Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Overview of Human Carbonic Anhydrases

  • Chapter
  • First Online:
Carbonic Anhydrase as Drug Target
  • 1153 Accesses

  • 7 Citations

Abstract

In human body there are 15 proteins that possess highly homologous β-sheet-based structure called carbonic anhydrases (CAs) because 12 of them catalyze the reversible hydration of carbon dioxide to bicarbonate and acid protons using the that is located in the active site of catalytically active CA. The remaining 3 CA isoforms do not possess this catalytic activity because they do not contain the and thus are called carbonic anhydrase-related proteins (CARPs). The 12 catalytically active proteins are the proteins analyzed in this book from the perspective of drug targeting. The CA isoforms possess variable levels of catalytic activity, different cellular localization, patterns of multimerization, domain organization, and attachment to membranes. In this chapter we briefly review the CA research, beginning from the discovery of carbonic anhydrase enzyme through the development of specific CA inhibitors into human clinical drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Meldrum, N., Roughton, F.: Some properties of carbonic anhydrase, the CO 2 enzyme present in blood. J. Physiol. 75, 15–16 (1932)

    CAS  Google Scholar 

  2. Meldrum N.U., Roughton F.J.W.: Carbonic anhydrase. Its preparation and properties. J. Physiol. 80, 113–142 (1933)

    CAS  PubMed  Google Scholar 

  3. Stadie, W.C., O’Brien, H.: The catalysis of the hydration of carbon dioxide and dehydration of carbonic acid by an enzyme isolated from red blood cells. J. Biol. Chem. 103, 521–529 (1933)

    CAS  Google Scholar 

  4. Keilin, D., Mann, T.: Carbonic anhydrase. Nature 144, 442–443 (1939)

    Article  CAS  Google Scholar 

  5. Mann, T., Keilin, D.: Sulphanilamide as a specific inhibitor of carbonic anhydrase. Nature 146, 164–165 (1940)

    Article  CAS  Google Scholar 

  6. Neish, A.C.: Studies on chloroplasts. Biochem. J. 33, 300–308 (1939)

    Article  CAS  Google Scholar 

  7. Bradfield, J.R.G.: Plant carbonic anhydrase. Nature 159, 467–468 (1947)

    Article  CAS  Google Scholar 

  8. Veitch, F.P., Blankenship, L.C.: Carbonic anhydrase in bacteria. Nature 197, 76–77 (1963)

    Article  CAS  Google Scholar 

  9. Alber, B.E., Ferry, J.G.: A carbonic anhydrase from the archaeon Methanosarcina thermophila. Proc. Natl. Acad. Sci. U. S. A. 91, 6909–6913 (1994)

    Article  CAS  Google Scholar 

  10. Amoroso, G., Morell-Avrahov, L., Muller, D., Klug, K., Suttemeyer, D.: The gene NCE103 (YNL036w) from Saccharomyces cerevisiae encodes a functional carbonic anhydrase and its transcription is regulated by the concentration of inorganic carbon in the medium. Mol. Microbiol. 56, 549–558 (2005)

    Article  CAS  Google Scholar 

  11. Supuran, C.T.: Structure and function of carbonic anhydrases. Biochem. J. 473, 2023–2032 (2016)

    Article  CAS  Google Scholar 

  12. Hewett-Emmett, D., Hopkins, P.J., Tashian, R.E., Czelusniak, J.: Origins and molecular evolution of the carbonic anhydrase isozymes. Ann. N. Y. Acad. Sci. 429, 338–356 (1984)

    Article  CAS  Google Scholar 

  13. Roberts, S.B., Lane, T.W., Morel, F.M.M.: Carbonic anhydrase in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). J. Phycol. 33, 845–850 (1997)

    Article  CAS  Google Scholar 

  14. Lane, T.W., et al.: Biochemistry: a cadmium enzyme from a marine diatom. Nature 435, 42 (2005)

    Article  CAS  Google Scholar 

  15. Del Prete, S., et al.: Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum—the η-carbonic anhydrases. Bioorg. Med. Chem. Lett. 24, 4389–4396 (2014)

    Article  Google Scholar 

  16. Kikutani, S., et al.: Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum. Proc. Natl. Acad. Sci. U. S. A. 113, 9828–9833 (2016)

