Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

The conformal bootstrap at finite temperature

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 09 October 2018
  • Volume 2018, article number 70, (2018)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
The conformal bootstrap at finite temperature
Download PDF
  • Luca Iliesiu1,
  • Murat Koloğlu2,
  • Raghu Mahajan1,3,
  • Eric Perlmutter2 &
  • …
  • David Simmons-Duffin2 
  • 1051 Accesses

  • 101 Citations

  • 12 Altmetric

  • 1 Mention

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We initiate an approach to constraining conformal field theory (CFT) data at finite temperature using methods inspired by the conformal bootstrap for vacuum correlation functions. We focus on thermal one- and two-point functions of local operators on the plane. The KMS condition for thermal two-point functions is cast as a crossing equation. By studying the analyticity properties of thermal two-point functions, we derive a “thermal inversion formula” whose output is the set of thermal one-point functions for all operators appearing in a given OPE. This involves identifying a kinematic regime which is the analog of the Regge regime for four-point functions. We demonstrate the effectiveness of the inversion formula by recovering the spectrum and thermal one-point functions in mean field theory, and computing thermal one-point functions for all higher-spin currents in the critical O(N) model at leading order in 1/N. Furthermore, we develop a systematic perturbation theory for thermal data in the large spin, low-twist spectrum of any CFT. We explain how the inversion formula and KMS condition may be combined to algorithmically constrain CFTs at finite temperature. Throughout, we draw analogies to the bootstrap for vacuum four-point functions. Finally, we discuss future directions for the thermal conformal bootstrap program, emphasizing applications to various types of CFTs, including those with holographic duals.

Article PDF

Download to read the full article text

Similar content being viewed by others

Thermal CFTs in momentum space

Article Open access 02 January 2020

Thermal one-point functions: CFT’s with fermions, large d and large spin

Article Open access 24 October 2023

Bootstrapping the 3d Ising model at finite temperature

Article Open access 09 December 2019

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Low Temperature Physics
  • Statistical Mechanics
  • Statistical Physics
  • Special Functions
  • Thermal Process Engineering
  • Integral Transforms and Operational Calculus
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. M.-C. Cha, M.P.A. Fisher, S.M. Girvin, M. Wallin and A.P. Young, Universal conductivity of two-dimensional films at the superconductor-insulator transition, Phys. Rev. B 44 (1991) 6883.

    Article  ADS  Google Scholar 

  2. J. Smakov and E. Sorensen, Universal scaling of the conductivity at the superfluid-insulator phase transition, Phys. Rev. Lett. 95 (2005) 180603 [INSPIRE].

    Article  ADS  Google Scholar 

  3. E. Katz, S. Sachdev, E.S. Sorensen and W. Witczak-Krempa, Conformal field theories at nonzero temperature: operator product expansions, Monte Carlo and holography, Phys. Rev. B 90 (2014) 245109 [arXiv:1409.3841] [INSPIRE].

    Article  ADS  Google Scholar 

  4. F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Bootstrapping the O(N) archipelago, JHEP 11 (2015) 106 [arXiv:1504.07997] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Y. Nakayama, Bootstrapping critical Ising model on three-dimensional real projective space, Phys. Rev. Lett. 116 (2016) 141602 [arXiv:1601.06851] [INSPIRE].

    Article  ADS  Google Scholar 

  6. C. Hasegawa and Yu. Nakayama, ϵ-expansion in critical ϕ 3 -theory on real projective space from conformal field theory, Mod. Phys. Lett. A 32 (2017) 1750045 [arXiv:1611.06373] [INSPIRE].

  7. C. Hasegawa and Y. Nakayama, Three ways to solve critical ϕ 4 theory on 4 − ϵ dimensional real projective space: perturbation, bootstrap and Schwinger-Dyson equation, Int. J. Mod. Phys. A 33 (2018) 1850049 [arXiv:1801.09107] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  9. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  10. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. S. El-Showk and K. Papadodimas, Emergent spacetime and holographic CFTs, JHEP 10 (2012) 106 [arXiv:1101.4163] [INSPIRE].

