Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Universality at large transverse spin in defect CFT

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 17 September 2018
  • Volume 2018, article number 91, (2018)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Universality at large transverse spin in defect CFT
Download PDF
  • Madalena Lemos  ORCID: orcid.org/0000-0001-7410-22511,
  • Pedro Liendo  ORCID: orcid.org/0000-0002-8752-66911,
  • Marco Meineri2 &
  • …
  • Sourav Sarkar  ORCID: orcid.org/0000-0001-9474-54573,4 
  • 610 Accesses

  • 60 Citations

  • 2 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We study the spectrum of local operators living on a defect in a generic conformal field theory, and their coupling to the local bulk operators. We establish the existence of universal accumulation points in the spectrum at large s, s being the charge of the operators under rotations in the space transverse to the defect. Our tools include a formula that inverts the bulk to defect OPE, analogous to the Caron-Huot formula for the four-point function [1]. Analyticity of the formula in s implies that the scaling dimensions of the defect operators are aligned in Regge trajectories \( \widehat{\Delta}(s) \). These results require the correlator of two local operators and the defect to be bounded in a certain region, a condition that we do not prove in general. We check our conclusions against examples in perturbation theory and holography, and we make specific predictions concerning the spectrum of defect operators on Wilson lines. We also give an interpretation of the large s spectrum in the spirit of the work of Alday and Maldacena [2].

Article PDF

Download to read the full article text

Similar content being viewed by others

Dressing bulk fields in AdS3

Article Open access 28 October 2020

Cutoff AdS3 versus the \( T\overline{T} \) deformation

Article Open access 04 July 2018

Bulk-local dS3 holography: the matter with \( T\overline{T} \) + Λ2

Article Open access 09 October 2024

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Crystal Field Theory
  • Operator Theory
  • Potential Theory
  • Self incompatability
  • String Theory
  • Critical Theory
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. S. Caron-Huot, Analyticity in spin in conformal theories, JHEP 09 (2017) 078 [arXiv:1703.00278] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. L.F. Alday and J.M. Maldacena, Comments on operators with large spin, JHEP 11 (2007) 019 [arXiv:0708.0672] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].

    Article  ADS  Google Scholar 

  4. A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Rychkov, EPFL lectures on conformal field theory In D ≥ 3 dimensions, Springer, Germany (2016).

    Google Scholar 

  7. D. Simmons-Duffin, The conformal bootstrap, in the proceedings of Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015), June 1–26, Boulder, U.S.A. (2015), arXiv:1602.07982 [INSPIRE].

  8. D. Simmons-Duffin, The lightcone bootstrap and the spectrum of the 3D Ising CFT, JHEP 03 (2017) 086 [arXiv:1612.08471] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. D. Mazac, Analytic bounds and emergence of AdS 2 physics from the conformal bootstrap, JHEP 04 (2017) 146 [arXiv:1611.10060] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. S. El-Showk and M.F. Paulos, Bootstrapping conformal field theories with the extremal functional method, Phys. Rev. Lett. 111 (2013) 241601 [arXiv:1211.2810] [INSPIRE].

    Article  ADS  Google Scholar 

  11. D.M. McAvity and H. Osborn, Conformal field theories near a boundary in general dimensions, Nucl. Phys. B 455 (1995) 522 [cond-mat/9505127] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Billó, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP 04 (2016) 091 [arXiv:1601.02883] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  13. A. Gadde, Conformal constraints on defects, arXiv:1602.06354 [INSPIRE].

  14. M. Hogervorst, Crossing kernels for boundary and crosscap CFTs, arXiv:1703.08159 [INSPIRE].

  15. L. Rastelli and X. Zhou, The Mellin formalism for boundary CFT d, JHEP 10 (2017) 146 [arXiv:1705.05362] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M. Fukuda, N. Kobayashi and T. Nishioka, Operator product expansion for conformal defects, JHEP 01 (2018) 013 [arXiv:1710.11165] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. E. Lauria, M. Meineri and E. Trevisani, Radial coordinates for defect CFTs, arXiv:1712.07668 [INSPIRE].

  18. P. Liendo, L. Rastelli and B.C. van Rees, The bootstrap program for boundary CFT d, JHEP 07 (2013) 113 [arXiv:1210.4258] [INSPIRE].