    Article  CAS  Google Scholar 

  17. Lomelino, C.L., Andring, J.T., McKenna, R.: Crystallography and its impact on carbonic anhydrase research. Int. J. Med. Chem. 2018 (2018)

    Google Scholar 

  18. Modak, J.K., Revitt-Mills, S.A., Roujeinikova, A.: Cloning, purification and preliminary crystallographic analysis of the complex of Helicobacter pylori α-carbonic anhydrase with acetazolamide. Acta. Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 69, 1252–1255 (2013)

    Article  CAS  Google Scholar 

  19. Morishita, S., et al.: Cloning, polymorphism, and inhibition of β-carbonic anhydrase of Helicobacter pylori. J. Gastroenterol. 43, 849–857 (2008)

    Article  CAS  Google Scholar 

  20. Parkkila, S., et al.: Recent advances in research on the most novel carbonic anhydrases, CA XIII and XV. Curr. Pharm. Des. 14, 672–678 (2008)

    Article  Google Scholar 

  21. Liljas, A., et al.: Crystal structure of human carbonic anhydrase C. Nat. New Biol. 235, 131–137 (1972)

    Article  CAS  Google Scholar 

  22. Berman, H.M., et al.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)

    Article  CAS  Google Scholar 

  23. Aggarwal, M., Boone, C.D., Kondeti, B., McKenna, R.: Structural annotation of human carbonic anhydrases. J. Enzyme. Inhib. Med. Chem. 28, 267–277 (2013)

    Article  Google Scholar 

  24. Liang, J.Y., Lipscomb, W.N.: Binding of substrate CO 2 to the active site of human carbonic anhydrase II: a molecular dynamics study. Proc. Natl. Acad. Sci. U. S. A. 87, 3675–3679 (1990)

    Article  CAS  Google Scholar 

  25. Silverman, D.N., Lindskog, S.: The catalytic mechanism of carbonic anhydrase: implications of a rate-limiting protolysis of water. Acc. Chem. Res. 21, 30–36 (1988)

    Article  CAS  Google Scholar 

  26. Aspatwar, A., Tolvanen, M.E.E., Ortutay, C., Parkkila, S.: Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications, pp. 135–156. Springer, Dordrecht (2014)

    Google Scholar 

  27. Silagi, E.S., Batista, P., Shapiro, I.M., Risbud, M.V.: Expression of carbonic anhydrase III, a nucleus pulposus phenotypic marker, is hypoxia-responsive and confers protection from oxidative stress-induced cell death. Sci. Rep. 8, 4856 (2018)

    Article  Google Scholar 

  28. Monti, D.M., et al.: Insights into the role of reactive sulfhydryl groups of carbonic anhydrase III and VII during oxidative damage. J. Enzyme Inhib. Med. Chem. 32, 5–12 (2017)

    Article  CAS  Google Scholar 

  29. Di Fiore, A., Monti, D.M., Scaloni, A., De Simone, G. Monti, S.M.: Protective role of carbonic anhydrases III and VII in cellular defense mechanisms upon redox unbalance. Oxidative Med. Cell. Longev. 2018, 2018306 (2018)

    Google Scholar 

  30. Buonanno, M., et al.: The crystal structure of a hCA VII variant provides insights into the molecular determinants responsible for its catalytic behavior. Int. J. Mol. Sci. 19, 1571 (2018)

    Article  Google Scholar 

  31. Bootorabi, F., et al.: Analysis of a shortened form of human carbonic anhydrase VII expressed in vitro compared to the full-length enzyme. Biochimie 92, 1072–1080 (2010)

    Article  CAS  Google Scholar 

  32. Scozzafava, A., Supuran, C.T., Carta, F.: Antiobesity carbonic anhydrase inhibitors: a literature and patent review. Expert Opin. Ther. Pat. 23, 725–735 (2013)

    Article  CAS  Google Scholar 

  33. Queen, A., Khan, P., Azam, A., Hassan, M.I.: Understanding the role and mechanism of carbonic anhydrase V in obesity and its therapeutic implications. Curr. Protein Pept. Sci. 19, 909–923 (2018)

    Article  CAS  Google Scholar 

  34. Patrikainen, M., Pan, P., Kulesskaya, N., Voikar, V., Parkkila, S.: The role of carbonic anhydrase VI in bitter taste perception: evidence from the Car6-/- mouse model. J. Biomed. Sci. 21, 82 (2014)

