Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Light-ray operators in conformal field theory

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 19 November 2018
  • Volume 2018, article number 102, (2018)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Light-ray operators in conformal field theory
Download PDF
  • Petr Kravchuk  ORCID: orcid.org/0000-0003-0977-36861 &
  • David Simmons-Duffin1 
  • 1368 Accesses

  • 224 Citations

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We argue that every CFT contains light-ray operators labeled by a continuous spin J. When J is a positive integer, light-ray operators become integrals of local operators over a null line. However for non-integer J , light-ray operators are genuinely nonlocal and give the analytic continuation of CFT data in spin described by Caron-Huot. A key role in our construction is played by a novel set of intrinsically Lorentzian integral transforms that generalize the shadow transform. Matrix elements of light-ray operators can be computed via the integral of a double-commutator against a conformal block. This gives a simple derivation of Caron-Huot’s Lorentzian OPE inversion formula and lets us generalize it to arbitrary four-point functions. Furthermore, we show that light-ray operators enter the Regge limit of CFT correlators, and generalize conformal Regge theory to arbitrary four-point functions. The average null energy operator is an important example of a light-ray operator. Using our construction, we find a new proof of the average null energy condition (ANEC), and furthermore generalize the ANEC to continuous spin.

Article PDF

Download to read the full article text

Similar content being viewed by others

Transverse spin in the light-ray OPE

Article Open access 10 May 2022

The light-ray OPE and conformal colliders

Article Open access 21 January 2021

Averaged null energy and the renormalization group

Article Open access 19 December 2023

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Angular momentum of light
  • Classical Optics, Geometric and Wave optics
  • Light-Matter Interaction
  • Operator Theory
  • Transformation Optics
  • Integral Transforms and Operational Calculus
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal Approximation in AdS/CFT: From Shock Waves to Four-Point Functions, JHEP 08 (2007) 019 [hep-th/0611122] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal Approximation in AdS/CFT: Conformal Partial Waves and Finite N Four-Point Functions, Nucl. Phys. B 767 (2007) 327 [hep-th/0611123] [INSPIRE].

  3. L. Cornalba, Eikonal methods in AdS/CFT: Regge theory and multi-reggeon exchange, arXiv:0710.5480 [INSPIRE].

  4. L. Cornalba, M.S. Costa and J. Penedones, Eikonal Methods in AdS/CFT: BFKL Pomeron at Weak Coupling, JHEP 06 (2008) 048 [arXiv:0801.3002] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. L. Cornalba, M.S. Costa and J. Penedones, Deep Inelastic Scattering in Conformal QCD, JHEP 03 (2010) 133 [arXiv:0911.0043] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  6. T. Banks and G. Festuccia, The Regge Limit for Green Functions in Conformal Field Theory, JHEP 06 (2010) 105 [arXiv:0910.2746] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. J. Maldacena, D. Simmons-Duffin and A. Zhiboedov, Looking for a bulk point, JHEP 01 (2017) 013 [arXiv:1509.03612] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. R.C. Brower, J. Polchinski, M.J. Strassler and C.-I. Tan, The pomeron and gauge/string duality, JHEP 12 (2007) 005 [hep-th/0603115] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. G. Mack, Convergence of Operator Product Expansions on the Vacuum in Conformal Invariant Quantum Field Theory, Commun. Math. Phys. 53 (1977) 155 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. T. Hartman, S. Jain and S. Kundu, Causality Constraints in Conformal Field Theory, JHEP 05 (2016) 099 [arXiv:1509.00014] [INSPIRE].

    Article  ADS  Google Scholar 

  12. M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP 12 (2012) 091 [arXiv:1209.4355] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. D.A. Roberts and D. Stanford, Two-dimensional conformal field theory and the butterfly effect, Phys. Rev. Lett. 115 (2015) 131603 [arXiv:1412.5123] [INSPIRE].

    Article  ADS  Google Scholar 

  14. J. Murugan, D. Stanford and E. Witten, More on Supersymmetric and 2d Analogs of the SYK Model, JHEP 08 (2017) 146 [arXiv:1706.05362] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. S. Caron-Huot, Analyticity in Spin in Conformal Theories, JHEP 09 (2017) 078 [arXiv:1703.00278] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The Analytic Bootstrap and AdS Superhorizon Locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Z. Komargodski and A. Zhiboedov, Convexity and Liberation at Large Spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].