    Article  ADS  Google Scholar 

  19. D. Gaiotto, D. Mazac and M.F. Paulos, Bootstrapping the 3d Ising twist defect, JHEP 03 (2014) 100 [arXiv:1310.5078] [INSPIRE].

    Article  ADS  Google Scholar 

  20. F. Gliozzi, P. Liendo, M. Meineri and A. Rago, Boundary and interface CFTs from the conformal bootstrap, JHEP 05 (2015) 036 [arXiv:1502.07217] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. P. Liendo and C. Meneghelli, Bootstrap equations for \( \mathcal{N}=4 \) SYM with defects, JHEP 01 (2017) 122 [arXiv:1608.05126] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. F. Gliozzi, Truncatable bootstrap equations in algebraic form and critical surface exponents, JHEP 10 (2016) 037 [arXiv:1605.04175] [INSPIRE].

    Article  ADS  Google Scholar 

  23. M. Billó et al., Line defects in the 3d Ising model, JHEP 07 (2013) 055 [arXiv:1304.4110] [INSPIRE].

    Article  ADS  Google Scholar 

  24. C. Cosme, J.M. V.P. Lopes and J. Penedones, Conformal symmetry of the critical 3D Ising model inside a sphere, JHEP 08 (2015) 022 [arXiv:1503.02011] [INSPIRE].

    Article  ADS  Google Scholar 

  25. L. Bianchi et al., Shape dependence of holographic Rényi entropy in general dimensions, JHEP 11 (2016) 180 [arXiv:1607.07418] [INSPIRE].

    Article  ADS  Google Scholar 

  26. M. Chiodaroli, J. Estes and Y. Korovin, Holographic two-point functions for Janus interfaces in the D1/D5 CFT, JHEP 04 (2017) 145 [arXiv:1612.08916] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. M. de Leeuw et al., Two-point functions in AdS/dCFT and the boundary conformal bootstrap equations, JHEP 08 (2017) 020 [arXiv:1705.03898] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  28. S. Giombi, R. Roiban and A.A. Tseytlin, Half-BPS Wilson loop and AdS 2 /CFT 1, Nucl. Phys. B 922 (2017) 499 [arXiv:1706.00756] [INSPIRE].

    Article  ADS  Google Scholar 

  29. A. Söderberg, Anomalous dimensions in the WF O(N) model with a monodromy line defect, JHEP 03 (2018) 058 [arXiv:1706.02414] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. C. Melby-Thompson and C. Schmidt-Colinet, Double trace interfaces, JHEP 11 (2017) 110 [arXiv:1707.03418] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. M. de Leeuw, A.C. Ipsen, C. Kristjansen and M. Wilhelm, Introduction to integrability and one-point functions in \( \mathcal{N}=4 \) SYM and its defect cousin, talk given at the Les Houches Summer School: Integrability: From Statistical Systems to Gauge Theory, June 6–July 1, Les Houches, France (2017), arXiv:1708.02525 [INSPIRE].

  32. M. Kim, N. Kiryu, S. Komatsu and T. Nishimura, Structure constants of defect changing operators on the 1/2 BPS Wilson loop, JHEP 12 (2017) 055 [arXiv:1710.07325] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. D. Simmons-Duffin, D. Stanford and E. Witten, A spacetime derivation of the Lorentzian OPE inversion formula, JHEP 07 (2018) 085 [arXiv:1711.03816] [INSPIRE].

    Article  ADS  Google Scholar 

  34. L.F. Alday and A. Zhiboedov, An algebraic approach to the analytic bootstrap, JHEP 04 (2017) 157 [arXiv:1510.08091] [INSPIRE].

    Article  ADS  Google Scholar 

  35. D. Pappadopulo, S. Rychkov, J. Espin and R. Rattazzi, OPE Convergence in Conformal Field Theory, Phys. Rev. D 86 (2012) 105043 [arXiv:1208.6449] [INSPIRE].

    ADS  Google Scholar 

  36. J. Qiao and S. Rychkov, A tauberian theorem for the conformal bootstrap, JHEP 12 (2017) 119 [arXiv:1709.00008] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. L.F. Alday and A. Zhiboedov, Conformal bootstrap with slightly broken higher spin symmetry, JHEP 06 (2016) 091 [arXiv:1506.04659] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. L.F. Alday, Solving CFTs with weakly broken higher spin symmetry, JHEP 10 (2017) 161 [arXiv:1612.00696] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. L.F. Alday, A. Bissi and T. Lukowski, Large spin systematics in CFT, JHEP 11 (2015) 101 [arXiv:1502.07707] [INSPIRE].

