
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
NumPy - Convolution
NumPy Convolution
Convolution in NumPy is a mathematical operation used to combine two arrays (such as signals or images) in a specific way to produce a third array. This operation helps in filtering, smoothing, and detecting features within the data.
When you perform convolution, you slide one array (called the kernel or filter) over another array (the input) and calculate the sum of element-wise multiplications at each position. This process enhances certain aspects of the input array, like edges in an image or specific frequencies in a signal.
In NumPy, you can use the numpy.convolve() function for one-dimensional arrays and scipy.ndimage.convolve() for multi-dimensional arrays to perform convolution, which is widely used in signal processing and image analysis.
1D Convolution
One-dimensional convolution is commonly used in signal processing. It involves sliding one signal (kernel) over another (input signal) and computing the dot product at each position.
Example: 1D Convolution
In the following example, we perform a 1D convolution between an input signal and a kernel using NumPy −
import numpy as np # Define the input signal input_signal = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) # Define the convolution kernel kernel = np.array([0.2, 0.5, 0.2]) # Perform 1D convolution convolved_signal = np.convolve(input_signal, kernel, mode='same') print("Input signal:", input_signal) print("Kernel:", kernel) print("Convolved signal:", convolved_signal)
The result shows the input signal, kernel, and convolved signal −
Input signal: [1 2 3 4 5 6 7 8 9] Kernel: [0.2 0.5 0.2] Convolved signal: [0.9 1.8 2.7 3.6 4.5 5.4 6.3 7.2 6.1]
2D Convolution
Two-dimensional convolution is widely used in image processing for tasks such as blurring, sharpening, and edge detection. It involves sliding a 2D kernel over a 2D input array (image) and computing the dot product at each position.
Example: 2D Convolution
In the following example, we perform a 2D convolution on a sample image using a kernel −
import numpy as np from scipy.signal import convolve2d # Define a sample image (2D array) image = np.array([ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16] ]) # Define a 2D convolution kernel kernel = np.array([ [0.1, 0.2, 0.1], [0.2, 0.4, 0.2], [0.1, 0.2, 0.1] ]) # Perform 2D convolution convolved_image = convolve2d(image, kernel, mode='same', boundary='fill', fillvalue=0) print("Image:\n", image) print("Kernel:\n", kernel) print("Convolved image:\n", convolved_image)
The result shows the original image, kernel, and convolved image −
Image: [[ 1 2 3 4] [ 5 6 7 8] [ 9 10 11 12] [13 14 15 16]] Kernel: [[0.1 0.2 0.1] [0.2 0.4 0.2] [0.1 0.2 0.1]] Convolved image: [[ 2.4 4. 5.2 4.5] [ 6.4 9.6 11.2 9.2] [11.2 16. 17.6 14. ] [10.8 15.2 16.4 12.9]]
3D Convolution
Three-dimensional convolution is used in various applications such as 3D image processing, video processing, and volumetric data analysis. It involves sliding a 3D kernel over a 3D input array and computing the dot product at each position.
Example: 3D Convolution
In the following example, we perform a 3D convolution on a sample 3D array −
import numpy as np from scipy.ndimage import convolve # Define a sample 3D array array_3d = np.random.rand(4, 4, 4) # Define a 3D convolution kernel kernel_3d = np.ones((3, 3, 3)) / 27 # Perform 3D convolution convolved_3d = convolve(array_3d, kernel_3d, mode='constant', cval=0.0) print("3D array:\n", array_3d) print("Kernel:\n", kernel_3d) print("Convolved 3D array:\n", convolved_3d)
The result shows the original 3D array, kernel, and convolved 3D array −
3D array: [[[0.46186776 0.09130699 0.36913034 0.51669149] [0.90316515 0.38362845 0.90886156 0.60454144] [0.80756784 0.28656032 0.73140925 0.75789388] [0.36958966 0.66157156 0.19902489 0.89519004]] [[0.04953332 0.98571523 0.80654445 0.47526839] [0.67375222 0.31837149 0.20836025 0.10996474] [0.48799518 0.34754979 0.85689208 0.21079349] [0.91936308 0.79818294 0.18737238 0.01728286]] [[0.50793178 0.93691426 0.00515023 0.29870646] [0.22871996 0.3098202 0.0396516 0.98755326] [0.3347781 0.56108282 0.89520242 0.77143481] [0.64504437 0.0133608 0.61686021 0.01443242]] [[0.96126985 0.11224998 0.79332687 0.0438432 ] [0.39348891 0.36066344 0.06157876 0.29697117] [0.40409768 0.88212056 0.22872878 0.7545221 ] [0.09578231 0.06486727 0.94749091 0.79605238]]] Kernel: [[[0.03703704 0.03703704 0.03703704] [0.03703704 0.03703704 0.03703704] [0.03703704 0.03703704 0.03703704]] [[0.03703704 0.03703704 0.03703704] [0.03703704 0.03703704 0.03703704] [0.03703704 0.03703704 0.03703704]] [[0.03703704 0.03703704 0.03703704] [0.03703704 0.03703704 0.03703704] [0.03703704 0.03703704 0.03703704]]] Convolved 3D array: [[[0.14323484 0.22815693 0.21401425 0.14812454] [0.21470421 0.35845228 0.3322031 0.24282783] [0.25767769 0.37219326 0.3142019 0.21065136] [0.17327335 0.24641033 0.22036013 0.14280959]] [[0.21669359 0.30327501 0.30948818 0.19742312] [0.32134299 0.49990604 0.51018517 0.35385371] [0.33518903 0.5071755 0.47010555 0.3338045 ] [0.23083876 0.35997806 0.32674433 0.2279181 ]] [[0.21623817 0.28714973 0.26483904 0.15284887] [0.32800203 0.47227742 0.46885114 0.29053678] [0.29033486 0.44004365 0.43174681 0.29633869] [0.20571203 0.34395451 0.33200848 0.23322462]] [[0.14115031 0.17447281 0.15727516 0.0935845 ] [0.22196806 0.29691764 0.30887114 0.19172851] [0.15903061 0.26234589 0.31860718 0.23742514] [0.11115311 0.21071912 0.2424502 0.18610089]]]
Applications of Convolution
Convolution has a wide range of applications, such as −
- Image processing: Blurring, sharpening, edge detection, and feature extraction.
- Signal processing: Filtering, smoothing, and noise reduction in audio and communication signals.
- Machine learning: Convolutional neural networks (CNNs) use convolutional layers for feature extraction in tasks such as image recognition and natural language processing.
- Time series analysis: Convolution can be used to smooth or filter time series data.