    Article  ADS  Google Scholar 

  12. R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. D. Poland, D. Simmons-Duffin and A. Vichi, Carving out the space of 4D CFTs, JHEP 05 (2012) 110 [arXiv:1109.5176] [INSPIRE].

    Article  ADS  Google Scholar 

  14. S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3d Ising model with the conformal bootstrap II. c-minimization and precise critical exponents, J. Stat. Phys. 157 (2014) 869 [arXiv:1403.4545] [INSPIRE].

  15. M.F. Paulos, JuliBootS: a hands-on guide to the conformal bootstrap, arXiv:1412.4127 [INSPIRE].

  16. D. Simmons-Duffin, A semidefinite program solver for the conformal bootstrap, JHEP 06 (2015) 174 [arXiv:1502.02033] [INSPIRE].

    Article  ADS  Google Scholar 

  17. P. Liendo, L. Rastelli and B.C. van Rees, The bootstrap program for boundary CFT d, JHEP 07 (2013) 113 [arXiv:1210.4258] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  18. F. Gliozzi, P. Liendo, M. Meineri and A. Rago, Boundary and interface CFTs from the conformal bootstrap, JHEP 05 (2015) 036 [arXiv:1502.07217] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. L. Rastelli and X. Zhou, The Mellin formalism for boundary CFT d, JHEP 10 (2017) 146 [arXiv:1705.05362] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  20. M. Billò, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP 04 (2016) 091 [arXiv:1601.02883] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  21. A. Gadde, Conformal constraints on defects, arXiv:1602.06354 [INSPIRE].

  22. P. Liendo and C. Meneghelli, Bootstrap equations for N = 4 SYM with defects, JHEP 01 (2017) 122 [arXiv:1608.05126] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. E. Lauria, M. Meineri and E. Trevisani, Radial coordinates for defect CFTs, arXiv:1712.07668 [INSPIRE].

  24. M. Lemos, P. Liendo, M. Meineri and S. Sarkar, Universality at large transverse spin in defect CFT, arXiv:1712.08185 [INSPIRE].

  25. F. Gliozzi and A. Rago, Critical exponents of the 3d Ising and related models from conformal bootstrap, JHEP 10 (2014) 042 [arXiv:1403.6003] [INSPIRE].

    Article  ADS  Google Scholar 

  26. S. Hikami, Conformal bootstrap analysis for the Yang-Lee edge singularity, PTEP 2018 (2018) 053I01 [arXiv:1707.04813] [INSPIRE].

  27. S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3D Ising model with the conformal bootstrap, Phys. Rev. D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].

    ADS  MATH  Google Scholar 

  28. F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping mixed correlators in the 3D Ising model, JHEP 11 (2014) 109 [arXiv:1406.4858] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  29. F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Precision islands in the Ising and O(N) models, JHEP 08 (2016) 036 [arXiv:1603.04436] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. D. Simmons-Duffin, The lightcone bootstrap and the spectrum of the 3D Ising CFT, JHEP 03 (2017) 086 [arXiv:1612.08471] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].

    Article  ADS  Google Scholar 

  33. L.F. Alday, A. Bissi and T. Lukowski, Large spin systematics in CFT, JHEP 11 (2015) 101 [arXiv:1502.07707] [INSPIRE].

    ADS  MATH  Google Scholar 

  34. L.F. Alday and A. Zhiboedov, Conformal bootstrap with slightly broken higher spin symmetry, JHEP 06 (2016) 091 [arXiv:1506.04659] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. L.F. Alday and A. Zhiboedov, An algebraic approach to the analytic bootstrap, JHEP 04 (2017) 157 [arXiv:1510.08091] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. L.F. Alday, Large spin perturbation theory for conformal field theories, Phys. Rev. Lett. 119 (2017) 111601 [arXiv:1611.01500] [INSPIRE].

    Article  ADS  Google Scholar 

  37. S. Caron-Huot, Analyticity in spin in conformal theories, JHEP 09 (2017) 078 [arXiv:1703.00278] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. V.N. Gribov, Partial waves with complex orbital angular momenta and the asymptotic behavior of the scattering amplitude, Sov. Phys. JETP 14 (1962) 1395 [Zh. Eksp. Teor. Fiz. 41 (1961) 1962] [INSPIRE].