    ADS  MATH  Google Scholar 

  40. M. Hogervorst and B.C. van Rees, Crossing symmetry in alpha space, JHEP 11 (2017) 193 [arXiv:1702.08471] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. V.K. Dobrev, V.B. Petkova, S.G. Petrova and I.T. Todorov, Dynamical derivation of vacuum operator product expansion in euclidean conformal quantum field theory, Phys. Rev. D 13 (1976) 887 [INSPIRE].

    ADS  Google Scholar 

  42. M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP 12 (2012) 091 [arXiv:1209.4355] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  43. L.F. Alday, J. Henriksson and M. van Loon, Taming the ϵ-expansion with large spin perturbation theory, JHEP 07 (2018) 131 [arXiv:1712.02314] [INSPIRE].

    Article  ADS  Google Scholar 

  44. L.F. Alday and S. Caron-Huot, Gravitational S-matrix from CFT dispersion relations, arXiv:1711.02031 [INSPIRE].

  45. A. Lewkowycz and J. Maldacena, Exact results for the entanglement entropy and the energy radiated by a quark, JHEP 05 (2014) 025 [arXiv:1312.5682] [INSPIRE].

    Article  ADS  Google Scholar 

  46. K. Okuyama and G.W. Semenoff, Wilson loops in N = 4 SYM and fermion droplets, JHEP 06 (2006) 057 [hep-th/0604209] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  47. J. Gomis, S. Matsuura, T. Okuda and D. Trancanelli, Wilson loop correlators at strong coupling: From matrices to bubbling geometries, JHEP 08 (2008) 068 [arXiv:0807.3330] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a moving quark in N = 4 super Yang-Mills, JHEP 06 (2012) 048 [arXiv:1202.4455] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. M.S. Bianchi, L. Griguolo, A. Mauri, S. Penati, M. Preti and D. Seminara, Towards the exact Bremsstrahlung function of ABJM theory, JHEP 08 (2017) 022 [arXiv:1705.10780] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  50. L. Bianchi, L. Griguolo, M. Preti and D. Seminara, Wilson lines as superconformal defects in ABJM theory: a formula for the emitted radiation, JHEP 10 (2017) 050 [arXiv:1706.06590] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  51. B. Fiol, E. Gerchkovitz and Z. Komargodski, Exact Bremsstrahlung function in N = 2 superconformal field theories, Phys. Rev. Lett. 116 (2016) 081601 [arXiv:1510.01332] [INSPIRE].

    Article  ADS  Google Scholar 

  52. F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  53. F.A. Dolan and H. Osborn, On short and semi-short representations for four-dimensional superconformal symmetry, Annals Phys. 307 (2003) 41 [hep-th/0209056] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  54. C. Beem, L. Rastelli and B.C. van Rees, More \( \mathcal{N}=4 \) superconformal bootstrap, Phys. Rev. D 96 (2017) 046014 [arXiv:1612.02363] [INSPIRE].

    ADS  Google Scholar 

  55. J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a higher spin symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  56. V. Alba and K. Diab, Constraining conformal field theories with a higher spin symmetry in d = 4, arXiv:1307.8092 [INSPIRE].

  57. G.T. Horowitz, N. Iqbal, J.E. Santos and B. Way, Hovering black holes from charged defects, Class. Quant. Grav. 32 (2015) 105001 [arXiv:1412.1830] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  58. A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of long-distance AdS physics from the CFT bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].

    Article  ADS  Google Scholar 

  59. A. Kaviraj, K. Sen and A. Sinha, Universal anomalous dimensions at large spin and large twist, JHEP 07 (2015) 026 [arXiv:1504.00772] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  60. J. Penedones, TASI lectures on AdS/CFT, in the proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015), June 1–26, Boulder, U.S.A. (2015), arXiv:1608.04948 [INSPIRE].

  61. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].

    Article  ADS  Google Scholar 

  62. C. Fefferman and C.R. Graham, The ambient metric, Ann. Math. Stud. 178 (2011) 1 [arXiv:0710.0919] [INSPIRE].

    Google Scholar 

  63. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

    MATH  Google Scholar 

  64. L.-Y. Hung, R.C. Myers and M. Smolkin, Twist operators in higher dimensions, JHEP 10 (2014) 178 [arXiv:1407.6429] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  65. L. Bianchi, M. Meineri, R.C. Myers and M. Smolkin, Rényi entropy and conformal defects, JHEP 07 (2016) 076 [arXiv:1511.06713] [INSPIRE].