    Article  ADS  Google Scholar 

  19. A.L. Fitzpatrick, J. Kaplan, M.T. Walters and J. Wang, Eikonalization of Conformal Blocks, JHEP 09 (2015) 019 [arXiv:1504.01737] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Li, D. Meltzer and D. Poland, Conformal Collider Physics from the Lightcone Bootstrap, JHEP 02 (2016) 143 [arXiv:1511.08025] [INSPIRE].

    Article  ADS  Google Scholar 

  21. D. Li, D. Meltzer and D. Poland, Non-Abelian Binding Energies from the Lightcone Bootstrap, JHEP 02 (2016) 149 [arXiv:1510.07044] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. L.F. Alday, A. Bissi and T. Lukowski, Large spin systematics in CFT, JHEP 11 (2015) 101 [arXiv:1502.07707] [INSPIRE].

    ADS  MATH  Google Scholar 

  23. L.F. Alday and A. Zhiboedov, Conformal Bootstrap With Slightly Broken Higher Spin Symmetry, JHEP 06 (2016) 091 [arXiv:1506.04659] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. L.F. Alday and A. Zhiboedov, An Algebraic Approach to the Analytic Bootstrap, JHEP 04 (2017) 157 [arXiv:1510.08091] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. D. Simmons-Duffin, The Lightcone Bootstrap and the Spectrum of the 3d Ising CFT, JHEP 03 (2017) 086 [arXiv:1612.08471] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. L.F. Alday, Large Spin Perturbation Theory for Conformal Field Theories, Phys. Rev. Lett. 119 (2017) 111601 [arXiv:1611.01500] [INSPIRE].

    Article  ADS  Google Scholar 

  27. S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].

  28. A. Kitaev, http://online.kitp.ucsb.edu/online/joint98/kitaev/.

  29. J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].

  30. J. Polchinski and V. Rosenhaus, The Spectrum in the Sachdev-Ye-Kitaev Model, JHEP 04 (2016) 001 [arXiv:1601.06768] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. D. Simmons-Duffin, D. Stanford and E. Witten, A spacetime derivation of the Lorentzian OPE inversion formula, JHEP 07 (2018) 085 [arXiv:1711.03816] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  32. G. Mack, All unitary ray representations of the conformal group SU(2, 2) with positive energy, Commun. Math. Phys. 55 (1977) 1 [INSPIRE].

  33. S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, The shadow operator formalism for conformal algebra. vacuum expectation values and operator products, Lett. Nuovo Cim. 4S2 (1972) 115 [INSPIRE].

  34. D. Simmons-Duffin, Projectors, Shadows and Conformal Blocks, JHEP 04 (2014) 146 [arXiv:1204.3894] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. I.I. Balitsky and V.M. Braun, Evolution Equations for QCD String Operators, Nucl. Phys. B 311 (1989) 541 [INSPIRE].

  36. V.M. Braun, G.P. Korchemsky and D. Mueller, The uses of conformal symmetry in QCD, Prog. Part. Nucl. Phys. 51 (2003) 311 [hep-ph/0306057] [INSPIRE].

  37. S. Caron-Huot, When does the gluon reggeize?, JHEP 05 (2015) 093 [arXiv:1309.6521] [INSPIRE].

    Article  ADS  Google Scholar 

  38. I. Balitsky, V. Kazakov and E. Sobko, Two-point correlator of twist-2 light-ray operators in N = 4 SYM in BFKL approximation,arXiv:1310.3752[INSPIRE].

  39. I. Balitsky, V. Kazakov and E. Sobko, Three-point correlator of twist-2 light-ray operators in N = 4 SYM in BFKL approximation, arXiv:1511.03625 [INSPIRE].

  40. I. Balitsky, V. Kazakov and E. Sobko, Structure constant of twist-2 light-ray operators in the Regge limit, Phys. Rev. D 93 (2016) 061701 [arXiv:1506.02038] [INSPIRE].

  41. D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].

    Article  ADS  Google Scholar 

  42. V.K. Dobrev, G. Mack, V.B. Petkova, S.G. Petrova and I.T. Todorov, Harmonic Analysis on the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory, Lect. Notes Phys. 63 (1977) 1 [INSPIRE].