  39. M. Froissart, Asymptotic behavior and subtractions in the Mandelstam representation, Phys. Rev. 123 (1961) 1053 [INSPIRE].

    Article  ADS  Google Scholar 

  40. L.F. Alday, A. Bissi and E. Perlmutter, Holographic reconstruction of AdS exchanges from crossing symmetry, JHEP 08 (2017) 147 [arXiv:1705.02318] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. P. Dey, K. Ghosh and A. Sinha, Simplifying large spin bootstrap in Mellin space, JHEP 01 (2018) 152 [arXiv:1709.06110] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. J. Henriksson and T. Lukowski, Perturbative four-point functions from the analytic conformal bootstrap, JHEP 02 (2018) 123 [arXiv:1710.06242] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. L.F. Alday, J. Henriksson and M. van Loon, Taming the ϵ-expansion with large spin perturbation theory, JHEP 07 (2018) 131 [arXiv:1712.02314] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  44. L.F. Alday and S. Caron-Huot, Gravitational S-matrix from CFT dispersion relations, arXiv:1711.02031 [INSPIRE].

  45. M. van Loon, The analytic bootstrap in fermionic CFTs, JHEP 01 (2018) 104 [arXiv:1711.02099] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. J. Henriksson and M. Van Loon, Critical O(N) model to order ϵ 4 from analytic bootstrap, arXiv:1801.03512 [INSPIRE].

  47. G.J. Turiaci and A. Zhiboedov, Veneziano amplitude of Vasiliev theory, arXiv:1802.04390 [INSPIRE].

  48. S. Sachdev, Polylogarithm identities in a conformal field theory in three-dimensions, Phys. Lett. B 309 (1993) 285 [hep-th/9305131] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. M.A. Vasiliev, Higher spin gauge theories: star product and AdS space, hep-th/9910096 [INSPIRE].

  50. I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. S. Giombi and X. Yin, The higher spin/vector model duality, J. Phys. A 46 (2013) 214003 [arXiv:1208.4036] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  52. L.F. Alday and J.M. Maldacena, Comments on operators with large spin, JHEP 11 (2007) 019 [arXiv:0708.0672] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. W. Witczak-Krempa, Constraining quantum critical dynamics: (2 + 1)D Ising model and beyond, Phys. Rev. Lett. 114 (2015) 177201 [arXiv:1501.03495] [INSPIRE].

    Article  ADS  Google Scholar 

  54. P. Kravchuk, Casimir recursion relations for general conformal blocks, JHEP 02 (2018) 011 [arXiv:1709.05347] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. D. Simmons-Duffin, The conformal bootstrap, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: new frontiers in fields and strings (TASI 2015), Boulder, CO, U.S.A., 1–26 June 2015, World Scientific, Singapore, (2017), pg. 1 [arXiv:1602.07982] [INSPIRE].

  56. H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. A.V. Chubukov, S. Sachdev and J. Ye, Theory of two-dimensional quantum Heisenberg antiferromagnets with a nearly critical ground state, Phys. Rev. B 49 (1994) 11919 [INSPIRE].

    Article  ADS  Google Scholar 

  58. O. Vasilyev, A. Gambassi, A. Maciolek and S. Dietrich, Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations, Phys. Rev. E 79 (2009) 041142 [Erratum ibid. E 80 (2009) 039902].

  59. M. Krech and D.P. Landau, Casimir effect in critical systems: a Monte Carlo simulation, Phys. Rev. E 53 (1996) 4414.

    ADS  Google Scholar 

  60. M. Krech, Casimir forces in binary liquid mixtures, Phys. Rev. E 56 (1997) 1642.

    ADS  Google Scholar 

  61. P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal field theory, Graduate Texts in Contemporary Physics, Springer, New York, U.S.A., (1997) [INSPIRE].

  62. M. Gaberdiel, A general transformation formula for conformal fields, Phys. Lett. B 325 (1994) 366 [hep-th/9401166] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  63. B. Chen, J. Long and J.-J. Zhang, Holographic Rényi entropy for CFT with W symmetry, JHEP 04 (2014) 041 [arXiv:1312.5510] [INSPIRE].