    Article  ADS  Google Scholar 

  66. T. Faulkner, Bulk emergence and the RG flow of entanglement entropy, JHEP 05 (2015) 033 [arXiv:1412.5648] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  67. S. Balakrishnan, T. Faulkner, Z.U. Khandker and H. Wang, A general proof of the quantum null energy condition, arXiv:1706.09432 [INSPIRE].

  68. L.-Y. Hung, R.C. Myers, M. Smolkin and A. Yale, Holographic calculations of Rényi entropy, JHEP 12 (2011) 047 [arXiv:1110.1084] [INSPIRE].

    Article  ADS  Google Scholar 

  69. E. Perlmutter, A universal feature of CFT Rényi entropy, JHEP 03 (2014) 117 [arXiv:1308.1083] [INSPIRE].

    Article  ADS  Google Scholar 

  70. K.G. Wilson and J.B. Kogut, The Renormalization group and the ϵ-expansion, Phys. Rept. 12 (1974) 75 [INSPIRE].

    Article  ADS  Google Scholar 

  71. F. Gliozzi, Anomalous dimensions of spinning operators from conformal symmetry, JHEP 01 (2018) 113 [arXiv:1711.05530] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  72. M. Mezei, Entanglement entropy across a deformed sphere, Phys. Rev. D 91 (2015) 045038 [arXiv:1411.7011] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  73. T. Faulkner, R.G. Leigh and O. Parrikar, Shape dependence of entanglement entropy in conformal field theories, JHEP 04 (2016) 088 [arXiv:1511.05179] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  74. S. Hellerman, D. Orlando, S. Reffert and M. Watanabe, On the CFT operator spectrum at large global charge, JHEP 12 (2015) 071 [arXiv:1505.01537] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  75. A. Monin, D. Pirtskhalava, R. Rattazzi and F.K. Seibold, Semiclassics, Goldstone bosons and CFT data, JHEP 06 (2017) 011 [arXiv:1611.02912] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  76. D. Jafferis, B. Mukhametzhanov and A. Zhiboedov, Conformal bootstrap at large charge, JHEP 05 (2018) 043 [arXiv:1710.11161] [INSPIRE].

    Article  ADS  Google Scholar 

  77. D. Karateev, P. Kravchuk and D. Simmons-Duffin, Weight shifting operators and conformal blocks, JHEP 02 (2018) 081 [arXiv:1706.07813] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  78. M. Hogervorst and S. Rychkov, Radial coordinates for conformal blocks, Phys. Rev. D 87 (2013) 106004 [arXiv:1303.1111] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. DESY Hamburg, Theory Group, Notkestraße 85, D-22607, Hamburg, Germany

    Madalena Lemos & Pedro Liendo

  2. Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Rte de la Sorge, BSP 728, CH-1015, Lausanne, Switzerland

    Marco Meineri

  3. Institut für Physik und Institut für Mathematik, Humboldt-Universität zu Berlin, IRIS Adlershof, Zum Großen Windkanal 6, 12489, Berlin, Germany

    Sourav Sarkar

  4. Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, 14476, Potsdam, Germany

    Sourav Sarkar

Authors
  1. Madalena Lemos
    View author publications

    Search author on:PubMed Google Scholar

  2. Pedro Liendo
    View author publications

    Search author on:PubMed Google Scholar

  3. Marco Meineri
    View author publications

    Search author on:PubMed Google Scholar

  4. Sourav Sarkar
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Marco Meineri.

Additional information

ArXiv ePrint: 1712.08185

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemos, M., Liendo, P., Meineri, M. et al. Universality at large transverse spin in defect CFT. J. High Energ. Phys. 2018, 91 (2018). https://doi.org/10.1007/JHEP09(2018)091

Download citation

  • Received: 06 August 2018

  • Accepted: 05 September 2018

  • Published: 17 September 2018

  • DOI: https://doi.org/10.1007/JHEP09(2018)091

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Conformal Field Theory
  • Boundary Quantum Field Theory
  • Wilson, ’t Hooft and Polyakov loops
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature