
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
Numpy unique() Function
The Numpy unique() function is used to return the sorted unique elements of an array. It can also optionally return the indices of the input array that give the unique values and the counts of each unique value.
This function is useful for removing duplicates from an array and understanding the frequency of elements.
Syntax
Following is the syntax of Numpy unique() function −
numpy.unique(arr, return_index, return_inverse, return_counts)
Parameters
Following are the parameters of the Numpy unique() function −
- arr: The input array. Will be flattened if not 1-D array.
- return_index: If True, returns the indices of elements in the input array.
- return_inverse: If True, returns the indices of unique array, which can be used to reconstruct the input array.
- return_counts: If True, returns the number of times the element in unique array appears in the original array.
Example 1
Following is the example of Numpy unique() function in which creating an array with the unique values of the given input array −
import numpy as np # Create a 1D array a = np.array([5, 2, 6, 2, 7, 5, 6, 8, 2, 9]) print('First array:') print(a) print('\n') # Get unique values in the array print('Unique values of first array:') u = np.unique(a) print(u) print('\n')
Output
First array: [5 2 6 2 7 5 6 8 2 9] Unique values of first array: [2 5 6 7 8 9]
Example 2
Here in this example we are getting the unique values and their indices with the help of unique() function −
import numpy as np # Create a 1D array a = np.array([5, 2, 6, 2, 1, 7, 5, 6, 8, 2, 9]) print('First array:') print(a) print('\n') # Get unique values and their indices in the original array print('Unique array and Indices array:') u, indices = np.unique(a, return_index=True) print(indices) print('\n') print('We can see each number corresponds to index in original array:') print(a) print('\n')
Output
First array: [5 2 6 2 1 7 5 6 8 2 9] Unique array and Indices array: [ 4 1 0 2 5 8 10] We can see each number corresponds to index in original array: [5 2 6 2 1 7 5 6 8 2 9]
Example 3
Below is the example of reconstructing the original array with the unique elements and their indices −
import numpy as np # Create a 1D array a = np.array([5, 2, 6, 2, 7, 5, 6, 8, 2, 9]) print('First array:') print(a) print('\n') # Get unique values and indices to reconstruct the original array print('Indices of unique array:') u, indices = np.unique(a, return_inverse=True) print(u) print('\n') print('Indices are:') print(indices) print('\n') print('Reconstruct the original array using indices:') print(u[indices]) print('\n') # Get counts of unique values print('Return the count of repetitions of unique elements:') u, indices = np.unique(a, return_counts=True) print(u) print(indices)
Output
First array: [5 2 6 2 7 5 6 8 2 9] Indices of unique array: [2 5 6 7 8 9] Indices are: [1 0 2 0 3 1 2 4 0 5] Reconstruct the original array using indices: [5 2 6 2 7 5 6 8 2 9] Return the count of repetitions of unique elements: [2 5 6 7 8 9] [3 2 2 1 1 1]