    Article  ADS  Google Scholar 

  64. Y. Gobeil, A. Maloney, G.S. Ng and J.-Q. Wu, Thermal conformal blocks, to appear.

  65. F.M. Haehl, R. Loganayagam, P. Narayan, A.A. Nizami and M. Rangamani, Thermal out-of-time-order correlators, KMS relations and spectral functions, JHEP 12 (2017) 154 [arXiv:1706.08956] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. V.K. Dobrev, G. Mack, V.B. Petkova, S.G. Petrova and I.T. Todorov, Harmonic analysis on the n-dimensional Lorentz group and its application to conformal quantum field theory, Lect. Notes Phys. 63 (1977) 1 [INSPIRE].

    Article  MATH  Google Scholar 

  67. D. Simmons-Duffin, D. Stanford and E. Witten, A spacetime derivation of the Lorentzian OPE inversion formula, JHEP 07 (2018) 085 [arXiv:1711.03816] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  68. M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix bootstrap III: higher dimensional amplitudes, arXiv:1708.06765 [INSPIRE].

  69. J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. O. Aharony, L.F. Alday, A. Bissi and E. Perlmutter, Loops in AdS from conformal field theory, JHEP 07 (2017) 036 [arXiv:1612.03891] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. D. Stanford, Many-body chaos at weak coupling, JHEP 10 (2016) 009 [arXiv:1512.07687] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. A.L. Fitzpatrick and J. Kaplan, Unitarity and the holographic S-matrix, JHEP 10 (2012) 032 [arXiv:1112.4845] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  73. A.V. Chubukov, S. Sachdev and J. Ye, Theory of two-dimensional quantum Heisenberg antiferromagnets with a nearly critical ground state, Phys. Rev. B 49 (1994) 11919 [INSPIRE].

    Article  ADS  Google Scholar 

  74. J. Zinn-Justin, Quantum field theory and critical phenomena, Clarendon Pr., Oxford, U.K., (2002) [Int. Ser. Monogr. Phys. 113 (2002) 1] [INSPIRE].

  75. S. Sachdev and J. Ye, Universal quantum critical dynamics of two-dimensional antiferromagnets, Phys. Rev. Lett. 69 (1992) 2411 [cond-mat/9204001] [INSPIRE].

  76. A.C. Petkou and N.D. Vlachos, Finite size effects and operator product expansions in a CFT for d > 2, Phys. Lett. B 446 (1999) 306 [hep-th/9803149] [INSPIRE].

    Article  ADS  Google Scholar 

  77. A.C. Petkou and N.D. Vlachos, Finite size and finite temperature effects in the conformally invariant O(N) vector model for 2 < d < 4, in 5th International Workshop on Thermal Field Theories and Their Applications, Regensburg, Germany, 10–14 August 1998 [hep-th/9809096] [INSPIRE].

  78. E.D. Skvortsov, On (un)broken higher-spin symmetry in vector models, in Proceedings, International Workshop on Higher Spin Gauge Theories, Singapore, 4–6 November 2015, World Scientific, Singapore, (2017), pg. 103 [arXiv:1512.05994] [INSPIRE].

  79. V.E. Didenko and M.A. Vasiliev, Static BPS black hole in 4d higher-spin gauge theory, Phys. Lett. B 682 (2009) 305 [Erratum ibid. B 722 (2013) 389] [arXiv:0906.3898] [INSPIRE].

  80. V.E. Didenko and E.D. Skvortsov, Exact higher-spin symmetry in CFT: all correlators in unbroken Vasiliev theory, JHEP 04 (2013) 158 [arXiv:1210.7963] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. M.A. Vasiliev, Invariant functionals in higher-spin theory, Nucl. Phys. B 916 (2017) 219 [arXiv:1504.07289] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. V.E. Didenko, N.G. Misuna and M.A. Vasiliev, Charges in nonlinear higher-spin theory, JHEP 03 (2017) 164 [arXiv:1512.07626] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. C. Iazeolla, E. Sezgin and P. Sundell, On exact solutions and perturbative schemes in higher spin theory, Universe 4 (2018) 5 [arXiv:1711.03550] [INSPIRE].