  43. C. Córdova, J. Maldacena and G.J. Turiaci, Bounds on OPE Coefficients from Interference Effects in the Conformal Collider, JHEP 11 (2017) 032 [arXiv:1710.03199] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  44. C. Córdova and K. Diab, Universal Bounds on Operator Dimensions from the Average Null Energy Condition, JHEP 02 (2018) 131 [arXiv:1712.01089] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  45. T. Faulkner, R.G. Leigh, O. Parrikar and H. Wang, Modular Hamiltonians for Deformed Half-Spaces and the Averaged Null Energy Condition, JHEP 09 (2016) 038 [arXiv:1605.08072] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. T. Hartman, S. Kundu and A. Tajdini, Averaged Null Energy Condition from Causality, JHEP 07 (2017) 066 [arXiv:1610.05308] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. P.A.M. Dirac, Wave equations in conformal space, Annals Math. 37 (1936) 429.

    Article  MathSciNet  MATH  Google Scholar 

  48. G. Mack and A. Salam, Finite component field representations of the conformal group, Annals Phys. 53 (1969) 174 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. D.G. Boulware, L.S. Brown and R.D. Peccei, Deep-inelastic electroproduction and conformal symmetry, Phys. Rev. D 2 (1970) 293 [INSPIRE].

  50. S. Ferrara, R. Gatto and A.F. Grillo, Conformal algebra in space-time and operator product expansion, Springer Tracts Mod. Phys. 67 (1973) 1.

  51. S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys. 76 (1973) 161 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  52. S. Weinberg, Six-dimensional Methods for Four-dimensional Conformal Field Theories, Phys. Rev. D 82 (2010) 045031 [arXiv:1006.3480] [INSPIRE].

  53. M. Lüscher and G. Mack, Global Conformal Invariance in Quantum Field Theory, Commun. Math. Phys. 41 (1975) 203 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  54. T.Y. Thomas, On conformal geometry, Proc. Natl. Acad. Sci. USA 12 (1926) 352.

  55. V.K. Dobrev, V.B. Petkova, S.G. Petrova and I.T. Todorov, Dynamical Derivation of Vacuum Operator Product Expansion in Euclidean Conformal Quantum Field Theory, Phys. Rev. D 13 (1976) 887 [INSPIRE].

  56. T. Bailey, M. Eastwood and A. Gover, Thomas’s structure bundle for conformal, projective and related structures, Rocky Mt. J. Math. 24 (1994) 1191.

    Article  MathSciNet  MATH  Google Scholar 

  57. D. Karateev, P. Kravchuk and D. Simmons-Duffin, Weight Shifting Operators and Conformal Blocks, JHEP 02 (2018) 081 [arXiv:1706.07813] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Correlators, JHEP 11 (2011) 071 [arXiv:1107.3554] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. M. Isachenkov and V. Schomerus, Superintegrability of d-dimensional Conformal Blocks, Phys. Rev. Lett. 117 (2016) 071602 [arXiv:1602.01858] [INSPIRE].

  60. M. Isachenkov and V. Schomerus, Integrability of conformal blocks. Part I. Calogero-Sutherland scattering theory, JHEP 07 (2018) 180 [arXiv:1711.06609] [INSPIRE].

  61. G.F. Cuomo, D. Karateev and P. Kravchuk, General Bootstrap Equations in 4D CFTs, JHEP 01 (2018) 130 [arXiv:1705.05401] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. A.W. Knapp and E.M. Stein, Intertwining operators for semisimple groups, Annals Math. 93 (1971) 489.

    Article  MathSciNet  MATH  Google Scholar 

  63. A.W. Knapp and E.M. Stein, Intertwining operators for semisimple groups. II, Invent. Math. 60 (1980) 9.

  64. H. Epstein, V. Glaser and A. Jaffe, Nonpositivity of energy density in Quantized field theories, Nuovo Cim. 36 (1965) 1016 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  65. R. Streater and A. Wightman, PCT, Spin and Statistics, and All That, Princeton Landmarks in Mathematics and Physics, Princeton University Press, U.S.A. (2016).

  66. Harish-Chandra, Harmonic analysis on semisimple lie groups, Bull. Am. Math. Soc. 76 (1970) 529.

  67. A.L. Fitzpatrick and J. Kaplan, Unitarity and the Holographic S-matrix, JHEP 10 (2012) 032 [arXiv:1112.4845] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  68. D. Karateev, P. Kravchuk and D. Simmons-Duffin, to appear.