    Article  Google Scholar 

  35. Picco, D.C.R., et al.: Children with a higher activity of carbonic anhydrase VI in saliva are more likely to develop dental caries. CRE 51, 394–401 (2017)

    CAS  Google Scholar 

  36. Mboge, M.Y., Mahon, B.P., McKenna, R. Frost, S.C.: Carbonic anhydrases: role in pH control and cancer. Metabolites 8, 19 (2018)

    Article  Google Scholar 

  37. Langella, E., et al.: Biochemical, biophysical and molecular dynamics studies on the proteoglycan-like domain of carbonic anhydrase IX. Cell. Mol. Life Sci. 1–14 (2018)

    Google Scholar 

  38. Sterky, F.H., et al.: Carbonic anhydrase-related protein CA10 is an evolutionarily conserved pan-neurexin ligand. PNAS 114, E1253–E1262 (2017)

    Article  CAS  Google Scholar 

  39. Karjalainen, S.L., et al.: Carbonic anhydrase related protein expression in astrocytomas and oligodendroglial tumors. BMC Cancer 18, 584 (2018)

    Article  Google Scholar 

  40. Supuran, C.T.: How many carbonic anhydrase inhibition mechanisms exist? J. Enzyme Inhib. Med. Chem. 31, 345–360 (2016)

    Article  CAS  Google Scholar 

  41. Supuran, C.T.: Advances in structure-based drug discovery of carbonic anhydrase inhibitors. Expert Opin. Drug Discovery 1–28 (2016)

    Google Scholar 

  42. Supuran, C.T.: Applications of carbonic anhydrases inhibitors in renal and central nervous system diseases. Expert Opin. Ther. Pat. 28, 713–721 (2018)

    Article  CAS  Google Scholar 

  43. Swenson, E.R.: New insights into carbonic anhydrase inhibition, vasodilation, and treatment of hypertensive-related diseases. Curr. Hypertens. Rep. 16, 1–11 (2014)

    Article  CAS  Google Scholar 

  44. Swenson, E.R.: Safety of carbonic anhydrase inhibitors. Expert Opin. Drug Saf. 13, 459–472 (2014)

    Article  CAS  Google Scholar 

  45. Krishnamurthy, V.M., et al.: Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein-ligand binding. Chem. Rev. 108, 946–1051 (2008)

    Article  CAS  Google Scholar 

  46. Myszka, D.G., et al.: The ABRF-MIRG’02 study: assembly state, thermodynamic, and kinetic analysis of an enzyme/inhibitor interaction. J. Biomol. Tech. 14, 247–269 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Cannon, M.J., et al.: Comparative analyses of a small molecule/enzyme interaction by multiple users of Biacore technology. Anal. Biochem. 330, 98–113 (2004)

    Article  CAS  Google Scholar 

  48. Li, D., Chen, L., Wang, R., Liu, R., Ge, G.: Synergetic determination of thermodynamic and kinetic signatures using isothermal titration calorimetry: a full-curve-fitting approach. Anal. Chem. 89, 7130–7138 (2017)

    Article  CAS  Google Scholar 

  49. Wahiduzzaman, et al.: Characterization of folding intermediates during urea-induced denaturation of human carbonic anhydrase II. Int. J. Biol. Macromol. 95, 881–887 (2017)

    Article  CAS  Google Scholar 

  50. Cimmperman, P., et al.: A quantitative model of thermal stabilization and destabilization of proteins by ligands. Biophys. J. 95, 3222–3231 (2008)

    Article  CAS  Google Scholar 

  51. Lisi, G.P., Hughes, R.P., Wilcox, D.E.: Coordination contributions to protein stability in metal-substituted carbonic anhydrase. J. Biol. Inorg. Chem. 21, 659–667 (2016)

    Article  CAS  Google Scholar 

  52. Wright, T.A., Stewart, J.M., Page, R.C., Konkolewicz, D.: Extraction of thermodynamic parameters of protein unfolding using parallelized differential scanning fluorimetry. J. Phys. Chem. Lett. 8, 553–558 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daumantas Matulis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baranauskienė, L., Matulis, D. (2019). Overview of Human Carbonic Anhydrases. In: Matulis, D. (eds) Carbonic Anhydrase as Drug Target. Springer, Cham. https://doi.org/10.1007/978-3-030-12780-0_1

Download citation

Publish with us

Policies and ethics