
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
NumPy average() Function
The NumPy average() function computes the weighted average or mean of the elements in an array along a specified axis. The weighted average allows for each element to have its own weight, which can modify the contribution of each element to the final result.
In statistics, the average (also known as the mean) is the sum of the data values divided by the number of data points. The formula is mean = (sum of all elements) / (number of elements).
For a one-dimensional array, the average is computed over all elements. For multi-dimensional arrays, the average is computed along the specified axis. We can also provide a set of weights to compute the weighted average, where each elements contribution is weighted by the corresponding weight value.
Syntax
Following is the syntax of the NumPy average() function −
numpy.average(a, axis=None, weights=None, returned=False, *, keepdims=<no value>)
Parameters
Following are the parameters of the NumPy average() function −
- a: Input array, which can be a NumPy array, list, or a scalar value.
- axis (optional): Axis along which to compute the average. Default is None, which means the average is computed over the entire array.
- weights (optional): An array of weights to apply to the elements. If None, all elements are treated equally. The length of the weights array must match the size of the input array.
- keepdims (optional): If True, the reduced dimensions are retained as dimensions of size one in the output. Default is False.
- returned (optional): If True, the function will return a tuple with the average and the sum of the weights. Default is False.
Return Values
This function returns the average of the input array. If the weights parameter is provided, the function computes the weighted average. The result is a scalar for one-dimensional input and an array for multi-dimensional input.
Example
Following is a basic example to compute the average of an array using the NumPy average() function −
import numpy as np # input array x = np.array([1, 2, 3, 4, 5]) # applying average result = np.average(x) print("Average Result:", result)
Output
Following is the output of the above code −
Average Result: 3.0
Example: Weighted Average
If all the weights along the specified axis are zero, it will result in a ZeroDivisionError, as division by zero occurs when computing the weighted average. If the weights do not have the same shape as the input array and axis=None, it will result in a ValueError. Additionally, if the weights array has dimensions or shape that are inconsistent with the input array along the specified axis, a ValueError will also be raised.
In the following example, we have computed the weighted average of an array, where each element is assigned a different weight. We have used the weights parameter of the average() function to apply custom weights −
import numpy as np # input array and weights x = np.array([1, 2, 3, 4, 5]) weights = np.array([0.1, 0.2, 0.3, 0.2, 0.2]) # applying weighted average result = np.average(x, weights=weights) print("Weighted Average Result:", result)
Output
Following is the output of the above code −
Weighted Average Result: 3.2
Example: Specifying an Axis
The average() function can compute the average along a specific axis of a multi-dimensional array. In the following example, we have computed the average along axis 0 (columns) and axis 1 (rows) of a 2D array −
import numpy as np # 2D array x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # applying average along axis 0 (columns) result_axis0 = np.average(x, axis=0) # applying average along axis 1 (rows) result_axis1 = np.average(x, axis=1) print("Average along axis 0:", result_axis0) print("Average along axis 1:", result_axis1)
Output
Following is the output of the above code −
Average along axis 0: [4. 5. 6.] Average along axis 1: [2. 5. 8.]
Example: Usage of 'returned' Parameter
The returned parameter allows the function to return both the average and the sum of the weights. In the following example, we compute the weighted average and return both values.
import numpy as np # input array and weights x = np.array([1, 2, 3, 4, 5]) weights = np.array([0.1, 0.2, 0.3, 0.2, 0.2]) # applying weighted average with returned=True result, sum_weights = np.average(x, weights=weights, returned=True) print("Weighted Average:", result) print("Sum of Weights:", sum_weights)
Output
Following is the output of the above code −
Weighted Average: 3.2 Sum of Weights: 1.0
Example: Plotting 'average()' Function
In the following example, we have plotted the behavior of the average() function. We have calculated and plotted the average for different sizes of input arrays by importing Numpy and matplotlib.pyplot module −
import numpy as np import matplotlib.pyplot as plt x = np.linspace(0, 10, 100) y = np.full_like(x, np.average(x)) plt.plot(x, y, label="Average") plt.title("Average Function") plt.xlabel("Input") plt.ylabel("Average Value") plt.legend() plt.grid() plt.show()
Output
The plot demonstrates the constant nature of the average value across the input range −