  69. J.J. Bisognano and E.H. Wichmann, On the Duality Condition for Quantum Fields, J. Math. Phys. 17 (1976) 303 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  70. J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03 (2011) 025 [arXiv:1011.1485] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. P. Kravchuk and D. Simmons-Duffin, Counting Conformal Correlators, JHEP 02 (2018) 096 [arXiv:1612.08987] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Blocks, JHEP 11 (2011) 154 [arXiv:1109.6321] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  73. D. Pappadopulo, S. Rychkov, J. Espin and R. Rattazzi, OPE Convergence in Conformal Field Theory, Phys. Rev. D 86 (2012) 105043 [arXiv:1208.6449] [INSPIRE].

  74. F.A. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results, arXiv:1108.6194 [INSPIRE].

  75. G.F. Chew and S.C. Frautschi, Principle of Equivalence for All Strongly Interacting Particles Within the S Matrix Framework, Phys. Rev. Lett. 7 (1961) 394 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  76. V.N. Gribov, Possible Asymptotic Behavior of Elastic Scattering, JETP Lett. 41 (1961) 667 [INSPIRE].

    MathSciNet  Google Scholar 

  77. Z. Komargodski, M. Kulaxizi, A. Parnachev and A. Zhiboedov, Conformal Field Theories and Deep Inelastic Scattering, Phys. Rev. D 95 (2017) 065011 [arXiv:1601.05453] [INSPIRE].

  78. H. Casini, Wedge reflection positivity, J. Phys. A 44 (2011) 435202 [arXiv:1009.3832] [INSPIRE].

  79. D.M. Hofman, D. Li, D. Meltzer, D. Poland and F. Rejon-Barrera, A Proof of the Conformal Collider Bounds, JHEP 06 (2016) 111 [arXiv:1603.03771] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. O. Nachtmann, Positivity constraints for anomalous dimensions, Nucl. Phys. B 63 (1973) 237 [INSPIRE].

  81. M.S. Costa, T. Hansen and J. Penedones, Bounds for OPE coefficients on the Regge trajectory, JHEP 10 (2017) 197 [arXiv:1707.07689] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. G. Klinkhammer, Averaged energy conditions for free scalar fields in flat space-times, Phys. Rev. D 43 (1991) 2542 [INSPIRE].

  83. M. Alfimov, N. Gromov and V. Kazakov, QCD Pomeron from AdS/CFT Quantum Spectral Curve, JHEP 07 (2015) 164 [arXiv:1408.2530] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum spectral curve for arbitrary state/operator in AdS 5 /CFT 4, JHEP 09 (2015) 187 [arXiv:1405.4857] [INSPIRE].

  85. N. Gromov, F. Levkovich-Maslyuk and G. Sizov, Quantum Spectral Curve and the Numerical Solution of the Spectral Problem in AdS5/CFT4, JHEP 06 (2016) 036 [arXiv:1504.06640] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  86. M. Alfimov, N. Gromov and G. Sizov, BFKL spectrum of \( \mathcal{N}=4 \) : non-zero conformal spin, JHEP 07 (2018) 181 [arXiv:1802.06908] [INSPIRE].

  87. P. Liendo, Revisiting the dilatation operator of the Wilson-Fisher fixed point, Nucl. Phys. B 920 (2017) 368 [arXiv:1701.04830] [INSPIRE].

  88. T.G. Raben and C.-I. Tan, Minkowski conformal blocks and the Regge limit for Sachdev-Ye-Kitaev-like models, Phys. Rev. D 98 (2018) 086009 [arXiv:1801.04208] [INSPIRE].

  89. L.F. Alday, A. Bissi and E. Perlmutter, Holographic Reconstruction of AdS Exchanges from Crossing Symmetry, JHEP 08 (2017) 147 [arXiv:1705.02318] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  90. P. Dey, K. Ghosh and A. Sinha, Simplifying large spin bootstrap in Mellin space, JHEP 01 (2018) 152 [arXiv:1709.06110] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. J. Henriksson and T. Lukowski, Perturbative Four-Point Functions from the Analytic Conformal Bootstrap, JHEP 02 (2018) 123 [arXiv:1710.06242] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. M. van Loon, The Analytic Bootstrap in Fermionic CFTs, JHEP 01 (2018) 104 [arXiv:1711.02099] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  93. G.J. Turiaci and A. Zhiboedov, Veneziano Amplitude of Vasiliev Theory, JHEP 10 (2018) 034 [arXiv:1802.04390] [INSPIRE].