    Article  ADS  Google Scholar 

  84. X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality constraints on corrections to the graviton three-point coupling, JHEP 02 (2016) 020 [arXiv:1407.5597] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. N. Afkhami-Jeddi, T. Hartman, S. Kundu and A. Tajdini, Einstein gravity 3-point functions from conformal field theory, JHEP 12 (2017) 049 [arXiv:1610.09378] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. M.S. Costa, T. Hansen and J. Penedones, Bounds for OPE coefficients on the Regge trajectory, JHEP 10 (2017) 197 [arXiv:1707.07689] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. D. Meltzer and E. Perlmutter, Beyond a = c: gravitational couplings to matter and the stress tensor OPE, JHEP 07 (2018) 157 [arXiv:1712.04861] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  88. R.C. Myers, T. Sierens and W. Witczak-Krempa, A holographic model for quantum critical responses, JHEP 05 (2016) 073 [Addendum ibid. 09 (2016) 066] [arXiv:1602.05599] [INSPIRE].

  89. C. Cordova, J. Maldacena and G.J. Turiaci, Bounds on OPE coefficients from interference effects in the conformal collider, JHEP 11 (2017) 032 [arXiv:1710.03199] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  90. K.A. Intriligator, Bonus symmetries of N = 4 super Yang-Mills correlation functions via AdS duality, Nucl. Phys. B 551 (1999) 575 [hep-th/9811047] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. S.S. Gubser, I.R. Klebanov and A.W. Peet, Entropy and temperature of black 3-branes, Phys. Rev. D 54 (1996) 3915 [hep-th/9602135] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  92. V. Gonçalves, Four point function of N = 4 stress-tensor multiplet at strong coupling, JHEP 04 (2015) 150 [arXiv:1411.1675] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  93. L. Iliesiu, M. Kologlu, R. Mahajan and D. Simmons-Duffin, The thermal bootstrap of the 3d Ising CFT, to appear.

  94. A. Belin, J. de Boer, J. Kruthoff, B. Michel, E. Shaghoulian and M. Shyani, Universality of sparse d > 2 conformal field theory at large N, JHEP 03 (2017) 067 [arXiv:1610.06186] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. A. Belin, J. De Boer and J. Kruthoff, Comments on a state-operator correspondence for the torus, arXiv:1802.00006 [INSPIRE].

  96. S. Giombi, S. Minwalla, S. Prakash, S.P. Trivedi, S.R. Wadia and X. Yin, Chern-Simons theory with vector fermion matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].

    Article  ADS  Google Scholar 

  97. O. Aharony, G. Gur-Ari and R. Yacoby, d = 3 bosonic vector models coupled to Chern-Simons gauge theories, JHEP 03 (2012) 037 [arXiv:1110.4382] [INSPIRE].

  98. S. Jain, S.P. Trivedi, S.R. Wadia and S. Yokoyama, Supersymmetric Chern-Simons theories with vector matter, JHEP 10 (2012) 194 [arXiv:1207.4750] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  99. O. Aharony, S. Giombi, G. Gur-Ari, J. Maldacena and R. Yacoby, The thermal free energy in large N Chern-Simons-matter theories, JHEP 03 (2013) 121 [arXiv:1211.4843] [INSPIRE].

    Article  ADS  Google Scholar 

  100. G. Gur-Ari, S.A. Hartnoll and R. Mahajan, Transport in Chern-Simons-matter theories, JHEP 07 (2016) 090 [arXiv:1605.01122] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  101. J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a higher spin symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  102. J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, Class. Quant. Grav. 30 (2013) 104003 [arXiv:1204.3882] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  103. E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Semiclassical Virasoro blocks from AdS 3 gravity, JHEP 12 (2015) 077 [arXiv:1508.04987] [INSPIRE].

    ADS  MATH  Google Scholar 

  104. E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Witten diagrams revisited: the AdS geometry of conformal blocks, JHEP 01 (2016) 146 [arXiv:1508.00501] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  105. A.L. Fitzpatrick, J. Kaplan, M.T. Walters and J. Wang, Eikonalization of conformal blocks, JHEP 09 (2015) 019 [arXiv:1504.01737] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  106. M. Hasenbusch, private correspondence.

  107. N. Lashkari, A. Dymarsky and H. Liu, Eigenstate thermalization hypothesis in conformal field theory, J. Stat. Mech. 1803 (2018) 033101 [arXiv:1610.00302] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  108. D. Jafferis, B. Mukhametzhanov and A. Zhiboedov, Conformal bootstrap at large charge, JHEP 05 (2018) 043 [arXiv:1710.11161] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  109. A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, On information loss in AdS 3 /CFT 2, JHEP 05 (2016) 109 [arXiv:1603.08925] [INSPIRE].

    Article  ADS  Google Scholar 

  110. R. Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Jpn. 12 (1957) 570.

    Article  ADS  MathSciNet  Google Scholar 

  111. R. Kubo, M. Yokota and S. Nakajima, Statistical-mechanical theory of irreversible processes. II. Response to thermal disturbance, J. Phys. Soc. Jpn. 12 (1957) 1203.

    Article  ADS  MathSciNet  Google Scholar 

  112. R. Kubo, The fluctuation-dissipation theorem, Rep. Prog. Phys. 29 (1966) 255.

    Article  ADS  MATH  Google Scholar 

  113. S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE].

  114. L.P. Kadanoff and P.C. Martin, Hydrodynamic equations and correlation functions, Ann. Phys. 24 (1963) 419.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  115. B. Assel, D. Cassani, L. Di Pietro, Z. Komargodski, J. Lorenzen and D. Martelli, The Casimir energy in curved space and its supersymmetric counterpart, JHEP 07 (2015) 043 [arXiv:1503.05537] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  116. Z. Komargodski and D. Simmons-Duffin, The Random-Bond Ising model in 2.01 and 3 dimensions, J. Phys. A 50 (2017) 154001 [arXiv:1603.04444] [INSPIRE].

  117. S. Meneses, S. Rychkov, J.M. V.P. Lopes and P. Yvernay, A structural test for the conformal invariance of the critical 3d Ising model, arXiv:1802.02319 [INSPIRE].

  118. L. Hadasz, Z. Jaskolski and P. Suchanek, Recursive representation of the torus 1-point conformal block, JHEP 01 (2010) 063 [arXiv:0911.2353] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  119. P. Kraus, A. Maloney, H. Maxfield, G.S. Ng and J.-Q. Wu, Witten diagrams for torus conformal blocks, JHEP 09 (2017) 149 [arXiv:1706.00047] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics, Princeton University, Jadwin Hall, Princeton, NJ, 08540, U.S.A.

    Luca Iliesiu & Raghu Mahajan

  2. Walter Burke Institute for Theoretical Physics, Caltech, 1200 E. California Blvd., Pasadena, CA, 91125, U.S.A.

    Murat Koloğlu, Eric Perlmutter & David Simmons-Duffin

  3. School of Natural Sciences, Institute for Advanced Study, 1 Einstein Dr., Princeton, NJ, 08540, U.S.A.

    Raghu Mahajan

Authors
  1. Luca Iliesiu
    View author publications

    Search author on:PubMed Google Scholar

  2. Murat Koloğlu
    View author publications

    Search author on:PubMed Google Scholar

  3. Raghu Mahajan
    View author publications

    Search author on:PubMed Google Scholar

  4. Eric Perlmutter
    View author publications

    Search author on:PubMed Google Scholar

  5. David Simmons-Duffin
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Eric Perlmutter.

Additional information

ArXiv ePrint: 1802.10266

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iliesiu, L., Koloğlu, M., Mahajan, R. et al. The conformal bootstrap at finite temperature. J. High Energ. Phys. 2018, 70 (2018). https://doi.org/10.1007/JHEP10(2018)070

Download citation

  • Received: 23 August 2018

  • Accepted: 05 October 2018

  • Published: 09 October 2018

  • DOI: https://doi.org/10.1007/JHEP10(2018)070

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Conformal Field Theory
  • Field Theories in Higher Dimensions
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature