta64 data types. While "datetime64" is used for absolute points in time (such as a specific date and time), "timedelta64" represents a duration (such as hours or minutes). By combining these types, you can create arrays of time values that represent specific moments or intervals.
Example
The following example produces a time array starting at midnight and ending at noon, with each element representing a specific hour −
import numpy as np # Define the start and end times start_time = np.datetime64('2024-08-01T00:00') end_time = np.datetime64('2024-08-01T12:00') # Create an array of hourly intervals time_array = np.arange(start_time, end_time, np.timedelta64(1, 'h')) print("Time Array:", time_array)
After executing the above code, we get the following output −
Time Array: ['2024-08-01T00:00' '2024-08-01T01:00' '2024-08-01T02:00' '2024-08-01T03:00' '2024-08-01T04:00' '2024-08-01T05:00' '2024-08-01T06:00' '2024-08-01T07:00' '2024-08-01T08:00' '2024-08-01T09:00' '2024-08-01T10:00' '2024-08-01T11:00']
Combining Date and Time
Combining date and time involves creating a "datetime64" object that consists of both the date and the specific time of day.
You can create a datetime64 array by specifying the date and time in a single string, or by combining separate date and time arrays using NumPy's vectorized operations.
Example
In this example, we create an array where each element represents a specific date and time −
import numpy as np # Creating datetime arrays with date and time datetimes = np.array([np.datetime64('2024-08-01T08:00:00'), np.datetime64('2024-08-02T12:30:00'), np.datetime64('2024-08-03T16:45:00')]) print("Datetime Array with Date and Time:\n", datetimes)
The result produced is as follows −
Datetime Array with Date and Time: ['2024-08-01T08:00:00' '2024-08-02T12:30:00' '2024-08-03T16:45:00']