    Article  ADS  Google Scholar 

  94. L.F. Alday and S. Caron-Huot, Gravitational S-matrix from CFT dispersion relations, arXiv:1711.02031 [INSPIRE].

  95. L.F. Alday, J. Henriksson and M. van Loon, Taming the ϵ-expansion with large spin perturbation theory, JHEP 07 (2018) 131 [arXiv:1712.02314] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  96. M. Lemos, P. Liendo, M. Meineri and S. Sarkar, Universality at large transverse spin in defect CFT, JHEP 09 (2018) 091 [arXiv:1712.08185] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  97. L. Iliesiu, M. Koloğlu, R. Mahajan, E. Perlmutter and D. Simmons-Duffin, The Conformal Bootstrap at Finite Temperature, JHEP 10 (2018) 070 [arXiv:1802.10266] [INSPIRE].

    Article  ADS  Google Scholar 

  98. M. Gillioz, X. Lu and M.A. Luty, Graviton Scattering and a Sum Rule for the c Anomaly in 4D CFT, JHEP 09 (2018) 025 [arXiv:1801.05807] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  99. S.D. Chowdhury, J.R. David and S. Prakash, Constraints on parity violating conformal field theories in d = 3, JHEP 11 (2017) 171 [arXiv:1707.03007] [INSPIRE].

  100. D. Meltzer and E. Perlmutter, Beyond a = c: gravitational couplings to matter and the stress tensor OPE, JHEP 07 (2018) 157 [arXiv:1712.04861] [INSPIRE].

  101. H. Casini, E. Testé and G. Torroba, Markov Property of the Conformal Field Theory Vacuum and the a Theorem, Phys. Rev. Lett. 118 (2017) 261602 [arXiv:1704.01870] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  102. H. Casini, E. Testé and G. Torroba, Modular Hamiltonians on the null plane and the Markov property of the vacuum state, J. Phys. A 50 (2017) 364001 [arXiv:1703.10656] [INSPIRE].

  103. N. Afkhami-Jeddi, T. Hartman, S. Kundu and A. Tajdini, Shockwaves from the Operator Product Expansion, arXiv:1709.03597 [INSPIRE].

  104. R. Bousso, Z. Fisher, S. Leichenauer and A.C. Wall, Quantum focusing conjecture, Phys. Rev. D 93 (2016) 064044 [arXiv:1506.02669] [INSPIRE].

  105. R. Bousso, Z. Fisher, J. Koeller, S. Leichenauer and A.C. Wall, Proof of the Quantum Null Energy Condition, Phys. Rev. D 93 (2016) 024017 [arXiv:1509.02542] [INSPIRE].

  106. S. Balakrishnan, T. Faulkner, Z.U. Khandker and H. Wang, A General Proof of the Quantum Null Energy Condition, arXiv:1706.09432 [INSPIRE].

  107. R. Haag, Local quantum physics: Fields, particles, algebras, Springer, (1992).

  108. F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys. B 678 (2004) 491 [hep-th/0309180] [INSPIRE].

  109. F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].

  110. B. Czech, L. Lamprou, S. McCandlish, B. Mosk and J. Sully, A Stereoscopic Look into the Bulk, JHEP 07 (2016) 129 [arXiv:1604.03110] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  111. F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N) vector models, JHEP 06 (2014) 091 [arXiv:1307.6856] [INSPIRE].

  112. F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping Mixed Correlators in the 3D Ising Model, JHEP 11 (2014) 109 [arXiv:1406.4858] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Walter Burke Institute for Theoretical Physics, Caltech, Pasadena, California, 91125, U.S.A.

    Petr Kravchuk & David Simmons-Duffin

Authors
  1. Petr Kravchuk
    View author publications

    Search author on:PubMed Google Scholar

  2. David Simmons-Duffin
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Petr Kravchuk.

Additional information

ArXiv ePrint: 1805.00098

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravchuk, P., Simmons-Duffin, D. Light-ray operators in conformal field theory. J. High Energ. Phys. 2018, 102 (2018). https://doi.org/10.1007/JHEP11(2018)102

Download citation

  • Received: 24 September 2018

  • Accepted: 22 October 2018

  • Published: 19 November 2018

  • DOI: https://doi.org/10.1007/JHEP11(2018)102

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Conformal Field Theory
  • Field Theories in Higher Dimensions
  • Conformal and W Symmetry
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature